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1 Introduction

[Disclamer: the following notes are very rough and likely contain errors/misconceptions]
Given a knot K ⊂ R3 with inclusion map i : K → R3, we have a short exact sequence of vector bundles on K

with ranks 2, 3, and 1, respectively:

0 N∗K i−1T ∗R3 T ∗K 0. (1)

Here N∗K is the conormal bundle of K in R3: it consists of covectors of T ∗R3 that lie over points in K and annihilate
TK. Given a Riemannian metric g on R3, we can consider the sphere bundle S2 → S(T ∗R) → R3 and the circle
bundle S1 → S(N∗K) → K. The total space S(N∗K) is thus a torus living inside S(T ∗R); we will call this torus
the conormal torus TK ⊂ S(T ∗R3). We will denote points in T ∗R3 by (x, p), so

(x, p) =
∑
i

pidxi|x. (2)

Note that (T ∗R3, dτ) is a symplectic manifold, where τ , the tautological 1-form, is

τ = −
∑
i

pidxi. (3)

Define an inclusion map S(T ∗R3) → T ∗R3. Note that (S(T ∗R3), σ∗τ) is a contact manifold. Since N∗K is a
Lagrangian submanifold of T ∗R3 (in general, the conormal bundle N∗Y of a closed submanifold Y ⊂ X is a
Lagrangian submanifold of T ∗X), it follows that the conormal torus TK is a Legendrian submanifold of S(T ∗R3).

Theorem 1.1. Let Y be a closed submanifold of X. Then the conormal bundle N∗Y of Y in X is a Lagrangian
submanifold of (T ∗X, dτ).

Proof. The tautological 1-form τ satisfies τα = π∗α, where π : T ∗X → X is the projection and α ∈ T ∗X is an
arbitrary covector. We want to show that j∗dτ = 0, where j : N∗Y → T ∗X is the inclusion. Define an inclusion
i : Y → X and a projection p : N∗Y → Y ; note that π ◦ j = i ◦ p. Then

j∗dτα = dj∗π∗α = dp∗i∗α = 0, (4)

since α ∈ N∗Y and thus lies in the kernel of i∗ : i−1T ∗X → T ∗Y .

A Legendrian isotopy f : T 2 × [0, 1] → S(T ∗M) from TK to TK′ is a smooth map such that f0(T 2) = TK ,
f1(T 2) = TK′ , and ft(T

2) is Legendrian for all t ∈ [0, 1]. Given a Legendrian isotopy f , we can use Gray’s theorem
to construct a contact isotopy φt : S(T ∗R3)→ S(T ∗R3) from TK to TK′ (φt is a contactomorphism for all t) that is
trivial outside some open set containing the image of f

Theorem 1.2. (Shende) Given knots K,K ′ ⊂ R3, if there is a Legendrian isotopy from TK to TK′ then K and K ′

are either isotopic or mirror. (Translating simple problem into harder problem?)

Possible motivation: We can define a functor from the category of smooth manifolds to the category of contact
manifolds that takes a smooth manifold X to (S(T ∗X) with its standard contact structure and a smooth map
f : X → Y to f∗ : S(T ∗Y )→ S(T ∗X). We can ask what properties are preserved by this functor.
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2 Outline or proof

2.1 Step 1

Let (M, g) be a Riemannian manifold. One can show: Given φt : S(T ∗M) → S(T ∗M) a compactly supported
contact isotopy, there is a corresponding family of equivalences of categories Φt : D(Sh(M)) → D(Sh(M)), which
satisfy certain properties involving K and K ′. (Note that this is trivially true, since we can take Φt to be the
identity functor, if we don’t include the additional properties.) Here D(Sh(M)) is the derived category of sheaves of
Z-modules on M (in general, all sheaves will be sheaves of Z-modules unless noted otherwise). (The functor Φt is
obtained via a “Fourier-Mukai transform”).

2.2 Step 2

Using the equivalence of categories from Step 1, plus the additional properties involving K and K ′, we can restrict the
equivalence of categories to increasingly smaller full subcategories, ultimately showing that there is an equivalence of
categories Loc(M −K)→ Loc(M −K ′), which satisfies some additional properties. The restriction is accomplished
by characterizing the subcategories in terms of properties that are clearly preserved by the equivalence. Here Loc(X)
is the category of locally constant sheaves of Int-modules on X, also known as the category of “local systems” on
X. It is not hard to show that there is an equivalence of categories Loc(X)→ Z[π1(X)]−Mod. Thus we obtain an
equivalence of categories Z[π1(M −K)]−Mod→ Z[π1(M −K ′)]−Mod, which satisfies some additional properties.
(The rings Z[π1(M −K)] and Z[π1(M −K ′)] are “Morita equivalent”.)

2.3 Step 3

Using the additional properties of the equivalence of categories Z[π1(M −K)]−Mod→ Z[π1(M −K ′)]−Mod, one
can show:

1. There is an isomorphism of rings Z[π1(M −K)]→ Z[π1(M −K ′)]. Note that we need the additional proper-
ties, since there are nonisomorphic rings that are Morita-equivalent. For example, the rings Z and M2(Z) =
{2× 2 matrices of integers} are nonisomorphic rings that are Morita equivalent (the functor Z − Mod →
M2(Z) − Mod, M 7→ M ⊕M gives the equivalence). The additional property that forces the isomorphism
of the rings is the commutativity of the following diagram:

R−Mod S −Mod

Z−Mod Z−Mod .

hR hS

=

(5)

Here the downward arrows are forgetful functors, which are representable; for example hR = HomR−Mod(R,−).
Intuitively, this condition keeps the modules from growing in size (in our example the functor Z − Mod →
M2(Z)−Mod takes Z to Z⊕ Z), which is sufficient to force the rings to be isomorphic.

A rigorous argument is that the ring R can be recovered from the endomorphisms of the forgetful functor hR,
as can be understood as follows. In general Nat(F, F ) is a monoid, and Yoneda’s lemma states that, as sets,
Nat(hR, F ) is in bijection with FR. Using the additional structure, we have that Nat(hR, hR) is a ring, and
Yoneda’s implies this ring is isomorphic to hRR = HomR−Mod(R,R) = R.

2. There is an isomorphism of groups f : π1(M − K) → π1(M − K ′). Note: there nonisomorphic groups with
isomorphic group rings (examples are known involving finite groups of very large order

Note: if G is torsion-free and Z[G] has no nontrivial units (that is, Z[G]× = {±g | g ∈ G}), then G can be
recovered from Z[G]: it is the quotient of the units Z[G]× by the group of torsion units, which is {±1}.
There is an open conjecture that the group ring of a nontrivial group has no nontrivial units. If G is left-
orderable (G has a total order ≤ such that a ≤ b implies ca ≤ cb), then it is torsion-free and Z[G] has no
nontrivial units.

It is known that knot groups are left-orderable, so from Z[π1(M − K)] → Z[π1(M − K ′)] it follows that
π1(M −K) ∼= π1(M −K ′).
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3. The group homomorphism f respects “peripheral subgroups”, up to the signs of the longitude and meridian,
which implies that K and K ′ are isotopic or mirror. In general, given a knot K ⊂ R3 we can define the
“peripheral subgroup” PK ⊂ π1(R3 − K), which is given by Z · [m] if K is the unknot and Z · [m] ⊕ Z · [`]
otherwise. Here m is a meridian and ` is a longitude (see picture). The generators [m] and [`] are not uniquely
defined; we can also take as generators ([m′], [`′]) = ([m]−1, [`]) or ([m′], [`′]) = ([m], [`] · [m]n) for n ∈ Z. For
the unknot [`] = [m]n. (Example: square knot and granny knot have isomorphic knot groups but are not
isotopic.))

3 Locally constant sheaves

The constant sheaf on a topological space X associated to a Z-module F , denoted F , is the sheafification of the
sheaf that assigns constant functions U → F to each open set U . The stalks are given by F x = F for all x ∈ X.

A sheaf F on a topological space X is locally constant if there is an open covering {Ui} of X such that F|Ui is a
constant sheaf for each i. The stalks are given by Fx = F for all x ∈ X, for some Z-module F .

Given a topological space X, the following categories are all equivalent:

1. The category of covering spaces π : X̃ → X.

2. The category of locally constant sheaves of sets on X.

3. The category of π1(X,x0)-sets; that is, sets with an an action of π1(X,x0).

The functor from the second category to the third is given by sending a sheaf F to the stalk Fx0
, with the action of

π1(X,x0) on Fx0
given by the monodromy action of the sheaf.

The following categories are all equivalent:

1. The category of locally constant sheaves of Z-modules on X (also called the category of “local systems” on X).

2. The category of Z[π1(X,x0)]-modules.

3. The category of Z-modules M with a π1(X,x0) action ρ : π1(X,x0)→ Aut(M), where Aut(M) is the group of
Z-module automorphisms of M .

Given a Z-module F and a homomorphism ρ : π1(X,x0)→ Aut(F ), we can construct the corresponding locally
constant sheaf F as follows. Let F be the constant sheaf with group F on the universal cover π : X̃ → X. Define F
such that

Fρ(U) = {s ∈ F (π−1(U)) | s ◦ φg = ρ(g)s}. (6)

Here φg ∈ Aut(π) ∼= π1(X,x0) is the deck transformation φg : X̃ → X̃ corresponding to the element g ∈ π1(X,x0).

We are viewing sections s ∈ F (V ) as locally constant functions s : V → F for V an open subset of X̃. Note we are
considering sections that are equivariant with respect to the actions of π1(X,x0) on X̃ and F .

Note: local systems are analogous to vector bundles with a flat connection, and the way we have defined Fρ(U)
given a representation ρ : π1(X,x0) → Aut(F ) is analogous to the way one can define a flat connection ∇ρ on a
vector bundle V → E → X corresponding to a representation ρ : π1(X,x0) → Aut(V ) starting from a the trivial
connection on the trivial vector bundle V × X̃ → X̃.

As an example, consider locally constant sheaves on S1 with group Z. Note that Z[π1(S1)] = Z[x, x−1], where x
represents a single loop. Note that Aut(Z) = Z2.

3.1 Classification of locally constant sheaves

Note that local systems F with group M are classified via the Cech cohomology Ȟ1(X; Aut(M)), note that Aut(M)
is generally not at sheaf of Z-modules, since Aut(M) is generally nonabelian. Note that Aut(M) can be nonabelian,
but Cech cohomology Ȟp(X;G) are defined when G is nonabelian if p is 0 or 1. In this case Ȟ1(X;G) does not
have the structure of an abelian group, just the structure of a pointed set, where the point corresponds to a constant
sheaf. Note that two representations ρ, ρ′ : π1(X,x0)→ Aut(M) are equivalent if and only if they are conjugate, so
we should have

Ȟ1(X; Aut(M)) = Hom(π1(X,x0),Aut(F ))/{conjugation}. (7)
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In terms of the category of Z[π1(X,x0)]-modules, it seems that we can classify objects via the group cohomology
H1
φ(π1(X,x0); Aut(M)), where the group homomorphism φ : π1(X,x0)→ Aut(M) is the trivial homomorphism that

maps everything to the identity. Usually, one defines group cohomology H(G,A) where A is a G-module (which
means the same thing as a Z[G]-module). But one can define group cohomology Hp

φ(G,A) for A nonabelian and

φ : G → A a group homomorphism if p is 0 or 1. The first cohomology set H1
φ(G;A) is defined as follows. The

1-cocycles are functions f : G→ A such that

f(gh) = f(g)φ(g)f(h). (8)

Two 1-cocycles f1 and f2 are equivalent if there is an a ∈ A such that

af1(g) = f2(g)φ(g)a. (9)

Then H1
φ(G;A) is defined to be the quotient set of the 1-cocycles by the equivalence relation. Based on this definition,

we find that H1
φ(π1(X,x0); Aut(M)) is given by the conjugacy classes of group homomorphisms ρ : π1(X,x0) →

Aut(M), and thus seems to give the correct classification; is there a better way to understand this? For abelian
groups, can one relate group cohomology and Cech cohomology for higher p?

4 Microsupport of a sheaf

Let F∗ ∈ D(Sh(X)) be a complex of sheaves on X. We define the microsupport SS(F∗) of F∗ to be a subset of T ∗X,
such that a covector (x, p) ∈ T ∗X is not in the microsupport if for all smooth functions φ on X such that φ(x) = 0
and dφ(x) = p we have an isomorphism

lim−→
U3x

Hj(U ;F∗)→ lim−→
U3x

Hj(U ∩ {φ < 0};F∗) (10)

for all j.
A nonzero covector (x, p) ∈ T ∗X defines a half-plane H̃p = {(x, v) ∈ TxX | p(v) < 0} of the tangent plane TxX

(note that we require p(v) < 0, rather than p(v) > 0). Intuitively, this should correspond to a “half-plane” Hp ⊂ X
that is well-defined near p. For p = 0 we have H̃p = ∅ and Hp = ∅. We should thus be able to define a complex of
stalks F∗x and a complex of “microstalks” F∗(x,p) by

F jx = lim−→
U3x
F i(U), F j(x,p) = lim−→

U3x
F j(U ∩Hp). (11)

Note that F j(x,0) = 0, since Hp = ∅. (Warning: one needs to take some care with the case p = 0; probably best

to define “microstalks” only for p 6= 0.) We should then be able to formulate the microsupport condition in terms
of a map H∗(F∗x) → H∗(F∗(x,p)) (note that that taking stalks commutes with cohomology, since the functor that

takes a sheaf to its stalk at a point is exact). For a sheaf F , rather than a complex of sheaves F∗, the microsupport
condition should be expressed in terms of a map Fx → F(x,p).

Given a Z-module M and a topological space X, define M to be the constant sheaf on X, defined such that
M(U) = M for any nonempty connected open set U .

Given a sheaf F and a set V ⊂ R, define a sheaf FV = j!j
−1F , where j : V → R is the inclusion.

The support of a sheaf F on a topological space X is the set of points with nonvanishing stalk:

Supp(F) = {x ∈ X | Fx 6= 0}. (12)

Note that Supp(F) is not necessarily closed; see example in Section 4.2 below. (Warning: some authors (e.g.
Kashiwara and Schapira) define the support of a sheaf to be the closure this.) The support of a section s ∈ F(U) of
a sheaf F on a topological space X for an open set U of X is the set of points in U with nonvanishing germs:

Supp(s) = {x ∈ U | sx 6= 0}. (13)

Here sx ∈ Fx is the germ of s at x. Note that if sx = 0 then s|U is zero for some open neighborhood U of x, so
Supp(s) is automatically closed in X.

Given a continuous map f : X → Y and a sheaf G on Y , we define the pullback sheaf f−1G to be the sheafification
of the presheaf defined such that for U ⊂ X open we have

(f−1G)(U) = lim
V⊃U

G(V ), (14)
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where V ranges over open sets in Y .
Note: the following example shows that we need to sheafify. Let X = R with the discrete topology, Y = R with

the usual topology, f : X → Y the identity map on sets, and G the sheaf of continuous functions on Y . Define open
subsets U0 = Q and U1 = X − U0 on X. Then (f−1G)(U0) = (f−1G)(U1) = G(Y ), and we cannot glue arbitrary
sections in (f−1G)(U0) and (f−1G)(U1) to get a section in (f−1G)(X) = G(Y ).

Define the direct image with compact support functor f! such that

(f!F)(V ) = {s ∈ F(f−1(V )) | f |Supp(s) : Supp(s)→ V is proper}. (15)

Note that Supp(s) is a closed subset of f−1(V ) ⊂ X. If f is proper then f! = f∗. In general f!F is a subsheaf of f∗F .

4.1 Example: V = [0,∞)

Note that j : V → R is proper, so j! = j∗. For any open set U ⊂ R we have that

ZV (U) = (j!j
−1Z)(U) = {locally constant functions on U ∩ V }. (16)

The stalks of ZV are given by

(ZV )x =

{
Z if x ≥ 0 (equivalently x ∈ V ),
0 if x < 0 (equivalently x /∈ V ).

(17)

In particular, the stalk at ∂V = {0} is nonzero: (ZV )0 = Z. Note that Supp(ZV ) = V is closed. The “microstalks”
of ZV are

(ZV )(x,p) =

{
Z if (x = 0, p < 0) or (x > 0, p 6= 0)
0 otherwise

(18)

Thus the singular support of ZV is

SS(ZV ) = {(0, p) ∈ T ∗R | p ≥ 0} ∪ {(x, 0) ∈ T ∗R | x > 0}. (19)

Note that the singular support of ZV points inward relative to V at 0. Note that

SS(ZV ) ∩ {zero section of T ∗R} = Supp(ZV ) = V. (20)

4.2 Example: V = (0,∞)

Note that j : V → R is not proper. For any open set U ⊂ R we have that

ZV (U) = (j!j
−1Z)(U) = {locally constant functions on U ∩ V that vanish near 0}. (21)

By “vanish near 0” we mean, for example, that ZV ((0, 1)) = 0. Note also that

(j∗j
−1Z)(U) = {locally constant functions on U ∩ V }. (22)

Thus, j!j
−1Z is a subsheaf of j∗j

−1Z. The stalks of ZV are given by

(ZV )x =

{
Z if x ∈ V
0 if x /∈ V .

(23)

In particular, the stalk at ∂V = {0} is zero: (ZV )0 = 0. Note that Supp(ZV ) = V is open. The “microstalks” of ZV
are

(ZV )(x,p) =

{
Z if (x = 0, p < 0) or (x > 0, p 6= 0)
0 otherwise

(24)

Thus the singular support of ZV is

SS(ZV ) = {(0, p) ∈ T ∗R | p ≤ 0} ∪ {(x, 0) ∈ T ∗R | x > 0}. (25)

(Warning: some care is needed to show that (0, 0) ∈ SS(ZV ).) Note that the singular support of ZV points outward
relative to V at 0. Note that

SS(ZV ) ∩ {zero section of T ∗R} = Supp(ZV ) = V. (26)
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4.3 Example: skyscraper sheaf Z0 on R

The support of Z0 is given by Supp(Z0) = {0}. The microsupport of Z0 is given by the fiber T ∗0R ⊂ T ∗R over
0 ∈ R.

5 Fourier-Mukai transform

Define T ◦X to be the complement of the zero section in T ∗X.

Theorem 5.1. (KS Prop. 7.2.1) Let φt : S(T ∗M)→ S(T ∗M) be a compactly supported contact isotopy for t ∈ [0, 1].
Then there is a unique kernel K ∈ sh(M×M×I) such that SS(Kt)T◦M×T◦M is the graph of φt and K0 is the constant
sheaf on the diagonal. The resulting Fourier-Mukai transform Φt : sh(M) → sh(M) is an equivalence of categories
for all t.

For fixed t, consider the symplectomorphism φt : T ◦R→ T ◦R given by

φt(x, p) = (x+ sgn(p)t, p). (27)

(Note: φt is not compactly supported.) The symplectomorphism φt corresponds to a contactomorphism on S(T ∗R)
associated with Reeb flow, equivalently geodesic flow for the standard metric g = dx⊗ dx. For t > 0,the graph of φt
in T ∗R2 is

{((x, x+ t), (p, p)) | x, p ∈ R and p > 0} ∪ {((x, x− t), (p, p)) | x, p ∈ R and p < 0}. (28)

For t ≥ 0, define a closed set Vt ⊂ R2 by

Vt = {(x, y) ∈ R2 | |x− y| ≤ t}. (29)

Define an inclusion j : Int(Vt)→ R, where Int(Vt) is the interior of Vt, and define the constant sheaf ZInt(Vt) = j!j
−1Z,

where Z is the constant sheaf on R corresponding to the Z-module Z. We claim that the microsupport of ZInt(Vt)
is

given by the graph of φt in T ∗R2. (We want this graph to be Lagrangian, so we need to introduce some signs.)
The graph of the symplectomorphism is the microsupport of the kernel sheaf.
It seems that skyscraper sheaves are the analog of delta functions; can we use transforms of them to recover the

kernel? Why is Φt invertible; it seems to be smearing out the support (e.g. the skyscraper sheaf at 0 smears to the
locally constant sheaf with support on [−t, t])?

Φt(F∗) = p2!(K ⊗ p−11 F∗), Ψt(G∗) = p1∗Hom(K, p!2G∗). (30)

Here some of these functors are derived (for example, p1∗ and p2! should be Rp1∗ and Rp2!), but we are suppressing
this.

6 Details of Step 2 of proof

Define a full subcategory of sh(R3) = D(Sh(R3)):

shTK (R3) = {F∗ ∈ sh(X) | SS(F∗) ⊂ N∗K ∪ (zero section of T ∗R3)} (31)

= {F∗ ∈ sh(X) | SS(F∗) ⊂ T ∗KR3 q T ∗
R3−KR

3}. (32)

We have the following theorem:

Theorem 6.1. (KS Prop 8.4.1) Let X = qα∈AXα be a stratification of X and F∗ be a complex of sheaves in
D(Sh(X)). Then the cohomology sheaves Hj(F∗) are constructible for all j (that is, Hj(F∗)|Xα are locally constant
for all j and all α ∈ A) if and only SS(F∗) ⊂ qα∈AT ∗XαX, where T ∗XαX is the conormal bundle of Xα in X.

A special case of this theorem for the stratification X = X that seems understandable: Hj(F∗) is locally constant
for all j if and only if SS(F∗) ⊂ T ∗XX.

It follows that

shTK (R3) = {F∗ ∈ sh(X) | Hj(F∗) is S-constructible for all j}, (33)
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where S is the stratification of R3 given by R3 = (R3 −K)qK.
The microsupport of the transform is contained in the set-theoretic transform of the singular support:

SS(Φt(F∗)) ⊂ p2(SS(Kt) ∩ p−11 (SS(F∗))). (34)

Because of this fact, and the statement regarding the singular support of Kt in Theorem 5.1, the equivalence
Φ1 : sh(R3)→ sh(R3) restricts to an equivalence shTK → shTK′ . Define full subcategories of shTK (R3):

loc(K) = {F∗ ∈ shTK (R3) | Hj(F∗|K) is a locally constant sheaf for all j}, (35)

loc(R3 −K) = {F∗ ∈ shTK (R3) | Hj(F∗|R3−K) is a locally constant sheaf for all j}. (36)

Pick a point p ∈ R3 −K. Using a semiorthogonal decomposition of shTK (R3), we can show that

loc(K) = {F∗ ∈ shTK (X) | H∗(F∗)p = 0}. (37)

Since the equivalence shTK → shTK′ preserves cohomology (is this true, and if so why?) and stalks, it restricts to an
equivalence loc(K)→ loc(K ′). From the semiorthogonal decomposition of shTK (R3), it follows that it also restricts
to an equivalence loc(R3 −K)→ loc(R3 −K ′). We have that

Loc(R3 −K) = {F∗ ∈ loc(R3 −K) | Hj(F∗)p = 0 for j 6= 0}. (38)

Since the equivalence loc(K) → loc(K ′) preserves cohomology (is this true, and if so why?) and stalks, it restricts
to an equivalence Loc(R3 −K)→ Loc(R3 −K ′).

6.1 Semiorthogonal decompositions

Definition 6.1. LetA and B be two triangulated subcategories of D(X). We say thatA and B form a semiorthogonal
decomposition of D(X) if

1. Hom(A,B) = 0 for all A ∈ A and B ∈ B.

2. For every E ∈ D(X) there is a unique exact triangle A→ E → B → A[1] with A ∈ A and B ∈ B.

It seems that we could define an analogous concept for abelian categories:

Definition 6.2. Let A and B be two triangulated subcategories of E . We say that A and B form a semiorthogonal
decomposition of E if

1. Hom(A,B) = 0 for all A ∈ A and B ∈ B.

2. For every E ∈ E there is a unique short exact sequence 0→ A→ E → B → 0 with A ∈ A and B ∈ B.

Example: take E to be the category of S-constructible sheaves of Z-modules F on R3 for the stratification
R3 = (R3 −K) qK, such that F restricts to constant sheaves on R3 −K and K. Any such sheaf F is specified
by a homomorphism ρ : B → A between abelian groups A and B, such that for any nonemtpy contractible open set
U ⊂ R3 we have

F(U) =

{
B if U ∩K 6= ∅,
A otherwise.

(39)

Note that F|R3−K = A and F|K = B. Then A is the category of such sheaves with ρ : B → A given by 0→ A, and
B is the category of such sheaves with ρ : A→ B given by B → 0. Note that we have the commutative diagrams

0 B

A A,

A B

B 0.

(40)

Note: if we were to swap A and B, the corresponding diagrams would not commute. Note that given a point
p ∈ R3 −K, we have that Fp = 0 for any F ∈ B.
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