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1. NADLER-ZASLOW CORRESPONDENCE

The goal of this quarter’s working seminar is to work throughenough background to understand the
Nadler-Zaslow correspondence. The main references are:

(1) Nadler-Zaslow [NZ], “Constructible sheaves and the Fukaya category”,
(2) Nadler [N], “Microlocal branes are constructible sheaves”,
(3) Kashiwara-Shapira [KS], “Sheaves on manifolds”,
(4) Viterbo [V], “An introduction to symplectic topology through sheaf theory”,
(5) Shende [S],https://math.berkeley.edu/ vivek/274.html,
(6) Auroux [A], “A beginner’s introduction to Fukaya categories”.

Let X be a closed smooth manifold of real dimensionn. In [NZ] the authors assume thatX is real
analytic; this figures in what we mean by a “constructible sheaf”.

Theorem 1.0.1(Nadler-Zaslow correspondence). There is anA∞-quasi-embedding

µX : Shc(X) →֒ TwFuk(T ∗X)

which is a quasi-equivalence.

The left-hand side is the dg category of constructible complexes of sheaves onX and the right-hand
side is theA∞-category of twisted complexes over (some version of) the Fukaya category ofT ∗X. A dg
category is anA∞-category with trivial higher operations.A∞-quasi-embeddingmeans it’s anA∞-functor
which, on the level of cohomology, is a fully faithful embedding of the corresponding derived categories

H(µX) : Dc(X) →֒ DFuk(T ∗X).

Quasi-equivalencemeans that every object ofDFuk(T ∗X) is isomorphic to an object coming fromDc(X).

1.1. Constructible sheaves.A sheafF on X is a contravariant functor from the category of open sets
of X with morphisms which are inclusions to the categoryAb of abelian groups subject to some gluing
axioms. In particular,F assigns an abelian groupF(U) to each open setU ⊂ X and a restriction morphism
F(U) → F(V ) for eachV ⊂ U . (Think ofF(U) as a set of functions onU .)

Let S = {Sα} be a Whitney stratification ofX. For example,X = R can be stratified byS0 = {0},
S− = (−∞, 0), S+ = (0,+∞).

Definition 1.1.1. A sheafF is S-constructibleif the restrictions ofF to eachSα has finite rank and is
locally constant.F is constructibleif there exists a Whitney stratificationS with respect to whichF is
S-constructible.
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Example. Let A0, A+, A− be abelian groups andA0 → A+, A0 → A− be fixed homomorphisms. Let
U ⊂ R be an open interval. We can define anS-constructibleF onR by assigningF(U) = A0 if U ⊃ S0;
F(U) = A+ if U ⊂ S+; F = A− if U ⊂ S−.

Let Shc(X) be the dg category of constructible complexes of sheaves (overC) onX. (To be explained
in more detail in a later talk.)

Remark1.1.2. We’ll see later that the definition of an object in the dg or derived category of constructible
complexes of sheaves isnot a complex of constructible sheaves.

The following allows us to get a handle onShc(X):

Theorem 1.1.3.Any object ofShc(X) is isomorphic to one obtained from “standard objects”i∗CU where
i : U →֒ X is an open submanifold andCU is the constant sheaf onU , by iteratively taking shifts and cones.

In other words,i∗CU are the generators ofShc(X). A priori U is an open manifold with stratified
boundary.

1.2. Fukaya category. Recall that the cotangent bundleT ∗X is a Liouville domain with a canonical1-
form λ =

∑
i pidqi, whereqi are coordinates onX andpi are the dual coordinates. In local coordinates

dλ =
∑

i dpidqi and the Liouville vector field isY =
∑

i pi∂pi . The unit cotangent bundle is

ST ∗X = {(p, q) | |p| = 1} ⊂ T ∗X,

where I leave the definition of| · | to your imagination. SinceY ⋔ ST ∗X, ST ∗X is contact andT ∗X minus
the0-section is the symplectization ofST ∗X.

The objects ofFuk(T ∗X) are closed (= compact without boundary) Lagrangians and noncompact La-
grangians with conical (viewed in the cotangent bundle) ends. [This description is only a first-order approxi-
mation since we actually need local system data on the Lagrangians.] In terms of the symplectization picture,
this means that the union of ends of a noncompactL is a half cylinder over a LegendrianΛ ⊂ ST ∗X.

Hom(L,L′) is generated by transverse intersections ofL andφ(L′), whereφ is a small pushoff in the
positive Reeb direction so thatL0 := L andL1 := φ(L′) intersect in a compact part ofT ∗X, and the Floer
differential counts “rigid”J-holomorphic stripsu : R× [0, 1] → T ∗X such that

• u(R× {i}) ⊂ Li, i = 0, 1,
• lims→+∞(R× {s}) = p,
• lims→−∞(R× {s}) = q,

wherep, q ∈ L0 ∩ L1. HereJ is a suitably chosen almost complex structure onT ∗X.
Fuk(T ∗X) is anA∞-category, meaning it has higher composition maps satisfying compatibility condi-

tions.

Examples.Some Lagrangians inT ∗X.

(1) The zero0-section and a fiberT ∗
xX.

(2) Graphs of closed and exact1-forms onX, written asω or df .
(3) If Y ⊂ X is a closed submanifold, then theconormal bundleT ∗

Y X is the set(x, α), x ∈ X,
α ∈ T ∗

xX, such thatα(TxY ) = 0. (If we have a Riemannian metric, the conormal bundle can be
viewed as the normal bundle toY in X.) Verify thatT ∗

YX is Lagrangian with conical ends. Also
note that the0-section is equal toT ∗

XX andT ∗
xX = T ∗

{x}X, hence the notation.
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(4) LetU ⊂ X be an open set with smooth boundary∂U . We take the union ofT ∗
UU (the zero section

overU ) and the positive part ofT ∗
∂UX (i.e.,α such thatα(n) > 0 for n pointing out fromU along

∂U ). This Lagrangian is only piecewise smooth, but can be approximated by the graph ofdf , where
f : U → R+ andf → +∞ as we approach∂U (strictly speaking, we probably want a smooth
collar neighborhood∂U × [0, 1] ⊂ U of ∂U such thatf is constant on each∂ × {t}). In particular,
try to draw the Lagrangian forU = (0, 1) ⊂ R.

1.3. Functor µX . Assuming thatU ⊂ X is an open set with smooth boundary, the functorµX takesi∗CU

to df , as described in the examples. (Clearly there is a range of choices ofdf , which we will not worry about
here.)

One computes that, for open subsetsi0 : U0 →֒ X andi1 : U1 →֒ X:

Lemma 1.3.1. There is a canonical quasi-isomorphism

HomSh(i0∗CU0
, i1∗CU1

) ≃ (Ω(U0 ∩ U1, ∂U0 ∩ U1), d).

Here(Ω(U, V ), d) is the relative de Rham complex of differential forms onU − V whose support lies in
X − V and whose cohomology computesH∗(U, V ).

Recall by Floer, givendf0 anddf1 defined on all ofX, there exists an almost complex structure such
that the Floer cochain complexCF (df0, df1) is equivalent to the Morse cochain complex counting gradient
trajectories off0 − f1. We can apply the same considerations todf0 anddf1 for U0 andU1 to show that the
Morse cohomology computesH∗(U0 ∩ U1, ∂U0 ∩ U1).

Claim 1.3.2. The de Rham model and the Morse cochain model are quasi-isomorphic, with the quasi-
isomorphism induced by a dga morphism from de Rham to Morse.

I don’t know how to prove this, but seems motivated by Witten’s “Supersymmetry and Morse theory”
paper, where he considers a family of differentialsdt := eftde−ft, wheref is a Morse function, adjoints
d∗t := eftd∗e−ft, and Laplacians∆t = dtd

∗
t + d∗t dt. This way we obtain a1-parameter family relating

harmonic forms (limit ast → 0) to Morse critical points (limit ast → ∞).
This gives a functor that maps Homs to Homs. For theA∞-version we need to consider Morse flow trees

as studied by Fukaya and Oh.
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