Homework 2

Due Monday, April 15.

(1) Prove that if $\phi_t : X \to Y$ is a homotopy and h is the path $\phi_t(x_0)$ formed by the images of the basepoint $x_0 \in X$, then the two maps

$$\pi_1(X, x_0) \stackrel{(\phi_1)_*}{\to} \pi_1(Y, \phi_1(x_0)) \stackrel{\beta_h}{\to} \pi_1(Y, \phi_0(x_0))$$

and

$$\pi_1(X, x_0) \stackrel{(\phi_0)_*}{\to} \pi_1(Y, \phi_0(x_0))$$

agree.

- (2) Prove that if $\phi : G \to H$ is a group homomorphism which has both a left inverse and a right inverse (they are a priori not necessarily the same), then ϕ is an isomorphism.
- (3) Let X and Y be topological spaces. The product topology on $X \times Y$ is given as follows: $W \subset X \times Y$ is open if and only if it is a union of $U_{\alpha} \times V_{\beta}$ where $U_{\alpha} \subset X$ and $V_{\beta} \subset Y$ are open. (In other words, $\{U_{\alpha} \times V_{\beta}\}$ is a basis for the product topology.) Prove the product topology on $X \times Y$ is indeed a topology, and it is the smallest topology that makes the projection maps $X \times Y \xrightarrow{p_1} X$, $(x, y) \mapsto x$, and $X \times Y \xrightarrow{p_2} Y$, $(x, y) \mapsto y$, continuous.
- (4) Show that if $Z \xrightarrow{f} X$ and $Z \xrightarrow{g} Y$ are continuous maps, then $Z \xrightarrow{(f,g)} X \times Y$ is continuous. (Unless stated otherwise, we will always use the product topology when we write $X \times Y$.)
- (5) Using (3) and (4), prove that $\pi_1(X \times Y, (x_0, y_0)) \simeq \pi_1(X, x_0) \times \pi_1(Y, y_0)$.
- (6) Modify the proof of the Path Lifting Property to prove the Homotopy Lifting Property.
- (7) Verify that an open set of (0, 1) is a *disjoint* union of open intervals (a_i, b_i) .
- (8) Hatcher, Section 1.1, Exercises 5, 10, 11, 16(a,b,c). (Refer to the text for the definition of a *retraction*, not to be confused with a *deformation retraction*, which is a special type of retraction.)