Homework 1

Due Monday, 4/8.

- (1) Let X, Y be topological spaces and $f: X \to Y$ be a map. Suppose $X = X_1 \cup X_2$ is a union of two closed subsets X_1 and X_2 , and the restrictions $f|_{X_1}$ and $f|_{X_2}$ are continuous. Then prove that f is continuous. (This result will be useful in the next two problems.)
- (2) In class, we wrote down three homotopies during the proof that \simeq is an equivalence relation. Verify that these homotopies are indeed continuous.
- (3) Give a careful proof of the following: Let X be a topological space and \simeq denote homotopy of paths in X relative to the endpoints. If $f_0 \simeq f_1$, $g_0 \simeq g_1$, and $f_0(1) =$ $f_1(1) = g_0(0) = g_1(0)$, then $f_0g_0 \simeq f_1g_1$.
- (4) Write a careful proof of the homotopy associativity (namely $(fq)h \simeq f(qh)$ whenever it makes sense to compose paths f, g, and h, using the Reparametrization Trick.
- (5) Let ~ be an equivalence relation on a topological space (X, \mathcal{T}) , and $\pi: X \to X/\sim$ be the standard projection taking x to its equivalence class [x]. Then define the quotient topology on X/\sim by stipulating that $V \subset X/\sim$ be open iff $\pi^{-1}(V)$ is open. Prove that the quotient topology is indeed a topology on X/\sim and that it is the largest topology which makes π continuous.
- (6) Show that the following are all homotopy equivalent to S^1 .
 - (a) The annulus $A = \{\frac{1}{2} \le |x| \le \frac{3}{2}\} \subset \mathbf{R}^2$. (b) $B = \mathbf{R}^2 \{0\}$. (c) $S^1 \times I$.

 - (d) $S^1 \times \mathbf{R}^n$.
- (7) Prove that if A is a deformation retract of X, then A is homotopy equivalent to X.
- (8) Hatcher, Section 1.1, Exercises 1, 2, 3, 6. (When you are doing the Hatcher problems, you may assume all the results and theorems presented in class – there is no need to reprove any results.)