Homework 4

- (1) The vector field $(\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2})$, defined almost everywhere on \mathbb{R}^2 , has curl zero, but it cannot be written as the gradient of any function. Explain what this means in terms of de Rham cohomology.
- (2) For each integer n, exhibit a smooth map $S^1 \to S^1$ of degree n. (You must prove that your map has degree n.)
- (3) For each integer n, exhibit a *smooth* map $S^2 \to S^2$ of degree n. (You must prove that your map has degree n.)
- (4) Let V be an \mathbb{R} -vector space. Prove that the interior product

$$i: V \otimes \wedge^k V^* \to \wedge^{k-1} V^*,$$

$$v \otimes (f_1 \wedge \dots \wedge f_k) \mapsto \sum_{l} (-1)^{l+1} f_1 \wedge \dots f_l(v) \dots \wedge f_k,$$

is well-defined.

(5) Let M be a manifold and X a global vector field on M. Show that

$$\mathcal{L}_X = d \circ i_X + i_X \circ d : \Omega^k(M) \to \Omega^k(M)$$

is a derivation, i.e., it satisfies $\mathcal{L}_X(\alpha \wedge \beta) = \mathcal{L}_X(\alpha) \wedge \beta + \alpha \wedge \mathcal{L}_X(\beta)$. Here i_X denotes the interior product with X.

- (6) Let M be a compact orientable manifold of dimension 2n without boundary and let ω be a symplectic form on M, i.e., a closed 2-form such that $\omega^n = \omega \wedge \cdots \wedge \omega$ is nowhere zero. Prove that $H^2(M) \neq 0$.
- (7) Prove that if X, X_1, \ldots, X_k are vector fields on M and $\omega \in \Omega^k(M)$, then

$$\mathcal{L}_X(\omega(X_1,\ldots,X_k)) = (\mathcal{L}_X\omega)(X_1,\ldots,X_k) + \sum_i \omega(X_1,\ldots,[X,X_i],\ldots,X_k).$$

(8) Prove that if X_1, \ldots, X_{k+1} are vector fields on M and $\omega \in \Omega^k(M)$, then

$$d\omega(X_1, \dots, X_{k+1}) = \sum_{i} (-1)^{i+1} X_i(\omega(X_1, \dots, \widehat{X_i}, \dots, X_{k+1})) + \sum_{i < j} (-1)^{i+j} \omega([X_i, X_j], X_1, \dots, \widehat{X_i}, \dots, \widehat{X_j}, \dots, X_{k+1}).$$

Here \widehat{X}_i means omit the term X_i .