Homework 1

- (1) (20 points) Recall that \mathcal{F}_p is the set of germs of functions on a manifold M which vanish at $p \in M$. Let \mathcal{F}_p^k be the ideal of $C^{\infty}(p)$ generated by $f_1 \cdots f_k$, where $f_i \in \mathcal{F}_p$. (This means that every element of \mathcal{F}_p^k is a sum $\sum_i g_i f_{i1} \cdots f_{ik}, g_i \in C^{\infty}(p), f_{ij} \in \mathcal{F}_p$.)
 - (a) Prove that, in every coordinate system (x_1, \ldots, x_n) , an element $f \in \mathcal{F}_p^k$ has a Taylor expansion which vanishes up to order k.
 - (b) Compute the dimension of $\mathcal{F}_p^k/\mathcal{F}_p^{k+1}$.
 - (c) Construct a smooth manifold $E \xrightarrow{\pi} M$ whose fiber at $p \in M$ is $\mathcal{F}_p^1/\mathcal{F}_p^3$. (This involves writing down coordinate charts and computing transition functions.)
- (2) Consider the cotangent bundle $\pi : T^*M \to M$ of a manifold M. In class we gave an atlas for T^*M in terms of $\pi^{-1}(U_\alpha)$, where $\{(U_\alpha, \phi_\alpha)\}$ is an atlas for M. Compute the Jacobian for the transition functions on the overlaps $\pi^{-1}(U_\alpha \cap U_\beta)$.
- (3) Prove that d(fg) = fdg + gdf, where f, g are smooth functions on a manifold M.
- (4) Let $\phi: M \to N$ be a smooth map between manifolds. Prove that the following diagram commutes:

$$\begin{array}{cccc} \Omega^{0}(N) & \stackrel{\phi^{*}}{\longrightarrow} & \Omega^{0}(M) \\ d \downarrow & \circlearrowleft & \downarrow d \\ \Omega^{1}(N) & \stackrel{\phi^{*}}{\longrightarrow} & \Omega^{1}(M) \end{array}$$

- (5) Let $\phi : L \to M$ and $\psi : M \to N$ be smooth maps between smooth manifolds and let ω be a 1-form on N. Prove that $(\psi \circ \phi)^* \omega = \phi^* \circ (\psi^* \omega)$.
- (6) Let $\phi : M \to N$ be a smooth map between manifolds and $\omega \in \Omega^k(N)$. With respect to local coordinates x_1, \ldots, x_m for M and y_1, \ldots, y_n for N, if

$$\omega = \sum_{i_1,\dots,i_k} f_{i_1,\dots,i_k}(y) dy_{i_1}\dots dy_{i_k},$$

then we defined

$$\phi^* \omega = \sum_{i_1,\dots,i_k} f_{i_1,\dots,i_k}(y(x)) dy_{i_1}(x) \dots dy_{i_k}(x).$$

Show that $\phi^* \omega$ is well-defined.

- (7) Show that d_k , as defined in class, is independent of the choice of local coordinates.
- (8) Let M be a manifold. Prove that d satisfies the formula $d(\alpha \wedge \beta) = (d\alpha) \wedge \beta + (-1)^k \alpha \wedge d\beta$, where $\alpha \in \Omega^k(M)$ and $\beta \in \Omega^l(M)$.
- (9) Suppose the manifold M is the disjoint union of manifolds M_1 and M_2 . Then prove that $H^k_{dR}(M) = H^k_{dR}(M_1) \oplus H^k_{dR}(M_2)$.