Homework 6

- (1) Prove that if $i: M \to N$ is an immersion, then the induced map $i_*: T_x M \to T_{i(x)} N$ is injective for each $x \in M$.
- (2) Let V, W be \mathbb{R} -vector spaces. Show that the map $\tau : V^* \otimes W \to \operatorname{Hom}(V, W)$ defined in class is linear and prove that it is an isomorphism if W is finite-dimensional. It follows that $V \otimes W$ has dimension dim $V \cdot \dim W$ if V and W are finite-dimensional. Is τ an isomorphism when W is not finite-dimensional?
- (3) Let V, W, and U be \mathbb{R} -vector spaces. Prove that $(V \otimes W) \otimes U$ is naturally isomorphic to $V \otimes (W \otimes U)$. Here a *natural* map is a map which does not depend on a choice of basis.
- (4) Let V be a 2-dimensional \mathbb{R} -vector space with basis $\{v_1, v_2\}$ and $A : V \to V$ be a linear map given by $v_1 \mapsto 5v_1 + 6v_2, v_2 \mapsto 3v_1 + 2v_2$. Then write a matrix for $A \otimes A : V \otimes V \to V \otimes V$ in terms of the basis $\{v_1 \otimes v_1, v_1 \otimes v_2, v_2 \otimes v_1, v_2 \otimes v_2\}$.
- (5) Let V be an \mathbb{R} -vector space of dimension n.
 - (a) Find an alternating multilinear form $\phi : V \times \cdots \times V \to \mathbb{R}$, where we are taking *n* copies of *V*. In particular you need to show that your choice of ϕ is alternating.
 - (b) Explain how to use the universal property to show that $\bigwedge^n V \simeq \mathbb{R}$.
- (6) Let V be an \mathbb{R} -vector space. Show there exists a (well-defined) linear map $\bigwedge^k V \otimes \bigwedge^l V \to \bigwedge^{k+l} V$ which sends $(v_1 \wedge \cdots \wedge v_k) \otimes (w_1 \wedge \cdots \wedge w_l) \mapsto v_1 \wedge \cdots \wedge v_k \wedge w_1 \wedge \cdots \wedge w_l$.
- (7) If V is an \mathbb{R} -vector space of dimension n, then show there exists an isomorphism $\bigwedge^{n-k} V \simeq (\bigwedge^k V)^*$ which only depends on a choice of nontrivial $\omega \in (\bigwedge^n V)^*$.
- (8) Let $\phi: M \to N$ be a smooth map between manifolds and $\omega \in \Omega^k(N)$. With respect to local coordinates x_1, \ldots, x_m for M and y_1, \ldots, y_n for N, if

$$\omega = \sum_{i_1,\dots,i_k} f_{i_1,\dots,i_k}(y) dy_{i_1}\dots dy_{i_k},$$

then we defined

$$\phi^* \omega = \sum_{i_1, \dots, i_k} f_{i_1, \dots, i_k}(y(x)) dy_{i_1}(x) \dots dy_{i_k}(x).$$

Show that $\phi^* \omega$ is well-defined.

- (9) Show that d_k , as defined in class, is independent of the choice of local coordinates.
- (10) Let M be a manifold. Prove that d satisfies the formula $d(\alpha \wedge \beta) = (d\alpha) \wedge \beta + (-1)^k \alpha \wedge d\beta$, where $\alpha \in \Omega^k(M)$ and $\beta \in \Omega^l(M)$.