Homework 4

- (1) (20 points) Recall that \mathcal{F}_p is the set of germs of functions on a manifold M which vanish at $p \in M$. Let \mathcal{F}_p^k be the ideal of $C^{\infty}(p)$ generated by $f_1 \cdots f_k$, where $f_i \in \mathcal{F}_p$. (This means that every element of \mathcal{F}_p^k is a sum $\sum_i g_i f_{i1} \cdots f_{ik}, g_i \in C^{\infty}(p), f_{ij} \in \mathcal{F}_p$.)
 - (a) Prove that, in every coordinate system (x_1, \ldots, x_n) , an element $f \in \mathcal{F}_p^k$ has a Taylor expansion which vanishes up to order k.
 - (b) Compute the dimension of $\mathcal{F}_p^k/\mathcal{F}_p^{k+1}$.
 - (c) Construct a smooth manifold $E \xrightarrow{\pi} M$ whose fiber at $p \in M$ is $\mathcal{F}_p^1/\mathcal{F}_p^3$. (This involves writing down coordinate charts and computing transition functions.)
- (2) Prove that the tangent bundle TS^2 defined as $\{(x,y) \in \mathbb{R}^3 \times \mathbb{R}^3 \mid |x| = 1, x \cdot y = 0\}$ is diffeomorphic to our "official definition" of the tangent bundle.
- (3) Consider the cotangent bundle $\pi: T^*M \to M$ of a manifold M. In class we gave an atlas for T^*M in terms of $\pi^{-1}(U_\alpha)$, where $\{(U_\alpha, \phi_\alpha)\}$ is an atlas for M. Compute the Jacobian for the transition functions on the overlaps $\pi^{-1}(U_{\alpha} \cap U_{\beta})$.
- (4) If $q \in \Omega^0(M)$, then show that dq is indeed a 1-form over M, i.e., a smooth map $s: M \to M$ T^*M such that $\pi \circ s = \mathrm{id}$.
- (5) In class we defined the *derivative map* as follows: Let $f: M \to N$ be a smooth map between manifolds. Then the derivative $f_*: T_pM \to T_{f(p)}N$ is given by $X \mapsto X \circ f^*$, where $X: C^{\infty}(p) \to \mathbb{R}$ is a derivation and f^* is the pullback $C^{\infty}(f(p)) \to C^{\infty}(p)$. Give an equivalent definition for f_* in terms of Definition 1 of a tangent space and show the equivalence with the above definition.
- (6) Given a smooth map $f: M \to N$ between manifolds, we defined the maps $f_*: T_pM \to M$ $T_{f(p)}N$. Show that they can be combined into a smooth map $f_*: TM \to TN$ of tangent
- (7) Prove that SO(2) consists of the 2×2 matrices $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$, where $\theta \in \mathbb{R}$. Show that SO(2) is diffeomorphic to S^1 .
- (8) Explain why SO(n) is a Lie group.