
NOTES FOR MATH 234: CONTACT GEOMETRY

KO HONDA

1. HOLONOMIC APPROXIMATIONS

For more details, refer to Eliashberg-Mishachev [EM], “Introduction to theh-principle”. All manifolds
we consider are smooth manifolds.

1.1. Definitions. Given a subsetA of a manifoldV , we writeOp(A) for an arbitrarily small but non-
specified open neighborhood ofA in V .

Definition 1.1.1. Given a fiber bundleX → V , its r-jet bundleJr(X) → V (also written asX(r)) is the
bundle whose fiber overp ∈ V is

Jr
p (X) = {sections ofX overOp(p)}/ ∼,

wheref : U1 ∋ p → X andg : U2 ∋ p → X satisfyf ∼ g if f andg have the samerth order Taylor
expansion atp.

Note thatJ0(X) = X. Let pr,r′ : Jr(X) → Jr′(X) be the projection forr′ ≤ r.
If X = V ×W , then we writeJr(V,W ) = Jr(X).

Example1.1.2. J1(V,R) = R× T ∗V .

In local coordinates,Jr(Rn,Rq) = R
n × R

qd1 × · · · × R
qdr , wheredi is number of partial derivatives

Dα of orderi of a functionRn → R. Given a smooth mapf : Rn → R
q andx ∈ R

n,

Jr
f (x) = (f(x), f ′(x), . . . , f (r)(x)) ∈ Jr(Rn,Rq)

is ther-jet of f atx. Heref (i) = (Dαf)α, whereα = (α1, . . . , αn), α1 + · · ·+ αn = i.

Definition 1.1.3. A sectionF : V → Jr(X) is holonomicif F = Jr
pr,0F

.

1.2. Holonomic approximations.

Question1.2.1. Can any section ofJr(X) → V beC0-approximated by a holonomic section?

Example1.2.2. ConsiderF (x) = (x, x, 0) for J1(R,R) = R × R × R. It’s impossible to findf(x) such
that |f(x)− x| < ε and|f ′(x)| < ε. (A picture would help here....)

In what follows we assume we have chosen an auxiliary Riemannian metric on the relevant spaces when-
ever we refer to lengths.

Theorem 1.2.3(Holonomic approximation). LetK ⊂ V be a polyhedron (i.e., submanifold with higher-
dimensional corners) of positive codimension andF : Op(K) → X(r) a section. Then for allδ, ε > 0 small
there exists aδ-small diffeotopy (in theC0-sense)

hτ : V
∼
→ V, τ ∈ [0, 1],
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(i.e., a1-parameter family of diffeomorphisms ofV with h0 = id) and a holonomic section

F̃ : Op(h1(K)) → X(r)

such thatdist(F̃ (v), F (v)) < ε for all v ∈ Op(h1(K)). [Here we are choosingδ > 0 so thatOp(h1(K)) ⊂
Op(K).]

There is also a parametric/relative version:

Theorem 1.2.4(Parametric holonomic approximation). Let K ⊂ V be a polyhedron of codimension≥
1. Let Im be anm-dimensional cube and letFz : Op(K) → X(r) be a family of sections smoothly
parametrized byz ∈ Op(Im) such thatFz is holonomic forz ∈ Op(∂Im). Then for allδ, ε > 0 small there
exists a family ofδ-small diffeotopieshτz , τ ∈ [0, 1], and a family of holonomic sections̃Fz such that:

(1) hτz = id andF̃z = Fz for all z ∈ Op(∂Im) and
(2) dist(F̃z(v), Fz(v)) < ε for all v ∈ Op(h1z(K)) andz ∈ Im.
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2. PROOF OFHOLONOMIC APPROXIMATION THEOREM

We explain the main idea of the proof. We stress that the basicidea of the proof is simple and pretty but
the actual proof is notation-heavy and slightly unpleasantto read.

Step 1.Let us writeJ = Jr(Rn,Rq). We first reduce to proving the following relative theorem ona cube:

Theorem 2.0.1(Holonomic approximation on the cube). Let Ik = [−1, 1]k ⊂ R
k ⊂ R

n, k < n, be the
cube corresponding to the firstk coordinates. For any sectionF : Op(Ik) → J which is holonomic over
Op(∂Ik), there exists a diffeomorphism

h : Rn ∼
→ R

n, (x1, . . . , xn) 7→ (x1, . . . , xn−1, xn + φ(x1, . . . , xn)),

and a holonomic sectioñF : Op(h(Ik)) → J such that

(1) h = id andF̃ = F onOp(∂Ik); and
(2) |F̃ − F |C0 < ε onOp(h(Ik)).

HW: show that Theorem 2.0.1 implies Theorem 1.2.3.

Step 2.The starting point of the induction is to observe that givenF : Op(I) → J there exists a family
Fy : Op(y) → J , y ∈ I, of holonomic sections that agree withF aty and withF onOp(∂I).

Step 3.We introduce some notation. Letπk−l : I
k → Ik−l be the projection to the firstk−l coordinates with

0 ≤ l < k. The fibers arey × I l wherey ∈ Ik−l. GivenK ⊂ R
n, letNδ(K) be its cubicalδ-neighborhood

in R
n, i.e.,

Nδ(K) = ∪(x1,...,xn)∈K [x1 − δ, x1 + δ]× · · · × [xn − δ, xn + δ].

We then set
Uδ(y) = Nδ(y × I l), Vδ(y) = Nδ(y × ∂I l),

Aδ(y) = (Uθδ(y)− Vδ(y)) ∩ (y × R
n−(k−l)),

where0 < θ < 1 and the neighborhoods are all taken inR
n. A picture would be good here (cf. Figures 3.2

and 3.3 of [EM]).
We state the following inductive lemma:

Lemma 2.0.2(Inductive lemma). With Ik ⊂ R
n andF as in Theorem 2.0.1, supposeF is fiberwise holo-

nomic with respect toπk−l : I
k → Ik−l for l = k − 1, i.e., givenδ > 0 small, for eachy ∈ I = I1 there

exist a cubicalδ-neighborhoodUδ(y) of y × I l and a familyFy : Uδ(y) → J of holonomic sections such
thatFy = F on (y × I l) ∪ Vδ(y) and ony ∈ Op(∂I). Then forε > 0 there exists a large integerN > 0
and a holonomic section

F̃ : Ω → J over Ω = Op(∪N
i=−N+1Aδ(ci) ∪ I

k)− ∪N
i=−N+1Aδ(ci),

whereci = 2i−1
2N , i = −N + 1, . . . , N , and

(1) F̃ = F onΩ ∩Op(∂Ik);
(2) |F̃ − F |C0 < ε onΩ.

Draw picture ofΩ for n = 2, k = 1, l = 0 (cf. Figure 3.4 of [EM]).

Proof. For sufficiently largeN > 0, the holonomic familyFy : Uδ(y) → J , y ∈ I, exists forδ = 1/N .
DefineF τ

ci : Uδ/2(ci) ∩ {y > ci} → J , τ ∈ [0, 1], such that



4 KO HONDA

• F 0
ci = Fci ,

• F τ
ci = Fci onVδ/2(ci) ∩ {y > ci} for all τ ∈ [0, 1];

• F 1
ci = Fci+1

onNδ(I
k) ∩ Uδ/2(ci) ∩ {y > ci}; and

• all theF τ
ci areC0-close to each other.

Then letF̃ = Fci onUδ/2(ci) ∩ {y ≤ ci} −Aδ/2(ci) andF̃ = F 1
ci onUδ/2(ci) ∩ {y > ci}. �

Step 4.A corollary of Lemma 2.0.2 is the following:

Corollary 2.0.3. With the assumptions of Lemma 2.0.2, there exists a diffeomorphism

h : Rn ∼
→ R

n, (x1, . . . , xn) 7→ (x1, . . . , xn−1, xn + φ(x1, . . . , xn)),

and a holonomic sectioñF : Op(h(Ik)) → J such that

(1) h = id andF̃ = F onOp(∂Ik); and
(2) |F̃ − F |C0 < ε onOp(h(Ik)).

Proof. There exists the desired diffeomorphismh such thath = id onOp(∂Ik) and such thath(Ik) ⊂ Ω

(see Figure 3.6 of [EM]). TheñF given by Lemma 2.0.2 and restricted toOp(h(Ik)) satisfies Conditions
(1) and (2). �

GivenF : Op(I) → J and the familyFy : Op(y) → J , y ∈ I, of holonomic sections that agree
with F at y and withF onOp(∂I), Corollary 2.0.3 implies the existence of aC0-close holonomic section
F̃ : Op(h(I)) → J .

Applying the argument parametrically, givenF : Op(I2) → J , we obtain a familyFy : Op(h1(y×I)) →

J of holonomic sections and theñF : Op(h2(I
2)) → J holonomic, and so on.
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3. TANGENTIAL HOMOTOPIES

3.1. Tangential homotopies. Let π : Grn(W ) → W be the Grassmanniann-plane bundle tangent to a
q-manifoldW , wheren < q, i.e.,π−1(y) = Grn(TyW ).

Given ann-manifoldV and a fiberwise injective bundle mapF : TV → TW coveringf : V → W , let
GF : V → GrnW be the mapx 7→ (f(x), F (TxV )). In particular, iff : V → W is an immersion, there
exists a corresponding mapGdf : V → GrnW .

AssumeV ⊂W is an embedded submanifold andf0 : V →W the inclusion map.

Definition 3.1.1. A tangential homotopyof f0 : V → W is a homotopyGt : V → GrnW , t ∈ [0, 1], such
thatG0 = Gdf0 andπ ◦Gt = f0.

Theorem 3.1.2(Approximate integration of tangential homotopies). LetK ⊂ V be a polyhedron of positive
codimension andGt : V → Grn(W ) a tangential homotopy. Then there exists an approximation ofGt near
K by an isotopy of embeddings, i.e., for allδ, ε > 0 small there exists aδ-small diffeotopy

hτ : V
∼
→ V, τ ∈ [0, 1],

and an isotopy
f̃t : Op(h

1(K)) → W, f̃0 = f0|Op(h1(K)),

such thatGdf̃t : Op(h1(K)) → Grn(W ) is ε-close to the tangential homotopyGt|Op(h1(K)).

Proof. Note that the theorem is basically the same statement as the holonomic approximation theorem with
jet spaces replaced byGrnW . Hence it’s natural to reduce it to Theorem 1.2.3.

AssumeGt, t ∈ [0, 1], is small, i.e., the angle betweenGt1(w) andGt2(w) is less thanπ4 for all w ∈
Op(f0(K)) andt1, t2 ∈ [0, 1]. LetX be a tubular neighborhood ofV in W , which we view as a normal
bundleX → V . Then the spaceX(1) of 1-jets of sectionsV → X can be viewed as the space ofn-planes
that are tangent toX and transverse to the fibers ofX → V . Hence the tangential homotopyGt : V →
GrnW can be viewed as a homotopy of sectionsFt : V → X(1). We can now apply Theorem 1.2.3.

If Gt, t ∈ [0, 1], is not small, then we subdivide into small intervals on whichGt is small and successively
apply Theorem 1.2.3. Note that at each iteration of Theorem 1.2.3, the “wiggles” are one order of magnitude
small than the previous ones. �

3.2. Directed embeddings.

Definition 3.2.1. LetA ⊂ Grn(W ) be a subset. An immersionf : V →W isA-directedif Gdf(V ) ⊂ A.

Theorem 3.2.2(A-directed embeddings for open manifolds). Let V be an open manifold,A ⊂ Grn(W )
an open subset, andf0 : V → W an embedding whose liftG0 = Gdf0 is tangentially homotopic to
G1 : V → Grn(W ) withG1(V ) ⊂ A. Thenf0 can be isotoped to anA-directed embeddingf1 : V → W .

Proof. We use the following well-known fact (give proof for HW) for open manifoldsV :

Fact: Given an open manifoldV , there exists a polyhedronK ⊂ V of codimension at least1 such that for
an arbitrarily small neighborhoodN(K) there is an isotopyφt : V

∼
→ V , t ∈ [0, 1], φ0 = id, which takesV

toN(K) while fixingK pointwise.

The theorem follows immediately from (i) the Fact, (ii) Theorem 3.1.2, and (iii) the fact thatA is open. �

We can say slightly more:
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Corollary 3.2.3. In Theorem 3.2.2, suppose that the tangential homotopyGt is induced by a homotopy
Ft : TV → TW , t ∈ [0, 1], of injective bundle maps coveringf0 with F0 = df0. Then we may assume
thatF1 is homotopic todf1 through a homotopỹFt : TV → TW , t ∈ [0, 1], which coversft and such that
GF̃t(V ) ⊂ A for all t.
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4. DIFFERENTIAL RELATIONS AND h-PRINCIPLES

4.1. Definitions.

Definition 4.1.1. A differential relationR is a subset ofX(r). A formal solution toR is a sectionV → R
and agenuine solution toR is a holonomic sectionV → R.

Example4.1.2.

(1) Rimm ⊂ J1(V,W ) consists of(v,w, φ) such that(v,w) ∈ V × W andφ : TvV → TwW is
injective. Note thatRimm is an open relation (i.e., is an open subset).

(2) Let (V, ωV ) and(W,ωW ) be symplectic manifolds.Risosymp (for “isosymplectic”) is the subset of
Rimm consisting of(v,w, φ) such thatφ∗ωW = ωV atv.

(3) Let (V, ξV ) and(W, ξW ) be contact manifolds.Risocont (for “isocontact”) is the subset ofRimm

consisting of(v,w, φ) such thatφ−1(ξW ) = ξV at v andφ : ξV (v) → ξW (w) is conformally
symplectic with respect to the conformally symplectic structures onξV andξW .

Definition 4.1.3(Types ofh-principles).
(1) Theh-principle holds forR if a formal solution ofR is homotopic inSecR (the sections ofR) to

a genuine solution ofR. We writeHolR for the set of genuine solutions ofR.
(2) The parametrich-principle holds forR if the inclusionHolR → SecR is a weak homotopy

equivalence. In other words, for everyφ0 : (Dk, Sk−1) → (SecR,Hol(R)), k = 0, 1, . . . , there is
a homotopyφt : (Dk, Sk−1) → (SecR,HolR), t ∈ [0, 1], such thatφ1(Dk) ⊂ HolR.

(3) Thelocal h-principle holds forR nearA ⊂ V if the h-principle holds forV replaced byOp(A).
(4) TheC0-denseh-principle holds forR if the usualh-principle holds forR and, for any formal

solutionF0 : V → R and an arbitrarily small neighborhoodN(f0(V )) of the underlying section
f0 : V → X, the underlying sectionft of the homotopyFt from F0 to F1 genuine can be chosen
such thatft(V ) ⊂ N(f0(V )), t ∈ [0, 1].

4.2. Basic version ofh-principle. Let p : X → V be a fiber bundle and letDiffV (X) be the group of
diffeomorphisms ofX that send fibers to fibers. EachhX ∈ DiffV (X) covershV ∈ Diff(V ) and there is a
homomorphismπ : DiffV (X) → Diff(V ) sendinghX 7→ hV .

The fiber bundlep : X → V is natural if there is a homomorphismj : Diff(V ) → DiffV (X) going
the other way such thatπ ◦ j = id. This also inducesj : Diff(V ) → DiffV (X

(r)). [For example, when
X = V ×W , then we can takej(hV )(v,w) = (hV (v), w).] Givenh ∈ Diff(V ), we writeh∗ = j(h) for
anyX(r).

We sayR isDiff(V )-invariant if h∗(R) = R for all h ∈ Diff(V ).

Theorem 4.2.1(Local h-principle forDiff(V )-invariantR). LetX → V be a natural fiber bundle and
R ⊂ X(r) be an openDiff(V )-invariant differential relation. Then all forms of the local h-principle hold
near any polyhedronK ⊂ V of positive codimension.

Proof. We will explain the non-parametric case, i.e., show that givenF ∈ SecR|Op(K) there existsG ∈
HolR|Op(K) homotopic toF in SecR|Op(K). By the holonomic approximation theorem and the openness

of R, there is aC0-small diffeotopyhτ : V
∼
→ V , τ ∈ [0, 1], and a sectioñF 1 ∈ HolR|Op(h1(K)) that is

C0-close toF̃ 0 := F |Op(h1(K)). We linearly interpolate betweeñF 0 andF̃ 1 to obtainF̃ t, t ∈ [0, 1], which
lies inSecR|Op(h1(K)).

The homotopy fromF toG = (h1)−1
∗ F̃ 1 in SecR|Op(K) is the concatenation of the following:
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• (hτ )−1
∗ F , τ ∈ [0, 1], fromF to (h1)−1

∗ F , restricted toOp(K);
• (h1)−1

∗ F̃ t, t ∈ [0, 1], from (h1)−1
∗ F̃ 0 toG = (h1)−1

∗ F̃ 1, restricted toOp(K).

TheDiff(V )-invariance ofR implies thatG is holonomic overOp(K). �

Theorem 4.2.1 in turn implies:

Theorem 4.2.2(Gromov). If V is open andX → V is natural, then an openDiff(V )-invariantR satisfies
the parametrich-principle.

4.3. Smale-Hirschh-principle. We now explain themicroextension trick, which can upgrade to the case
whereV is closed manifold.

Theorem 4.3.1(Hirsch). TheC0-denseh-principle holds for immersions of ann-manifoldV into a q-
manifoldW , n < q.

Proof. We treat the non-parametric case. The differential relation we use isRimm ⊂ J1(V,W ). LetF be
a formal solution toR which coversf : V → W . Let N → V be the “formal normal bundle” toTV ,
viewed as a subbundle off∗TW underF . We can then liftF : TV → TW to F̃ : TN → TW . Since
TN is an open manifold which is effectively of dimension< q, we can apply Theorem 4.2.1 to obtain the
theorem. �

4.4. Strengthening of Theorems 4.2.1 and 4.2.2.Let R ⊂ X(r) be a differential relation. There are two
ways of generalizing Theorems 4.2.1 and 4.2.2:

(A) ReplaceR open byR locally integrable and microflexible.
(B) ReplaceDiff(V ) by a capacious subgroupG.

Theorem 4.4.1.Theorem 4.2.1 holds with (A) and (B).

Definition 4.4.2. R is locally integrableif for any v ∈ V and any sectionF : {v} → R there exist a
holonomic extensioñF : Op({v}) → R, i.e.,F̃ (v) = F (v).

The following definition is my interpretation of microflexibility in [EM, Section 13.3] (which probably
has typos and does not make sense as stated). LetI = [−1, 1] as before and view

In = Ik−l × I l × In−k = Ik × In−k,

wherel < k < n. Consider thestandard triple

(In, Ik−l × ∂I l × In−k, Ik × {0}).

A picture would be helpful here. A triple(A,B,C) ⊂ V , wheredimV = n, is aθ-triple if it is diffeomor-
phic to a standard triple. [HereB,C ⊂ A butC 6⊂ B.]

Definition 4.4.3. R is k-microflexibleif for any sufficiently smallθ-triple and

(1) holonomic sectionF 0 : Op(A) → R and
(2) homotopyF τ : Op(C) → R, τ ∈ [0, 1], of holonomic sections that extendF 0|Op(C) and are

constant onOp(B),
there existσ ∈ (0, 1] and a homotopyF τ : Op(A) → R, τ ∈ [0, σ], of holonomic sections that are constant
overOp(B) and extendF τ onOp(C). R is microflexibleif it is k-microflexible for allk = 0, . . . , n − 1
for dimV = n.

Example4.4.4.
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(1) Open differential relations are microflexible.
(2) Risocont is microflexible.
(3) Risosymp is microflexible fork 6= 1.

We have the following strengthening of Theorem 1.2.3 where we replaceX(r) by locally integrable and
microflexibleR. The proof is still the same.

Theorem 4.4.5(HolonomicR-approximation). Let R ⊂ X(r) be a locally integrable and microflexible
differential relation. LetK ⊂ V be a polyhedron of positive codimension andF : Op(K) → R a section.
Then for allδ, ε > 0 small there exists aδ-small diffeotopy (in theC0-sense)hτ : V

∼
→ V , τ ∈ [0, 1], and a

holonomic section
F̃ : Op(h1(K)) → R

such thatdist(F̃ (v), F (v)) < ε for all v ∈ Op(h1(K)).

Definition 4.4.6. LetG be a Lie subgroup of the group of compactly supported diffeomorphisms ofV and
g be its Lie algebra of vector fields.G andg arecapaciousif:

(1) for anyv ∈ g, any compact subsetA ⊂ V , and its neighborhoodU ⊃ A, there exists a vector field
ṽ ∈ g such that̃v = v onA andSupp(ṽ) ⊂ U .

(2) for anyx ∈ V and any tangent hyperplaneξ ⊂ TxV , there is a vector fieldv ∈ g transverse toξ.

Moreover, (1) and (2) are required to hold parametrically for any compact space of parameters.

Roughly speaking, a capacious group contains enough diffeomorphisms with small support.

Example4.4.7. The identity component of the group of compactly supported contactomorphisms of(M2n+1, ξ)
contact and the group of compactly supported Hamiltonian diffeomorphisms of(M2n, ω) symplectic are ca-
pacious. This is because the corresponding vector fields are(roughly) in bijection with the space of functions
onM .
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5. EXAMPLES OFh-PRINCIPLES

5.1. Contact structures on open manifolds.We assume all contact structures are cooriented. LetV be a
manifold of odd dimension. LetS be the space of almost contact structures onV , i.e., a pair(ξ, ω) consisting
of a hyperplane distributionξ onV and a conformal classω of symplectic structures onξ. LetS be the space
of contact structures onV .

Theorem 5.1.1(Gromov). If V is open, then the inclusionS → S is a weak homotopy equivalence.

Proof. The proof is a consequence of a much more general result.

Step 1.Using holonomic approximation, we obtain:

Lemma 5.1.2.Given a polyhedronK ⊂ V of positive codimension and a pair(α, ω) consisting of a(p−1)-
form and ap-form onV , there is aC0-small diffeotopyhτ : V

∼
→ V and a(p − 1)-form α̃ onV such that

(α, ω) isC0-close to(α̃, dα̃) on K̃ = h1(K).

Briefly, there is a bundle mapD : (Λp−1V )(1) → ΛpV given by the symbol of the exterior derivative
d. In local coordinates, suppose

∑
I fIdxI is a (p − 1)-form and let(aI,j), wherej = 1, . . . , n and

I = (i1 < i2 < · · · < ip−1), be the fiber coordinates on(Λp−1V )(1) corresponding to∂fI∂xj
. ThenD takes

(aI,j) to (
∑

I′=I∪{j}±aI,j).

We can also view(Λp−1V )(1) as a bundle overΛp−1V ⊕ ΛpV with affine fibers (by the definition of
D). Hence any sectionω : V → ΛpV can be lifted toFω : V → (Λp−1V )(1) so thatω = D ◦ Fω and
p1,0 ◦ Fω = α.

We then apply holonomic approximation toX = Λp−1(V ),X(1) = (Λp−1(V ))(1), andFω.

Step 2.Using Lemma 5.1.2 we obtain (as usual):

Lemma 5.1.3. Let V be open and letR ⊂ Λp−1V ⊕ ΛpV be an openDiff(V )-invariant subset. Let
ExR ⊂ SecR be the subspace of pairs(α, ω) such thatdα = ω. Then the inclusionExR → SecR is a
homotopy equivalence.

Step 3. Now apply Lemma 5.1.3 to the case wheredimV = 2n + 1, R ⊂ Λ1V ⊕ Λ2V subject to
α ∧ ωn 6= 0. �

There is an analogous theorem for symplectic structures: Let Ssymp be the space of almost symplectic
structures onV and letSasymp be the space of symplectic structures onV in a fixed cohomology class
a ∈ H2(V ).

Theorem 5.1.4(Gromov). If V is open, then the inclusionSasymp → Ssymp is a weak homotopy equivalence.

5.2. Contact and isocontact embeddings.The proof of the following theorem uses the discussion ofA-
directed embeddings.

Theorem 5.2.1.Let (V, ξV ) and(W, ξW ) be contact manifolds of dimensionn andq, respectively. Suppose
n < q andV is open. If the differentialF0 = df0 of an embeddingf0 : (V, ξV ) → (W, ξW ) is homotopic
through injective bundle mapsFt : TV → TW coveringf0 to an isocontact (by definition injective) bundle
mapT1 : TV → TW . Then there is an isotopyft : V →W such thatf1 is isocontact anddf1 is homotopic
toF1 through isocontact bundle maps.
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Proof. We consider the subsetAcont ⊂ GrnW of n-planesP on whichξW ∩ P is (n − 1)-dimensional
and the (conformal) symplectic structureCS(ξW ) restricts to a (conformal) symplectic structure. Since
Acont is open, we can apply Theorem 3.2.2: ViewFt as a tangential homotopyGt : V → GrnW covering
f0. ThenG1 is Acont-directed and Theorem 3.2.2 and Corollary 3.2.3 imply thatf0 can be isotoped to
anAcont-directed embeddingf1 : V → W anddf1 andF1 are homotopic through injective bundle maps
F̃t : TV → TW that coverft, t ∈ [0, 1] and areAcont-directed.

Note that the above is already sufficient to show the isotopy to acontact embedding, i.e., an embedding
where the contact structure of the domain is unspecified and the image of the map is a contact submanifold
of (W, ξW ).

It remains to “match up”ξV andf∗1 ξW : Let ξt, t ∈ [0, 1], be a family of contact structures connecting
f∗1 ξW to ξV . This exists by Theorem 5.1.1, sinceξV andf∗1 ξW are homotopic. Then one needs to show that
if g0 : (V, ξ0) → (W, ξW ) is an isocontact embedding, then there is a contact isotopygt : V →W such that
g1 : (V, ξ1) → (W, ξW ) is an isocontact embedding. The proof is a contact topology result (not really an
h-principle result). It is nontrivial and is given in [EM, 12.3.2-12.3.5]. �

5.3. Legendrian and isocontact immersions.By the holonomicR-approximation theorem (Theorem 4.4.5):

Theorem 5.3.1. If (V, ξV ) and (W, ξW ) are contact andA ⊂ V is a polyhedron of positive codimension,
then all forms of the localh-principle hold for isocontact immersions(Op(A), ξV |Op(A)) → (W, ξW ).

The following follow from Theorem 5.3.1, together with the microextension trick which reduces to the
case ofequidimensionalisocontact immersions where the domain is open:

Corollary 5.3.2. If dimV < dimW , then all forms of theh-principle hold for isocontact immersions
(V, ξV ) → (W, ξW ).

Corollary 5.3.3. All forms of theh-principle hold for Legendrian immersionsV n → (W 2n+1, ξW ).

In particular, since a generic Legendrian immersion is a Legendrian embedding by dimension reasons, if
f : V → W is an embedding anddf is formally homotopic to a Legendrian embeddingTV → TW on the
bundle level, thenf is homotopic (through immersions) to a Legendrian embedding f ′ : V →W . Note that
f andf ′ may not be isotopic as embeddings.

Also if L is open (i.e., the core ofL is≤ (n− 1)-dimensional), then by dimensional reasons

(1) f : V →W can be isotoped to a Legendrian embedding through embeddings and
(2) any two Legendrian embeddingsf1, g1 : V → W that are formally homotopic as Legendrian

embeddings are isotopic through Legendrian embeddings.

If we want to understand Legendrian submanifolds, it remains to understand what happens to then-
dimensional handles/disks.
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6. CONVEX INTEGRATION

We now discuss the other important technique for provingh-principles: convex integration. Let us start
with the following illustrative example (cf. [EM, Figure 17.1]).

Model example.Given a pathf : [0, 1] → R
2 with |f ′(t)| < 1, can we findf̃ : [0, 1] → R

2 which is
C0-close tof such that|f̃ ′(t)| = 1? Consider the graph of the pathf in [0, 1] × R

2. Then the tangent line
to f at (t0, x0, y0) lies inside the “light cone”(t− t0)

2 > (x− x0)
2 + (y − y0)

2. We want to modify tof̃
such that the tangent line lies on the light cone(t − t0)

2 = (x − x0)
2 + (y − y0)

2. This is easily done by
“spiraling around” the graph of the original functionf . HW: prove this precisely.

Although we will not prove it in class, convex integration can be used to prove the following:

Theorem 6.0.1(Nash-Kuiper). Given an immersionf : (V n, g) → (Rq, gstd), n < q, such that|df(v)| <
|v| for all tangent vectorsv, there exists aC1-map f̃ : V n → R

q which isC0-close tof and satisfies
|df̃(v)| = |v| for all v.

For today assume thatR ⊂ J1(Rn,Rq) is an open differential relation.
Recalling the projectionp1,0 : J1(Rn,Rq) → J0(Rn,Rq) = R

n×R
q, let us writeRt,y = R∩p−1

1,0(t, y),
i.e., the fiber over(t, y). Given a sectionF : Rn → J1(Rn,Rq), we write it asF = (f, φ), wheref is the
map fromR

n to J0(Rn,Rq) andφ is the map fromRn to the fiberRnq.

6.1. One-dimensional convex integration.LetR ⊂ J1(R,Rq).

Definition 6.1.1. Given a subsetΩ ⊂ R
q andy ∈ Ω, let Conny Ω be the path component ofΩ containing

y. We say (i)Ω is ampleif for any y ∈ Ω the convex hull ofConny Ω is all ofRq and (ii)R is ampleif Rt,y

is ample for every(t, y) ∈ R× R
q.

Remark6.1.2. If Ω = ∅ ⊂ R
q, then it is ample by definition.

Definition 6.1.3. A formal solutionF = (f, φ) of R is short if f is a genuine solution of

ConvF R = ∪t∈RConvex hull ofConnF (t)Rf(t).

Note that ifR is ample, then every formal solution ofR is short.

Lemma 6.1.4 (One-dimensional convex integration). Let F = (f, φ) : [0, 1] → R be a short formal
solution ofR. Then there is a family of short formal solutionsFτ = (fτ , φτ ) : [0, 1] → R, τ ∈ [0, 1], such
that:

(1) F0 = F , F1 is holonomic,
(2) fτ is arbitrarily C0-close tof for all τ ∈ [0, 1],
(3) Fτ |∂[0,1] is constant ifF |∂[0,1] is holonomic.

We writef◦ for the composition off with the projection toRq.

Idea of proof.Subdivide the interval[0, 1] into sufficiently small intervals and construct the homotopy over
each small interval. Over each small interval,f◦(t) andφ(t) are almost constant. Since we are doing
“integration” (i.e., something analogous to Riemann sums and taking a limit as interval sizes go to zero),
might as well assume thatf◦(t) andφ(t) are constant. SinceF is short,φ(t) is in the convex hull of some
A := {a1, . . . , ak}, whereai are in the same path component ofRt,f(t). We then approximatef in C0 by a
piecewise linear function whose derivatives are inA. For more details see [EM, Section 17.3]. �
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We also have the following parametric version:

Lemma 6.1.5(Parametric one-dimensional convex integration). LetR(p) ⊂ J1(R,Rq) be a family of open
differential relations parametrized byp ∈ [0, 1]ℓ and letF (p, t) = (f(p, t), φ(p, t)) : [0, 1] → R(p) be a
short formal solution smoothly parametrized byp ∈ [0, 1]ℓ. Then there is a family of short formal solutions

Fτ (p) = (fτ (p), φτ (p)) : [0, 1] → R(p), τ ∈ [0, 1],

parametrized byp, which satisfies (1)–(3) of Lemma 6.1.4 with the parameterp, as well as:

(4) |∂f1∂pi
− ∂f

∂pi
| < ε for i = 1, . . . , ℓ.

6.2. Iterated convex integration. We now considerR ⊂ J1(Rn,Rq). Writing

J1(Rn,Rq) = ⊕n
i=1J

1
xi
(Rn,Rq),

whereJ1
xi

refers to the components corresponding to the derivative inthe xi-direction, we say thatR is
ample in the coordinate directionsif the intersection ofR with every fiber of

Πk : ⊕n
i=1J

1
xi
(Rn,Rq) → ⊕n

i=1,i 6=kJ
1
xi
(Rn,Rq)

is ample for everyk.

Example6.2.1. Verify the following/give more details for HW:

(1) The immersion relationRimm ⊂ J1(Rn,Rq) is ample in the coordinate directions if and only
if n < q. (Note thatn = q is not ample in the coordinate directions.) Brief explanation: Let
(t, x, v1, . . . , v̂k, . . . , vn) be an element of⊕i 6=kJ

1
xi
(Rn,Rq), where(t, x) ∈ J0(Rn,Rq). We con-

sider two cases: (i)v1 ∧ · · · ∧ v̂k ∧ · · · ∧ vn 6= 0 and (ii) v1 ∧ · · · ∧ v̂k ∧ · · · ∧ vn = 0. For (ii), the
intersectionR ∩ Π−1

k (t, x, v1, . . . , v̂k, . . . , vn) = ∅, and the ampleness is automatically satisfied.
For (i), R ∩ Π−1

k (t, x, v1, . . . , v̂k, . . . , vn) is the set ofvk such thatv1 · · · ∧ · · · ∧ vn 6= 0, which is
ample if and only ifn < q. (Whenn = q, then the intersection has two components, the upper and
lower half planes, and neither component has the entire plane as convex hull.)

(2) The submersion relationRsub ⊂ J1(Rn,Rq) is not ample in the coordinate directions forn ≥ q.

Lemma 6.2.2(Iterated convex integration). If R ⊂ J1(Rn,Rq) is open and ample in the coordinate direc-
tions, then the same conclusion holds as before.

Sketch of proof.Letφ = (φ1, . . . , φn). We integrateF = (f, φ) one coordinate at a time using Lemma 6.1.5.

Step 1. First view [0, 1]n as a family of intervals[0, 1] × {p}, p ∈ [0, 1]n−1 and apply Lemma 6.1.5
parametrically toF (p). This yields the formal solution

F 1 = (f1, ∂f
1

∂x1
, φ2, . . . , φn)

of R which is homotopic toF in R, such that|f1 − f0|C0 < ε.

Step 2.Next view [0, 1]n as a family of intervals parallel to thex2-axis and apply Lemma 6.1.5 to construct
the formal solution

F 2 = (f2, ∂f
1

∂x1
, ∂f

2

∂x2
, φ3, . . . , φn).

By Lemma 6.1.5(4),∂f
1

∂x1
and ∂f2

∂x1
areC0-close and hence we can deformF 2 to

F̃ 2 = (f2, ∂f
2

∂x1
, ∂f

2

∂x2
, φ3, . . . , φn),

and so on. �
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Leaving the definition of ampleness forR ⊂ X(1) to your imagination, we have:

Theorem 6.2.3. If R ⊂ X(1) is an open ample differential relation, then all forms of theh-principle hold
for R.

The theorem is an immediate consequence of Lemma 6.2.2.

Examples.We are consideringJ1(V,W ) whereW may have an auxiliary symplectic structureω or almost
complex structureJ .

(1) Rimm is open and ample forn < q.
(2) RLag ⊂ Rimm (corresponding to Lagrangiann-planes inGrn(W )) is ample but closed.
(3) RLagε with ε > 0 small (corresponding ton-planes inGrn(W ) that make an angle of at mostε > 0

with a Lagrangiann-plane) is ample and open.
(4) A subspaceS ⊂ C

n is totally real if S ∩ JS = 0. RReal (corresponding to totally realn-planes in
Grn(W )) is ample and open.

Hence Theorem 6.2.3 applies toRimm, RLagε , andRReal.
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7. WRINKLING

For more details, see Eliashberg-Mishachev [EM2], “Wrinkled embeddings”. Letψδ : R → R
2 be the

map
z 7→ (z3 − 3δz,

∫ z
0 (z

2 − δ)2dz = z5

5 − 2
3δz

3 + δ2z).

The precise choice of constants in the definition ofψδ is not important, but the rough shape of the image of
the function is, i.e., it is a zigzag forδ > 0.

Definition 7.0.1. A smooth mapf : V n →Wm, n < m, is awrinkled embeddingif

(1) f is a topological embedding;
(2) each connected componentSi of the singular setΣ(f) = {x ∈ V | df(x) is not injective} is diffeo-

morphic to the standard(n− 1)-sphereSn−1 and bounds ann-diskDn ⊂ V ;
(3) the mapf |Op(Si) is equivalent to the mapZ(n,m) : OpRnSn−1 → R

m given by:

(x1, . . . , xn−1, z) 7→ (x1, . . . , xn−1, ψ1−|x|2(z), 0, . . . , 0).

Note thatf |Dn may have singularities in the interior.
LetS′

i ⊂ Si be the equator given by{z = 0} in the local model. ThenSi = (Si−S
′
i)∪S

′
i, whereSi−S′

i
is a2-fold cuspidal edge andS′

i is the set of3-fold corners. We refer toSi as thewrinklesandS′
i as the

unfurled swallowtail set.
Whenn = 2, the prototypical model forf is a family fx : R → R

3, x ∈ [−2, 2], wherefx(s) =
(s, γx(s)), we view γx as Legendrians in the front projectionR2, γ−2(s) = γ2(s) = (s, 0), a zigzag is
created atγ−1 and destroyed atγ1. A picture would be good here....

Also, for families of wrinkled embeddings we allowembryo singularitiesgiven by the model

ft(x, z) = (x, ψt−|x|2(z)), t ∈ [−1, 1].

The singularity is att = 0, x = 0, z = 0. It represents the creation or annihilation of a small wrinkle.
The main theorem of [EM2] is the following:

Theorem 7.0.2. Let Gt : V → GrnW be a tangential homotopy covering an embeddingi : V → W
with G0 = Gdi. Then there is a homotopy of wrinkled embeddingsft : V → W , f0 = i, such that
Gdft : V → GrnW isC0-close toGt.

The parametric version of the theorem also holds.
We briefly describe the idea for[−1, 1] → R

2 given byx 7→ (x, 0). Consider the tangential homotopy
T [−1, 1] → TR2 given by uniform counterclockwise rotation from an angle of0 to an angle ofπ4 . Then
by approximating using wrinkled embeddings such that the wrinkles are constructed at smaller and smaller
scales as we progress in the tangential homotopy, we obtain the desired homotopy in Theorem 7.0.2.
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8. LOOSELEGENDRIAN KNOTS

This material is based on Murphy [M], “Loose Legendrian embeddings in high-dimensional contact man-
ifolds”. Let (M2n+1, ξ) be a contact manifold.

For today we assumeL is a connected manifold of dimensionn.

Definition 8.0.1. A formal Legendrian embeddingis a pair consisting of an embeddingf : L → M and
a homotopy of bundle monomorphismsFt : TL → TM , t ∈ [0, 1], coveringf , such thatF0 = df and
F1 : TL→ ξ ⊂ TM is Legendrian.

For example, see Appendix A of [M] or Appendix B in the Cieliebak-Eliashberg book [CE] “From Stein
to Weinstein and back” for (topological) invariants of formal Legendrian isotopy classes.

We define a class of Legendrian submanifolds that exhibit flexible properties. Recall the standard con-
tact (R2n+1, α = dz −

∑n
i=1 yidxi). Its front projection is the projection toRn+1 with coordinates

(z, x1, . . . , xn). Let us writex = (x1, . . . , xn), y = (y1, . . . , yn), x′ = (x2, . . . , xn), y′ = (y2, . . . , yn).

Definition 8.0.2. A loose Legendrian submanifoldL ⊂ (M2n+1, ξ) is a Legendrian submanifold that admits
a loose chart, i.e., there exists a neighborhood ofM of the formQ× P , where

Q = {|x1|, |y1|, |z| ≤
1
2} ⊂ R

3
z,x1,y1 , P = {|x′| ≤ ρ, |y′| ≤ ρ} ⊂ R

2n−2
x′,y′ ,

L ∩ (Q× P ) = L0 × {y′ = 0, |x′| ≤ ρ}, and we have a quantitative constraintρ > 1. HereL0 ⊂ Q agrees
with y1 = z = 0 near the boundary and projects to a zigzag in the front projection R

2
z,x1

.

Remark8.0.3. Alternatively, we can useL′
0 that “looks like a fish” instead ofL0. The quantitative constraint

I think is alsoρ > 1 (check this).

Certain stabilization operations yield loose Legendrians:

(1) If we spin a zigzag in the front projection around (think of the zigzag as a geodesic emanating from
the north pole in standardSn and spinning around the north pole), the result is a loose Legendrian.

(2) In the front projectionRn+1
z,x1,...,xn

suppose we have two sheetsz = 0 and z = 1. On |x| ≤ 1
we replacez = 0 by z = f(x), supported on|x| ≤ 1, so that some portion off is greater than
1. This stabilization operation does change the isotopy typeof the embedding, but can be used in
conjunction with a careful bookkeeping of crossing changes.

Theorem 8.0.4(Murphy). Let n ≥ 2. For each formal Legendrian isotopy classL there exists a loose
Legendrian inL. Moreover, loose Legendrians inL are unique up to contact isotopy.

The idea of the proof is summarized in the following progression:

formal Legendrian
convex

∫
−→ ε-Legendrian−→ wrinkled Legendrian

resolve sing.
−→ Legendrian.

Step 1. Using convex integration, given a formal Legendrian embedding (f : L → M,Ft : TL → TM),
aC0-small isotopy takes it tof : L → M (keeping the same namef ) which isε-close to a Legendrian for
smallε > 0. [Recall we discussedε-Lagrangian embeddings; theε-Legendrian case is analogous. Check
this for HW.]

Step 2. Using this, we can coverf(L) by sufficiently small Darboux charts(R2n+1
z,x,y , dz −

∑
i yidxi) such

thatf(L) projected toRn+1
z,x (the front projection) is graphical overRn

x. We also subdivideL so that each cell
is small and lies in a Darboux chart as above. Now we viewR

2n+1 = J1(Rn
x,Rz) and note that a holonomic
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section ofJ1(Rn,R) is a Legendrian submanifold with respect todz −
∑

i yidxi. Hence we can apply the
usual holonomic approximation theorem to eachi-cell wherei < n to makef(L) Legendrian on the(n−1)-
skeleton and eachf(Dn) graphical in a front projection. [It is clear thatf(∂Dn) is graphical in some front
projection, but it is crucial to show thatf(∂Dn) is graphical in every front projection that it nontrivially
intersects. It is also not a priori obvious since holonomic approximation is aC0-small approximation result
and wiggles the map a bit! For HW verify that if the subdivision of L is sufficiently small thenf(∂Dn) is
graphical in every chart.]

Now we apply Theorem 7.0.2 tof(Dn) ⊂ J1(Rn
x,Rz) to obtain a wrinkled embedding in the front

projectionR
n+1
z,x that isC1-close to the front projection forf(Dn) (and hence gives rise to a wrinkled

Legendrian embedding). The important thing to observe is that the wrinkles are contained in Darboux
charts.

Remark8.0.5. Let S be the unfurled swallowtail set of a wrinkled LegendrianL. ThenL does not have
a well-defined tangent space atS, so a priori we can’t even talk about its formal homotopy class; there is
some modification we can do toL inside the Darboux charts to make sense of the formal homotopy class.

Step 3.In order to recover a Legendrian from a wrinkled Legendrian,we keep track oftwist markings.

Definition 8.0.6. A twist markingM on a wrinkled LegendrianL is an embedded(Sn−1−fin. many disks) ⊂
L which boundsS. We also require each component ofM to lie in a Darboux chart.

By creating a family of zigzags alongM, we can resolveS. This gives us a Legendrian, but we might
still need to adjust its formal Legendrian isotopy class by applying stabilizations and using the discussion of
formal Legendrian isotopy classes.

Step 4. Given two loose LegendriansL0 andL1 in the same formal homotopy class, they are isotopic
through wrinkled LegendriansLt. We would like to getLt such thatLt is never smooth (i.e., always has
wrinkles). To do this, we need to convertL0 andL1 right away to wrinkled Legendrians; this is where the
loose condition plays a crucial role. The loose chart can be converted into an “inside out” wrinkle, which
we assume persists for allLt. The “inside out” wrinkle naturally comes with a small twistmarkingM0 (or
M1). It then remains to find a familyMt of twist markings so that when we crossti with an embryonic
singularity, Mti+ε is obtained fromMti−ε by removing a disk so that the newly created boundary of
Mti+ε bounds the newly created unfurled swallowtail set, or vice versa. The family of genuine Legendrians
obtained by resolvingLt alongMt are all Legendrian isotopic.

For HW, provide more details!



18 KO HONDA

9. FLEXIBLE WEINSTEIN MANIFOLDS

For more details see Chapters 9 and 14 of [CE]. Unfortunately, we again need to introduce a lot of
terminology before we get to the main point....

A Morse cobordism(W 2n, φ) is a compact manifold with boundary∂W = ∂−W ∪ ∂+W such that
φ : W → R is a Morse function,∂−W and∂+W are regular level sets ofφ, andφ(∂−W ) < φ(∂+W ).

A Weinstein cobordism(W 2n, β, φ) is a Morse cobordism(W,φ) such that:

(1) the Liouville vector field given byiXdβ = β points inward along∂−W and outward along∂+W ;
(2) X is a gradient-like vector field ofφ.

If ∂−W = ∅, then (W,β, φ) is a Weinstein domain. Recall that(∂±W,β|∂±W ) is contact, where the
orientations of∂+W (resp.∂−W ) agrees with (resp. is opposite that of)β ∧ dβn−1.

9.1. Weinstein homotopy.

Definition 9.1.1.
(1) (W,φ,X) is a Smale cobordismif (W,φ) is a Morse cobordism,X is gradient-like forφ, andX

points inward along∂−W and outward along∂+W .
(2) (W,φ,X) is anelementary Smale cobordismif X has no trajectories between distinct critical points.
(3) (W,φt), t ∈ [0, 1], is aMorse homotopyif ∂±W are regular level sets ofφt andφt is Morse except

at finitely many timesti where we have a birth/death (also called embryonic) singularity ei. We also
assume thatφti(ei) is not equal toφti of the other critical points ofφti . Any φt in this family is
often called ageneralized Morse function. Note that a genericφt (rel endpoints and boundary) is a
Morse homotopy.

(4) (W,φt,Xt), t ∈ [0, 1], is aSmale homotopyif (W,φt) is a Morse homotopy andXt is gradient-like
for φt, t ∈ [0, 1].

(5) (W,φt,Xt), t ∈ [0, 1], is anelementary Smale homotopyif it is one of the following:
I An elementary Smale cobordism for allt.

IIb There existst0 ∈ (0, 1) such that fort < t0 φt has no critical points, fort = t0 φt has a birth-
type critical point, and fort > t0 φt has two critical points of consecutive indices connected by
a uniqueXt-trajectory.

IId Same as IIb with timet reversed.

Definition 9.1.2. A Weinstein homotopyis a family(W,βt, φt) such that(W,φt,Xt) is aSmale homotopy,
whereiXtdβt = βt.

9.2. Flexible Weinstein structures.

Definition 9.2.1. A Legendrian linkL = ∪k
i=1Li ⊂ (M2n−1, ξ) (i.e., a Legendrian submanifold withk

connected components) islooseif there is a pairwise disjoint collection of loose chartsUi ⊂M for Li such
thatUi ∩ L = Ui ∩ Li.

Remark9.2.2. The union of a collection of pairwise disjoint loose Legendrian knots is not necessarily a
loose Legendrian link. HW: find an example!

Definition 9.2.3. A partition of (W,φ) is a subdivision ofW into

{c0 ≤ φ ≤ c1} ∪ · · · ∪ {cℓ−1 ≤ φ ≤ cℓ},

where
c0 = φ(∂−W ) < c1 < · · · < cℓ−1 < cℓ = φ(∂+W )



NOTES FOR MATH 234: CONTACT GEOMETRY 19

andci are regular values ofφ.

Definition 9.2.4. An elementary Weinstein cobordism(W,β, φ) is flexible if the attaching manifolds of all
indexn critical points form a loose Legendrian link in∂−W . A Weinstein cobordism(W,β, φ) is flexibleif
there exists a partition into elementary flexible cobordisms.

Theorem 9.2.5(Eliashberg-Cieliebak). SupposeW has dimension2n > 4.

(1) If (W,β, φ) is a flexible Weinstein domain andφt, t ∈ [0, 1], is a Morse homotopy without critical
points of index> n such thatφ0 = φ, then there exists a homotopy(W,βt, φt), t ∈ [0, 1], of flexible
Weinstein structures such that(W,β0, φ0) = (W,β, φ), fixed onOp(∂−W ) and fixed up to scaling
onOp(∂+W ).

(2) If (W,β0, φ0) and (W,β1, φ1) are flexible Weinstein domains,φt, t ∈ [0, 1], is a Morse homotopy
without critical points of index> n connectingφ0 to φ1, and there is a homotopy relOp(∂−W ) of
nondegenerate2-forms connectingdβ0 to dβ1, then there exists a homotopy(W,βt, φt), t ∈ [0, 1],
of flexible Weinstein structures connecting(W,β0, φ0) to (W,β1, φ0), fixed onOp(∂−W ).

Proof. For more details see Sections 14.2 and 14.3 of [CE] (which is abit hard to read). We will just explain
the main idea of the proof of (1). One of the key technical points is to introduce and keep track of gradient-
like vector fieldsXt for φt such thatX0 is the Liouville vector field forβ = β0. In the endX1 may not
match the Liouville vector field forβ1, but it’s ok.

We subdivide the Morse homotopy(W,φt) according to time and then partition each subdivision so that
each small piece is an elementary Smale cobordism.

Model situation.Suppose(W,β, φ,X) is a flexible Weinstein cobordism andY is gradient-like forφ such
that (W,φ, Y ) is an elementary Smale cobordism. Then we claim there is a family Xt, t ∈ [0, 1], of
gradient-like vector fields forφ and Liouville formsβt for Xt, t ∈ [0, 1/2], such that:

(A) (W,βt, φ,Xt), t ∈ [0, 1/2], is a flexible Weinstein homotopy with(W,β0, φ,X0) = (W,β, φ,X),
which is fixed onOp(∂−W ).

(B) X1 = Y and the Smale cobordisms(W,φ,Xt) are elementary of Type I fort ∈ [1/2, 1].

It’s not hard to modifyY slightly (through elementary Smale cobordisms) so thatY agrees withX on small
neighborhoods of the critical points ofφ. Hence without loss of generality we assume thatX andY differ
only onφ−1([a, b]) = Σ × [a, b] and there are no critical values ofφ on [a, b]. Interpolating fromX to Y
viaXt, there are well-defined holonomy maps

HolXt : Σ× {a}
∼
→ Σ× {b}

given by backwards flow alongXt. We considerΛ, the intersection of the stable manifolds of the critical
points withΣ × {a}. By definition,HolX0

(Λ) is a loose Legendrian (or isotropic) link and theh-principle
implies thatHolXt(Λ) can beC0-approximated by an isotopy of loose Legendrians (or isotropics) Λ̃t such
that Λ̃0 = HolX0

(Λ). Handle attaching along̃Λt and rescaling[0, 1] → [0, 1/2] gives (A). The slight
discrepancy betweeñΛ1 andHolX1

(Λ) gives (B).

In the end an elementary Smale cobordism(W,φt,Xt), t ∈ [0, 1], of Type I starting at a Weinstein
cobordism(W,β0, φ0,X0) can be readjusted using a diffeotopyht : W

∼
→ W , t ∈ [0, 1], with h0 = id and

(h1)∗φ0 = φ1. This gives the Weinstein cobordism(W, (ht)∗β0, (ht)∗φ0). �
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10. OVERTWISTED CLASSIFICATION IN ALL DIMENSIONS

Reference: Borman-Eliashberg-Murphy, “Existence and classification of overtwisted contact structures
in all dimensions”.

Let M be a closed(2n + 1)-manifold. Anovertwisted (or BEM-overtwisted) diskis a2n-dimensional
diskDOT with a certain contact germζOT on it, to be made precise later. Fix an embeddingφ : DOT →
M . Let Cont(M,φ) be the set of contact structuresζ on M for which φ : (DOT , ζOT ) → (M, ζ) is a
contact embedding, and letACont(M,φ) be the set of almost contact structuresξ on M for which φ :
(DOT , ζOT ) → (M, ξ) is a contact embedding.

Theorem 10.0.1.The inclusionCont(M,φ) → ACont(M,φ) is a weak homotopy equivalence.

Corollary 10.0.2. On any closed manifoldM any almost contact structure is homotopic to a BEM-overtwisted
contact structure which is unique up to homotopy.

Remark10.0.3. There is a relative version of Theorem 10.0.1. For HW try to state it.

In this lecture we will explain the first part of Corollary 10.0.2, i.e., the existence of a BEM-overtwisted
contact structure in a given homotopy class of almost contact structures.

10.1. Reduction to saucers.Given a contact manifold(M2n+1, ξ = kerα) and a hypersurfaceΣ ⊂ M ,
recall thecharacteristic foliationΣξ which is the singular line field given byker dα|ξ∩TΣ. For HW verify
that ifN2n−1 ⊂ Σ satisfiesN ⋔ Σξ, thenN is a codimension2 contact submanifold ofM .

Definition 10.1.1. A saucerB = {(w, v) ∈ D2n × R | f−(w) ≤ v ≤ f+(w)}, wheref+, f− : D2n → R

are smooth functions such thatf− = f+ on∂D2n, andf− < f+ on int(D2n). We write∂+B and∂−B for
the portions of∂B wherev = f+(w) andv = f−(w).

Definition 10.1.2. A regular semicontact sauceris a saucerB such that each of∂±B ≃ D2n
z,x,y′ admits a

graphical embedding into(D2n
z,x,y′ ×Ry1, dz−

∑n
i=1 yidxi) such that∂(∂±B) maps to∂D2n×{0} and the

characteristic foliations on∂+B and∂−B are diffeomorphic to the characteristic foliation on the standard
unit disk{y1 = 0}.

Lemma 10.1.3.An almost contact structureξ onM is homotopic toξ′ such that there exist regular semi-
contact saucersBi, i = 1, . . . , k, for whichξ′ is genuine onM − ∪iBi.

Proof. Use Gromov’sh-principle forξ restricted to the open manifoldM −B2n+1 to obtainξ′′ homotopic
to ξ which is genuine onM − B2n+1. We next viewB2n+1 asD2n × [0, 1]s. Then applying Gromov’s
h-principle again (in parametric/relative form) there is a smooth familyξ′′s , s ∈ [0, 1], of contact germs on
D2n ×{s} which agrees withξ′′ onD2n ×{0, 1}; such a family will be called asemicontact structure. For
convenience we may also assume that theξ′′s all agree on∂D2n.

By the compactness of the interval, there existsε > 0 small such that eachξ′′s , s ∈ [0, 1], is defined on
D2n × [s− ε, s + ε]. Now using the usual Moser technique, forδ > 0 small, there is a diffeomorphism

ψs±δ,s : (D
2n × {s± δ}, ξ′′s±δ) → (D2n × [s− ε, s + ε], ξ′′s ),

whose image is graphical overD2n. If Ds,δ := Im(ψs+δ,s) lies aboveD2n × {s}, then the regionD2n ×
[s, s+ δ] can be filled with a genuine contact structure.

What’s interesting is whenDs,δ does not lie aboveD2n × {s}. An important observation is that we may
assume that a small neighborhood of the singular points of(Ds,δ)ξ′′s lies aboveD2n × {s}: We can use a
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Reeb vector field ofξ′′s or its negative, depending on the sign of the singularity, topush the positive and
negative singularities aboveD2n × {s}. For this we may need to makeδ > 0 even smaller. This means
that the portion ofDs,δ belowD2n × {s} has nonsingular characteristic foliation. LetW ⊂ D2n be such
thatψs+δ,s(W ) has nonsingular characteristic foliation and contains allthe points ofDs,δ belowD2n×{s}.
ThenW × [s, s + δ] can be subdivided into sufficiently small regular semicontact saucers. Repeating the
procedure gives the lemma. �

10.2. Circular shell model. Observe that if we round the boundary∂B of a regular semicontact saucer
B, then its characteristic foliation(∂B)ξ (after renaming contact structures) consists of two singularities: a
source and a sink. We now recast the(∂B)ξ in terms of a “circular shell model” (cf. Lemma 10.2.2).

Definition 10.2.1(Domination). Let ζ1 andζ2 be contact germs onOp(S2n). Thenζ2 dominatesζ1 if there
exists a contact structure onS2n × [1, 2] which agrees withζi onS2n × {i} for i = 1, 2.

Let ∆2n−1
x,y,z be a star-shaped domain (i.e., the intersection of∆ with every line through the origin is a

single line segment through the origin) in(R2n−1
x,y,z , λ = dz +

∑n−1
i=1

1
2 (xidyi − yidxi)) and let

K : ∆x,y,z × S1
t → R

be a “contact Hamiltonian” satisfyingK|∂(∆×S1) > 0. We also write1
2(xidyi − yidxi) = uidφi, where

ui = x2i + y2i andφi is the angular coordinate.
We consider a(2n + 1)-diskBK with boundary∂BK = ΣK,1 ∪ ΣK,2, where

ΣK,1 = {v = K(x, y, z, t) | (x, y, z) ∈ ∆, t ∈ S1} ⊂ (∆× T ∗S1
v,t, β = λ+ vdt),

ΣK,2 = {v ≤ K(x, y, z, t), x ∈ ∂∆} ⊂ (∆× C, β = λ+ vdt),

and the contact germ is induced from the inclusions. HereT ∗S1 has Liouville formvdt and we are viewing
T ∗S1 as a subset ofC where(v, t) = (r2, φ) and(r, φ) are polar coordinates onC. Here we are viewing a
(2n + 1)-diskD2n+1 = D2 ×D2n−1 with boundary

∂(D2 ×D2n−1) = (S1 ×D2n−1) ∪ (D2 ∪ ∂D2n−1).

It’s instructive the consider the casen = 1, where∆ = [−1, 1], ΣK,1 ≃ [−1, 1] × S1, andΣK,2 ≃
{−1, 1} ×D2.

To understand∂BK better, let us calculate its characteristic foliation. Check for HW that the characteristic
foliation onΣK,1 is directed by

(10.2.1) Z = ∂t +XK − 1
2
∂K
∂z

∑
i(xi∂xi

+ yi∂yi) + (12
∑

i(xi
∂K
∂xi

+ yi
∂K
∂yi

)−K)∂z,

whereXK is the Hamiltonian vector field ofK(x, y, z, t) onR
2n−2
x,y with respect to

∑n−1
i=1 dxidyi and with

z, t treated as constants.
Note that∂BK also has two singularities — a source and a sink — andΣK,1 has no singularities.

Lemma 10.2.2.The boundary of a regular semicontact saucerB dominates∂BK for somet-independent
K : ∆× S1 → R.

The proof is omitted. The lemma implies that we can reduce from regular semicontact saucers to circular
shells∂BK .

Examples. Whenn = 1, Z = ∂t − K∂z. Ignoring theΣK,2 portion which is standard and contains the
two singularities, we are reduced to consider the (partially defined) holonomy maphK : [−1, 1] 99K [−1, 1]
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obtained by flowing along the characteristic foliation oncein theS1
t -direction andhK is basically given by

the function−K. If K > 0, then the holonomy is negative, and the contact structure can be extended as
discussed in the first half of the course.

For anyn, whenK is a constant, thenZ = ∂t − K∂z. Also note that when∆ is small, thenZ ≈
∂t+XK−K∂z; if ∆ is a smallD2n times[−1, 1] (i.e., a cylinder), then the holonomyhK : D2n×[−1, 1] 99K
D2n×[−1, 1] is given by−K in thez-direction and the Hamiltonian diffeomorphism obtained byintegrating
the time-dependent Hamiltonian vector fieldXK in thex, y-directions.

10.3. BEM overtwisted disk. We take∆cyl = {|z| ≤ 1, u ≤ 1}, whereu =
∑

i ui. Let ε > 0 be small.
Definekε : [0, 1] → R such thatkε(x) = 0 for x ≤ 1− ε andkε(x) = x− (1 − ε) for x ≥ 1− ε. Letting
∆ε = {|z|, u ≤ 1− ε}, define theS1-invariant contact Hamiltonian

Kε : ∆cyl × S1 → R

such thatKε is dependent only onz and u andKε(z, u) = max(kε(u), kε(|z|)) on ∆cyl − ∆ε and
Kε(z, u) < 0 on int(∆ε).

The BEM overtwisted diskD2n
Kε

is the subset of∂BKε consisting of points such thatz ∈ [−1, 1 − ε].
Observe thatD2n

Kε
has one singular point onz = −1.

Example. Whenn = 1, ∆cyl = [−1, 1]z andD2
Kε

consists of{−1} ×D2 ⊂ ΣK,2 and[−1, 1− ε]× S1 ⊂
ΣK,1, and contains the usual overtwisted disk.

10.4. How to fill contact shells. By now we are running out of time and getting to the most technical part
of [BEM], so we will content ourselves with explaining what happens in dimension3, i.e.,n = 1.

Suppose we want to fill the contact shell∂BK where the holonomy maphK can be positive. The BEM
overtwisted diskD2

Kε
will “help create disorder” in the following way:D2

Kε
has an[−1, 1]-invariant neigh-

borhood; we “erase” the contact structure that has already been defined onD2
Kε

× (−1, 1). Next take a
transverse arcγ from the (say negative) elliptic point ofD2

Kε
× {−1} to a (say positive) elliptic point

of ∂BK ; we “erase” the contact structure on the neighborhood ofγ. This gives us a connected sum
D′ := (D2

Kε
× {−1})#∂BK . We now compare the characteristic foliations ofD := D2

Kε
× {1} and

D′. The neighborhoods of the negative elliptic points ofD andD′ can be matched and we are left compar-
ing the holonomy mapsh : [−1, 1] 99K [−1, 1] andh′ : [−1, 1] 99K [−1, 1] for D andD′ The key point
is that, even if we do not haveh′ < h which is what we want, we can conjugateh′, i.e., takeφ ◦ h′ ◦ φ−1

whereφ is a diffeomorphism of[−1, 1], so thatφ ◦h′ ◦ φ−1 < h. This is the miracle of creating disorder by
introducing a portion with positive holonomy!Once we haveφ ◦ h′ ◦ φ−1 < h, we can easily fill the region
betweenD andD′.

10.5. Comparison with other overtwisted objects. There are other overtwisted objects. Unlike the BEM
overtwisted disk, they are all compact(n + 1)-dimensional objectsN that admit singular foliations by
Legendrian submanifolds.

(PS) plastikstufe, due to Gromov and Niederkrüger, where we take an2-dimensional overtwisted diskD2

with the usual characteristic foliation and take the product with an(n − 1)-manifoldP so that the
Legendrian leaves are leaves ofD2 timesP , including(∂D2)× P .

(bLob) bordered Legendrian open book, due to Massot-Niederkrüger-Wendl, which is a partial open book
with Legendrian pagesS such that∂S splits into disjoint unions of components∂0S and∂1S such
that∂0S becomes the binding and∂1S × S1 becomes the Legendrian boundary.
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(OO) Overtwisted orange, due to Huang and myself, which has the topological type ofDn×S1/ ∼, where
the north pole of∂Dn timesS1 is squashed to a point. The fibersDn × {θ} are Legendrian and the
outer boundary is a singular Legendrian. The overtwisted orange is the only(n + 1)-dimensional
object that is contractible; it is also natural in the sense that it is obtained by gluing two higher-
dimensional bypasses together.

Casals-Murphy and Huang showed that (BEM)⇔ (PS). It was shown by Huang and myself that (BEM)
⇔ (OO). It is still not known whether (BEM)⇔ (bLob) in general, although this was shown by Huang for
M5.
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