NOTES FOR MATH 234: CONTACT GEOMETRY

KO HONDA

1. HOLONOMIC APPROXIMATIONS

For more details, refer to Eliashberg-Mishachev [EM], faatuction to theh-principle”. All manifolds
we consider are smooth manifolds.

1.1. Definitions. Given a subsetd of a manifold V', we write Op(A) for an arbitrarily small but non-
specified open neighborhood dfin V.

Definition 1.1.1. Given a fiber bundleX — V/, its r-jet bundleJ” (X) — V (also written asX (")) is the
bundle whose fiber overe V' is

J,(X) = {sections ofX overOp(p)}/ ~,
wheref : Uy > p - X andg : Us 3 p — X satisfy f ~ ¢ if f andg have the sameth order Taylor
expansion ap.
Note that/°(X) = X. Letp, . : J'(X) — J" (X) be the projection for’ < r.
If X =V x W, then we writeJ"(V, W) = J"(X).
Examplel.1.2 J}(V,R) =R x T*V.

In local coordinates,]” (R",R?) = R™ x R x ... x R whered; is number of partial derivatives
D*“ of order: of a functionR™ — R. Given a smooth map : R” — R? andz € R",

Ji(x) = (f(@), f'(2), ..., [ () € T"(R", RY)
is ther-jet of f atz. Heref() = (D f),, wherea = (a1, ..., ap), a1 + - + oy = i.

Definition 1.1.3. A sectionF : V' — J"(X) is holonomicif F' = JJ .

1.2. Holonomic approximations.
Questionl.2.1 Can any section of " (X) — V be C°-approximated by a holonomic section?

Examplel.2.2 ConsiderF(z) = (z,x,0) for J}(R,R) = R x R x R. It's impossible to findf(z) such
that|f(z) — 2| < e and|f'(x)| < e. (A picture would help here....)

In what follows we assume we have chosen an auxiliary Rieraammetric on the relevant spaces when-
ever we refer to lengths.

Theorem 1.2.3(Holonomic approximation)Let K C V be a polyhedron (i.e., submanifold with higher-
dimensional corners) of positive codimension @dOp(K) — X (") a section. Then for alf,e > 0 small
there exists @-small diffeotopy (in th€*-sense)
TV SV, relo1],
1
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(i.e., al-parameter family of diffeomorphisms 6fwith A = id) and a holonomic section
F:Op(h'(K)) — x™
such thatlist(F(v), F(v)) < e forall v € Op(h'(K)). [Here we are choosing > 0 so thatOp(h!(K)) C
Op(K) ]
There is also a parametric/relative version:

Theorem 1.2.4(Parametric holonomic approximationl.et K C V be a polyhedron of codimension
1. LetI™ be anm-dimensional cube and lef, : Op(K) — X() be a family of sections smoothly
parametrized by € Op(I™) such thatF’; is holonomic forz € Op(91™). Then for allg,e > 0 small there
exists a family of-small diffeotopies:, 7 € [0, 1], and a family of holonomic sectiorfs, such that:

(1) h =id and F, = F. for all z € Op(dI™) and

(2) dist(F.(v), F.(v)) < eforallv € Op(hl(K))andz € I™.
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2. PROOF OFHOLONOMIC APPROXIMATION THEOREM

We explain the main idea of the proof. We stress that the lidsaof the proof is simple and pretty but
the actual proof is notation-heavy and slightly unpleasamnéad.

Step 1.Let us writeJ = J"(R", R?). We first reduce to proving the following relative theoremaocube:

Theorem 2.0.1(Holonomic approximation on the cube)et I* = [~1,1]* ¢ R* ¢ R", k < n, be the
cube corresponding to the firgtcoordinates. For any sectioR : Op(I*) — .J which is holonomic over
Op(0I%), there exists a diffeomorphism

~

h:R" = R", (1, eoymp) = (X1, oy T, T + O(21, ..., Tp)),
and a holonomic sectiof’ : Op(h(I¥)) — .J such that

(1) h=idandF = F onOp(dI*); and
(@) |F — Flco < e onOp(h(I%)).

HW: show that Theorem 2.0.1 implies Theorem 1.2.3.

Step 2.The starting point of the induction is to observe that givén Op(I) — J there exists a family
F, : Op(y) — J,y € 1, of holonomic sections that agree withaty and with " on Op(91I).

Step 3 We introduce some notation. Let_; : I* — I*~! be the projection to the firét—! coordinates with
0 <1 < k. The fibers arg x I' wherey € I*~!. GivenK C R", let N;(K) be its cubical-neighborhood
in R™, i.e.,
N5(K) = Uy, amekxl®1 — 6,21 4 0] X -+ X [z, — 6,2, + ).
We then set
Us(y) = Ns(y x I'),  Vs(y) = Ns(y x oI'),

As(y) = Uas(y) — Vs(y)) N (y x R D),
where0 < 6 < 1 and the neighborhoods are all takerRif. A picture would be good here (cf. Figures 3.2
and 3.3 of [EM]).
We state the following inductive lemma:

Lemma 2.0.2(Inductive lemma) With ¥ ¢ R™ and F as in Theorerh 2.011, supposeis fiberwise holo-
nomic with respect ter,_; : I¥ — I*~!forl = k — 1, i.e., givend > 0 small, for eachy € I = I' there
exist a cubicalb-neighborhoodUs(y) of y x I' and a familyF, : Us(y) — J of holonomic sections such
that F, = F on (y x I') U Vs(y) and ony € Op(dI). Then fore > 0 there exists a large intege¥N > 0
and a holonomic section
F:Q—J over Q=0pUN _y, As(c)UT?) — UMy A5(c),

wherec; = 2=t i = —N+1,...,N,and

(1) F = F onQ N Op(dI*);

(2) |[F = F|co < eon.

Draw picture ofQ2 for n = 2, k = 1,1 = 0 (cf. Figure 3.4 of [EM]).

Proof. For sufficiently largeN > 0, the holonomic familyF, : Us(y) — J, y € I, exists ford = 1/N.
DefineF : Us/o(ci) N{y > i} — J, 7 € [0,1], such that
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o FCOZ - FCZ'!

o [T =TI, onVss(ci)N{y > ¢} forall 7 € [0,1];
° FclZ = Fci+1 onN(;(Ik) N U5/2(Ci) N{y > ¢}; and
e all theFCTL_ areCY-close to each other.

Then letF = F., onUsy(c;) N {y < ¢} — Asa(c;) andF = FL onUs ja(e;) N {y > ¢} O

Step 4.A corollary of Lemmd 2.0J2 is the following:

Corollary 2.0.3. With the assumptions of Lemia 210.2, there exists a diffigumson
h:R" 5 R, (X1, yxn) = (1, oy Tty T + O(T1, - X)),

and a holonomic sectiof : Op(h(I*)) — J such that

(1) h=idand F = F onOp(dI*); and
(2) |F — F|co < eonOp(h(I¥)).

Proof. There exists the desired diffeomorphignsuch thath = id on Op(91*) and such thab(7*) C Q
(see Figure 3.6 of [EM]). Thed given by Lemma 2.0]2 and restricted @p(h(1*)) satisfies Conditions
(1) and (2). O
Given F' : Op(I) — J and the familyF, : Op(y) — J, y € I, of holonomic sections that agree
with F aty and with F on Op(9I), Corollary[2.0.8 implies the existence of&-close holonomic section
F:Op(h(I)) = J.
Applying the argument parametrically, givéh: Op(1%) — J, we obtain a familyFy, : Op(hy(y xI)) —
J of holonomic sections and then : Op(hy(12)) — J holonomic, and so on.



NOTES FOR MATH 234: CONTACT GEOMETRY 5

3. TANGENTIAL HOMOTOPIES

3.1. Tangential homotopies. Let = : Gr,(W) — W be the Grassmanniam-plane bundle tangent to a
g-manifold W, wheren < ¢, i.e.,7~(y) = Gr,(T,W).

Given ann-manifold V' and a fiberwise injective bundle mdp: TV — TW coveringf : V — W, let
GF :V — Gr,W be the map — (f(z), F(T,V)). In particular, if f : V — W is an immersion, there
exists a corresponding mapdf : V. — Gr,W.

AssumeV C W is an embedded submanifold afid: V' — W the inclusion map.

Definition 3.1.1. A tangential homotopwf f, : V' — W is a homotopyG; : V' — Gr, W, t € [0, 1], such
thatGog = Gdfy andr o G; = fo-

Theorem 3.1.2(Approximate integration of tangential homotopiekt K C V be a polyhedron of positive
codimension andr; : V — Gr, (W) atangential homotopy. Then there exists an approximati@r; mear
K by an isotopy of embeddings, i.e., for &lk > 0 small there exists a-small diffeotopy

TV SV, 1€]0,1],
and an isotopy
fe: Op(h (K) = W, fo= folopm (i)
such thatGdf, : Op(h'(K)) — Gr,(W) is e-close to the tangential homotoy; | op(n1 (k))-

Proof. Note that the theorem is basically the same statement askbiedmic approximation theorem with
jet spaces replaced liyr,,JV. Hence it's natural to reduce it to Theorém 112.3.

AssumeGy, t € [0,1], is small, i.e., the angle betwe&h, (w) and Gy, (w) is less thang for all w €
Op(fo(K)) andty,ty € [0,1]. Let X be a tubular neighborhood &f in W, which we view as a normal
bundleX — V. Then the spac& (V) of 1-jets of sectiond” — X can be viewed as the spacershlanes
that are tangent t& and transverse to the fibers &F — V. Hence the tangential homotogy; : V —
Gr, W can be viewed as a homotopy of sectidis V' — X1). We can now apply Theorem 1.2.3.

If G¢, t € [0, 1], is not small, then we subdivide into small intervals on vt is small and successively
apply Theorer 1.2]13. Note that at each iteration of The@rehd lthe “wiggles” are one order of magnitude
small than the previous ones. d

3.2. Directed embeddings.
Definition 3.2.1. Let A C Gr, (W) be a subset. Animmersioh: V' — W is A-directedif Gdf (V') C A.

Theorem 3.2.2(A-directed embeddings for open manifoldget V' be an open manifoldd c Gr, (W)
an open subset, angy : V — W an embedding whose litty = Gdfy is tangentially homotopic to
G1:V — Gr, (W) with G1 (V) C A. Thenf, can be isotoped to ad-directed embedding; : V' — W.

Proof. We use the following well-known fact (give proof for HW) fopen manifolds/:

Fact: Given an open manifold’, there exists a polyhedroii C V' of codimension at leadt such that for
an arbitrarily small neighborhool¥ (K) there is an isotopy; : V = V, t € [0, 1], ¢o = id, which takes/
to NV (K) while fixing K pointwise.

The theorem follows immediately from (i) the Fact, (i) Them[3.1.2, and (iii) the fact that is open. [

We can say slightly more:
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Corollary 3.2.3. In Theoreni_3.2]2, suppose that the tangential homotepys induced by a homotopy
F, : TV — TW,t € [0,1], of injective bundle maps coverinfy with Fy = df,. Then we may assume
that F; is homotopic talf; through a homotopy, : TV — TW, t € [0, 1], which coversf; and such that
GF,(V) c Aforall ¢.
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4. DIFFERENTIAL RELATIONS AND h-PRINCIPLES
4.1. Definitions.

Definition 4.1.1. A differential relationR is a subset of ("), A formal solution toR is a sectiorl/ — R
and agenuine solution t& is a holonomic sectioV — R.

Example4.1.2

(1) Rimm C JH(V,W) consists of(v,w, ¢) such that(v,w) € V x W and¢ : T,V — T,W is
injective. Note thafRi,,., is an open relation (i.e., is an open subset).

(2) Let(V,wy) and(W,ww ) be symplectic manifoldsRisqsymp, (for “isosymplectic”) is the subset of
Rimm consisting of(v, w, ¢) such that*wy = wy atw.

(3) Let(V,&y) and (W, &) be contact manifoldsRisocont (fOr “isocontact”) is the subset OR iy
consisting of(v,w, ¢) such thatp=! (&) = & atv and¢ : &y (v) — &y (w) is conformally
symplectic with respect to the conformally symplectic stanes oty andyy .

Definition 4.1.3(Types ofh-principles)

(1) Theh-principle holds forR if a formal solution ofR is homotopic inSec R (the sections oRR) to
a genuine solution oR. We write Hol R for the set of genuine solutions &.

(2) The parametric h-principle holds forR if the inclusionHol R — SecR is a weak homotopy
equivalence. In other words, for evepy : (D*, S*~1) — (SecR,Hol(R)), k = 0,1,..., there is
a homotopyy; : (D¥, S¥~1) — (Sec R, Hol R), t € [0, 1], such thais; (D*) C Hol R.

(3) Thelocal h-principle holds forR near A C V if the h-principle holds forl” replaced byOp(A).

(4) The C°-denseh-principle holds forR if the usualh-principle holds forR and, for any formal
solution Fy : V' — R and an arbitrarily small neighborhoa¥d( f,(V')) of the underlying section
fo : V. — X, the underlying sectiorf; of the homotopyF; from F;, to F; genuine can be chosen
such thatf; (V) € N(fo(V)),t € [0,1].

4.2. Basic version ofh-principle. Letp : X — V be a fiber bundle and ldbiffy (X) be the group of
diffeomorphisms ofX that send fibers to fibers. Eaélk € Diffy (X) covershy € Diff(V') and there is a
homomorphismr : Diffy (X)) — Diff (V') sendinghx — hy.

The fiber bundlep : X — V is natural if there is a homomorphism : Diff (V) — Diffy (X) going
the other way such that o j = id. This also induceg : Diff (V) — Diffy (X (). [For example, when
X =V x W, then we can takg(hy ) (v, w) = (hy(v),w).] Givenh € Diff(V'), we writeh, = j(h) for
any X ("),

We sayR is Diff (V')-invariantif h.(R) = R for all h € Diff (V).

Theorem 4.2.1(Local h-principle for Diff (V')-invariant R). Let X — V be a natural fiber bundle and

R c X be an operDiff (V')-invariant differential relation. Then all forms of the laich-principle hold
near any polyhedro C V of positive codimension.

Proof. We will explain the non-parametric case, i.e., show thaegik' € Sec R|o, (k) there existss €
Hol R|op (k) homotopic toF in Sec R|op(k)- By the holonomic approximation theorem and the openness
of R, there is az®-small diffeotopyh™ : V' =5 V, 7 € [0,1], and a sectiorF! ¢ Hol R0 (i) that is

CO-close toF? := Flopm (x))- We linearly interpolate betweel and F" to obtainF*, ¢ € [0, 1], which
lies in Sec R|Op R1(K))-

The homotopy fromF to G = (k') F' in Sec R|op(x) i the concatenation of the following:
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o (W);1F, 7 €[0,1], from F to (h'); 1 F, restricted taOp(K);
o (W) IRt e [0,1], from (W) 1 FOto G = (h') 1 F?Y, restricted taOp(K).
TheDiff (V')-invariance ofR implies thatG is holonomic oveOp(K). O

Theoreni 4.2]1 in turn implies:

Theorem 4.2.2(Gromov) If V' is open andX — V' is natural, then an opebiff (V')-invariant R satisfies
the parametrich-principle.

4.3. Smale-Hirsch h-principle. We now explain thenicroextension trickwhich can upgrade to the case
whereV is closed manifold.

Theorem 4.3.1(Hirsch) The C°-denseh-principle holds for immersions of an-manifold V' into a ¢-
manifoldIV, n < gq.

Proof. We treat the non-parametric case. The differential retatie use iR, C JH(V,W). Let F be
a formal solution tgR which coversf : V. — W. Let N — V be the “formal normal bundle” ta'V,
viewed as a subbundle ¢gfT'W underF'. We can then liftF’ : TV — TW to F : TN — TW. Since
TN is an open manifold which is effectively of dimensieng, we can apply Theorefn 4.2.1 to obtain the
theorem. O

4.4. Strengthening of Theorem$4.2]1 and4.2.2.et R ¢ X be a differential relation. There are two
ways of generalizing Theorerns 4.2.1 and 4.2.2:

(A) ReplaceR open byR locally integrable and microflexible.

(B) ReplaceDiff (V') by a capacious subgroup.
Theorem 4.4.1. Theorent 4.2]1 holds with (A) and (B).

Definition 4.4.2. R is locally integrableif for any v € V and any sectiorf” : {v} — R there exist a
holonomic extensiod : Op({v}) — R, i.e.,F(v) = F(v).

The following definition is my interpretation of microflexiity in [EM, Section 13.3] (which probably
has typos and does not make sense as stated].+6t-1, 1] as before and view

" = Ilc—l % [l % [n—k — Ilc % [n—k’
wherel < k < n. Consider thestandard triple
(1", I oIt s 1F 1% x {0)).

A picture would be helpful here. A tripled, B,C) C V, wheredim V' = n, is af-triple if it is diffeomor-
phic to a standard triple. [HeB, C C AbutC ¢ B.]

Definition 4.4.3. R is k-microflexibleif for any sufficiently smalb-triple and

(1) holonomic sectioF : Op(A) — R and
(2) homotopyF™ : Op(C) — R, T € [0,1], of holonomic sections that extedﬂo|op(c) and are
constant orOp(B),
there exist € (0, 1] and a homotopy™™ : Op(A) — R, T € [0, o], of holonomic sections that are constant
over Op(B) and extend¥” on Op(C). R is microflexibleif it is k-microflexible for allk = 0,...,n — 1
for dimV = n.

Example4.4.4
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(1) Open differential relations are microflexible.
(2) Risocont IS microflexible.
(3) Risosymp is microflexible fork # 1.

We have the following strengthening of Theorem 1.2.3 whesaeplaceX (") by locally integrable and
microflexibleR. The proof is still the same.

Theorem 4.4.5(Holonomic R-approximation) Let R ¢ X (") be a locally integrable and microflexible
differential relation. LetK’ C V be a polyhedron of positive codimension afid Op(K) — R a section.
Then for alls, e > 0 small there exists a-small diffeotopy (in th&€®-sensep™ : V= V, 7 € [0,1], and a
holonomic section _

F:0p(h'(K)) =R
such thatdist(F (v), F(v)) < ¢ for all v € Op(h!(K)).

Definition 4.4.6. Let G be a Lie subgroup of the group of compactly supported difiegmnisms ofl” and
g be its Lie algebra of vector field&s andg arecapaciousf:
(1) for anyv € g, any compact subset C V, and its neighborhoo& > A, there exists a vector field
v € g such thath = v on A andSupp(v) C U.
(2) for anyz € V and any tangent hyperplagec T,V , there is a vector field € g transverse tg.

Moreover, (1) and (2) are required to hold parametricallyaioy compact space of parameters.
Roughly speaking, a capacious group contains enough difigghisms with small support.

Example4.4.7. The identity component of the group of compactly supportattactomorphisms d@f\/2"+1, ¢)
contact and the group of compactly supported Hamiltonifeatinorphisms of /2", w) symplectic are ca-
pacious. This is because the corresponding vector fieldsarghly) in bijection with the space of functions
onM.
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5. EXAMPLES OF h-PRINCIPLES

5.1. Contact structures on open manifolds.We assume all contact structures are cooriented Vet a
manifold of odd dimension. L&k be the space of almost contact structure¥’one., a pair&, w) consisting
of a hyperplane distributiofon V" and a conformal class of symplectic structures op LetS be the space
of contact structures ow.

Theorem 5.1.1(Gromov) If V' is open, then the inclusidd — S is a weak homotopy equivalence.
Proof. The proof is a consequence of a much more general result.
Step 1.Using holonomic approximation, we obtain:

Lemma 5.1.2. Given a polyhedrotd C V of positive codimension and a pdi, w) consisting of dp—1)-
form and ap-form onV, there is~aC0—small diffeotopyh™ : V' = V and a(p — 1)-form & on V' such that
(a,w) is C-close to(a, da) on K = hl(K).

Briefly, there is a bundle map : (AP‘1V)(1) — APV given by the symbol of the exterior derivative
d. In local coordinates, suppose; fidz; is a (p — 1)-form and let(ar ), wherej = 1,...,n and
I = (i1 <iy <--- <i, 1), be the fiber coordinates dn*~'V)(!) corresponding t U{Z ThenD takes

(ar,;) 10 (3o p—rugyy Tar)-

We can also view A?~'V)() as a bundle oveA?~1V @ APV with affine fibers (by the definition of
D). Hence any sectiow : V' — APV can be lifted toF, : V — (AP~'V)() so thatw = D o F,, and
proo Fy, = a.

We then apply holonomic approximation 3 = AP~1(V), X1 = (A»=1(V))), and F,.

Step 2.Using Lemma5.1]2 we obtain (as usual):

Lemma 5.1.3. Let V be open and leR C AP~'V @& APV be an openDiff (V)-invariant subset. Let
ExR C SecR be the subspace of paifs, w) such thatdio = w. Then the inclusioix R — SecR is a
homotopy equivalence.

Step 3. Now apply Lemmd 5,113 to the case whelienV = 2n + 1, R ¢ A'V & A%V subject to
aAw"™ # 0. g

There is an analogous theorem for symplectic structuresSkg,, be the space of almost symplectic
structures onl” and letS¢, be the space of symplectic structures Wnn a fixed cohomology class

symp
a€ H2(V).
Theorem 5.1.4(Gromov) If V' is open, then the inclusidsf,,,, — Ssymp is @ weak homotopy equivalence.

5.2. Contact and isocontact embeddings.The proof of the following theorem uses the discussiomof
directed embeddings.

Theorem 5.2.1.Let (V, &y ) and (W, &) be contact manifolds of dimensiarand g, respectively. Suppose
n < g andV is open. If the differentiaF, = df, of an embeddingy : (V,&y) — (W, &w ) is homotopic
through injective bundle mags : TV — T'W covering f, to an isocontact (by definition injective) bundle
mapT; : TV — TW. Then there is an isotopf; : V' — W such thatf; is isocontact andlf; is homotopic
to F} through isocontact bundle maps.
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Proof. We consider the subset..,. C Gr,W of n-planesP on which&y N P is (n — 1)-dimensional
and the (conformal) symplectic structu€eS (&) restricts to a (conformal) symplectic structure. Since
Acont IS 0pen, we can apply Theorém 3]2.2: Viéwas a tangential homotog¥, : V' — Gr, W covering

fo- Then@Gy is Acon-directed and Theorein 3.2.2 and Corollary 3.2.3 imply tfiatan be isotoped to
an A.ont-directed embedding; : V' — W anddf; and F; are homotopic through injective bundle maps
F, : TV — TW that coverfy, t € [0,1] and ared o -directed.

Note that the above is already sufficient to show the isotopydontact embedding.e., an embedding
where the contact structure of the domain is unspecified lamidrage of the map is a contact submanifold
of (W, &w ).

It remains to “match up¥y and f;&w: Let &, ¢t € [0, 1], be a family of contact structures connecting
fi&w to&y. This exists by Theorefn 5.1.1, singe and f;¢ are homotopic. Then one needs to show that
if go: (V,&) — (W, &w) is an isocontact embedding, then there is a contact isatopy” — W such that
g1 : (V,&) — (W, &w) is an isocontact embedding. The proof is a contact topolegult (not really an
h-principle result). It is nontrivial and is given in [EM, 122-12.3.5]. d

5.3. Legendrian and isocontact immersions.By the holonomicR-approximation theorem (Theorém 4.14.5):

Theorem 5.3.1.1f (V, &y ) and (W, &) are contact andA C V' is a polyhedron of positive codimension,
then all forms of the locak-principle hold for isocontact immersiont®p(A), &v [opca)) — (W, Ew)-

The following follow from Theoren 5.311, together with theanoextension trick which reduces to the
case ofequidimensionaisocontact immersions where the domain is open:

Corollary 5.3.2. If dimV < dim W, then all forms of theh-principle hold for isocontact immersions
(V.&v) = (W, éw).

Corollary 5.3.3. All forms of theh-principle hold for Legendrian immersiodg” — (W?2"+1 &),

In particular, since a generic Legendrian immersion is eebeigian embedding by dimension reasons, if
f:V — Wis an embedding and is formally homotopic to a Legendrian embeddifity — TW on the
bundle level, therf is homotopic (through immersions) to a Legendrian embegdin V' — . Note that
f and f’ may not be isotopic as embeddings.

Also if L is open (i.e., the core df is < (n — 1)-dimensional), then by dimensional reasons

(1) f:V — W can be isotoped to a Legendrian embedding through embedidirdy
(2) any two Legendrian embeddings,91 : V — W that are formally homotopic as Legendrian
embeddings are isotopic through Legendrian embeddings.

If we want to understand Legendrian submanifolds, it resyanunderstand what happens to the
dimensional handles/disks.
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6. CONVEX INTEGRATION

We now discuss the other important technique for proviRgrinciples: convex integration. Let us start
with the following illustrative example (cf. [EM, Figure 117).

Model example.Given a pathf : [0,1] — R2 with |f(t)| < 1, can we findf : [0,1] — R2 which is
C%-close tof such thal f’(¢)| = 1? Consider the graph of the pattin [0, 1] x R2. Then the tangent line
to f at (to, zo, yo) lies inside the “light conelt — t9)? > (z — 20)2 + (y — yo)2. We want to modify tof
such that the tangent line lies on the light cdhe- ¢y)? = (= — x0)% + (y — yo)?. This is easily done by
“spiraling around” the graph of the original functigh HW: prove this precisely.

Although we will not prove it in class, convex integratiomdae used to prove the following:

Theorem 6.0.1(Nash-Kuiper) Given an immersiorf : (V™, g) — (R?, gsa), n < g, such thatdf (v)| <
|v| for all tangent vectors, there exists aCl—mapf : V™ — R which is C°-close tof and satisfies
|df(v)| = |v] for all v.

For today assume tha® ¢ J'(R",R?) is an open differential relation.

Recalling the projectiopy  : J'(R",R?) — JO(R",R?) = R™ x R, let us writeR, , = RN p 4(t, y),
i.e., the fiber overt,y). Given a sectiorF” : R* — J!(R", R?), we write it asF' = (f, ¢), wheref is the
map fromR" to J°(R",R?) and¢ is the map fronR” to the fiberR™4.

6.1. One-dimensional convex integration.Let R C J!(R,RY).

Definition 6.1.1. Given a subsef2 C R? andy € €2, let Conn,, (2 be the path component 6f containing
y. We say (i)2 is ampleif for any y € €2 the convex hull ofConn, €2 is all of R? and (ii) R is ampleif R; ,
is ample for every(t,y) € R x RY.

Remark6.1.2 If 2 = @ C RY, then it is ample by definition.
Definition 6.1.3. A formal solutionF' = (f, ¢) of R is shortif f is a genuine solution of
Convpr R = UierConvex hull ofConnp ) Ry () -
Note that ifR is ample, then every formal solution & is short.

Lemma 6.1.4(One-dimensional convex integration)et F¥ = (f,¢) : [0,1] — R be a short formal
solution of R. Then there is a family of short formal solutioRs = (f, ¢,) : [0,1] = R, 7 € [0, 1], such
that:

(1) Fy = F, F is holonomic,

(2) f, is arbitrarily C°-close tof for all 7 € [0, 1],

(3) Frlajo,1 is constant ifF| 5 1) is holonomic.

We write f° for the composition off with the projection tdRq.

Idea of proof. Subdivide the intervdl, 1] into sufficiently small intervals and construct the homgtoper
each small interval. Over each small intervf(¢) and ¢(t) are almost constant. Since we are doing
“integration” (i.e., something analogous to Riemann sunt taking a limit as interval sizes go to zero),
might as well assume thg®(¢) and¢(t) are constant. SincE is short,¢(t) is in the convex hull of some
A= {ay,...,ax}, wherea; are in the same path componentif ;). We then approximatg in C’bya
piecewise linear function whose derivatives arelinFor more details see [EM, Section 17.3]. O
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We also have the following parametric version:

Lemma 6.1.5(Parametric one-dimensional convex integratidndt R (p) C J* (R, R?) be a family of open
differential relations parametrized by € [0,1]° and letF(p,t) = (f(p,t),#(p,t)) : [0,1] — R(p) be a
short formal solution smoothly parametrized oy [0, 1]¢. Then there is a family of short formal solutions

Fr(p) = (fz(p), #-(p)) : [0,1] = R(p), 7€[0,1],
parametrized by, which satisfies (1)—(3) of Lemrha 6]1.4 with the paramgtes well as:

@) |32 - gL <efori=1,....¢
6.2. Iterated convex integration. We now considefR c J!(R™, RY). Writing
JUR™ RY) = @, J; (R",RY),
where J}ci refers to the components corresponding to the derivatiien:;-direction, we say thaR is
ample in the coordinate directionkthe intersection ofR with every fiber of
I : & Ty, (R",R7) — @?:l,i;ékjmli (R",R)

is ample for every.

Example6.2.1 Verify the following/give more details for HW:

(1) The immersion relatiorR;,, C J'(R™ RY) is ample in the coordinate directions if and only
if n < q. (Note thatn = ¢ is not ample in the coordinate directions.) Brief explaomti Let
(t,z,v1,..., 0k, ..., v,) be an element ob;.;J; (R™,R?), where(t,z) € JO(R",R?). We con-
sider two cases: (1 A+~ AUk A -+ Avp, #0and (i)vy A+ AU A -+ - Av, = 0. For (i), the
intersectionRk N H,;l(t,x,vl, ey Uk, ..., p) = &, and the ampleness is automatically satisfied.
For (i), R N H,;l(t,x,ful, ooy Uy ...,0y) is the set ofy, such that; --- A --- A v, # 0, which is
ample if and only ifn < q. (Whenn = q, then the intersection has two components, the upper and
lower half planes, and neither component has the entiree@arconvex hull.)

(2) The submersion relatioR.,, C J*(R", R?) is not ample in the coordinate directions foi> q.

Lemma 6.2.2(lterated convex integration)f R c J!(R",R?) is open and ample in the coordinate direc-
tions, then the same conclusion holds as before.

Sketch of proofLet¢ = (¢!, ..., ¢"). We integratel’ = (f, ¢) one coordinate at a time using Lemmaé.1.5.

Step 1. First view [0,1]" as a family of intervald0, 1] x {p}, p € [0,1]*~! and apply Lemm&6.1.5
parametrically toF'(p). This yields the formal solution

(flaam17¢2 7(23”)
of R which is homotopic td in R, such thatf1 — o < e

Step 2.Next view [0, 1] as a family of intervals parallel to the-axis and apply Lemma®6.1.5 to construct
the formal solution

aft of?
2_(f278£173£27¢3 7(23”)
By LemmdﬂB@)gf andy 8f areC’-close and hence we can defo#if to
2 of2 of?
F :(fz,ail,af;,ﬂbg ”’an)’
and so on. 0
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Leaving the definition of ampleness f& ¢ X1 to your imagination, we have:

Theorem 6.2.3.1f R ¢ X is an open ample differential relation, then all forms of fherinciple hold
for R.

The theorem is an immediate consequence of Lemmal 6.2.2.

ExamplesWe are considering! (V, W) whereW may have an auxiliary symplectic structuseor almost
complex structureJ.
(1) Rimm is open and ample fot < q.
(2) Riag C Rimm (corresponding to Lagrangianplanes inGr,, (W)) is ample but closed.
(3) Rrags With e > 0 small (corresponding te-planes inGr, (W) that make an angle of at mast> 0
with a Lagrangiam-plane) is ample and open.
(4) A subspaces C C™istotally realif SN JS = 0. Rrea (cOrresponding to totally real-planes in
Gr,(W)) is ample and open.

Hence Theoretn 6.2.3 applieSRimm, Riags, aNdRReal-
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7. WRINKLING

For more details, see Eliashberg-Mishachev [EM2], “Writkembeddings”. Leps : R — R? be the
map
2 (2% =30z, [ (22 — 0)%dz = £ — 2625 4+ 6%2).
The precise choice of constants in the definition)gis not important, but the rough shape of the image of
the function is, i.e., it is a zigzag far> 0.

Definition 7.0.1. A smooth mapf : V" — W™, n < m, is awrinkled embeddingf
(1) fis atopological embedding;
(2) each connected componefjtof the singular seE(f) = {x € V | df (x) is not injective is diffeo-
morphic to the standar@: — 1)-sphereS™~! and bounds an-disk D" C V;
(3) the mapf|o,(s,) is equivalent to the mag (n, m) : Opr»S"~" — R™ given by:

(:L'l, vy Tp—1, Z) — (:L'l, ce ,ﬂj‘n_lﬂﬁl_‘xp(z), 0,... ,0)

Note thatf|p» may have singularities in the interior.

LetS; C \S; be the equator given bz = 0} in the local model. Thes; = (S; — S;) US], whereS; — S/
is a2-fold cuspidal edge and! is the set of3-fold corners. We refer t¢; as thewrinklesand S as the
unfurled swallowtail set

Whenn = 2, the prototypical model foif is a family f, : R — R3, x € [-2,2], where f,(s) =
(s,7:(s)), we view~, as Legendrians in the front projecti®?, v_»(s) = 2(s) = (s,0), a zigzag is
created aty_; and destroyed af;. A picture would be good here....

Also, for families of wrinkled embeddings we allesmbryo singularitiegjiven by the model

ft(mvz) = ($7¢t—\x\2(z))> te [_17 1]
The singularity is at = 0, x = 0, z = 0. It represents the creation or annihilation of a small wignk
The main theorem of [EMZ2] is the following:

Theorem 7.0.2.LetG; : V — Gr,W be a tangential homotopy covering an embeddingl” — W
with Go = Gdi. Then there is a homotopy of wrinkled embeddirigs V' — W, fy = 4, such that
Gdf; : V. — Gr, W is C%-close toG;.

The parametric version of the theorem also holds.

We briefly describe the idea fdr-1,1] — R? given byz + (,0). Consider the tangential homotopy
T[-1,1] — TR? given by uniform counterclockwise rotation from an angleddb an angle of;. Then
by approximating using wrinkled embeddings such that thakles are constructed at smaller and smaller
scales as we progress in the tangential homotopy, we olbiaidesired homotopy in Theorém 710.2.
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8. LOOSELEGENDRIAN KNOTS

This material is based on Murphy [M], “Loose Legendrian edtirgs in high-dimensional contact man-
ifolds”. Let (M?"*1 ¢) be a contact manifold.
For today we assume is a connected manifold of dimensian

Definition 8.0.1. A formal Legendrian embedding a pair consisting of an embeddirfg: . — M and
a homotopy of bundle monomorphisn#% : T'L. — TM, t € [0,1], coveringf, such thatF, = df and
Fy:TL — & CTM is Legendrian.

For example, see Appendix A of [M] or Appendix B in the CieldbEliashberg book [CE] “From Stein
to Weinstein and back” for (topological) invariants of fahtegendrian isotopy classes.

We define a class of Legendrian submanifolds that exhibitdflexroperties. Recall the standard con-
tact (R>"™ o = dz — Y1 | yidx;). Its front projection is the projection t&"*! with coordinates
(z,21,...,2p). Letuswriter = (x1,...,2,), ¥y = (Y1, Yn), &' = (T2, ..., 20), ¥ = (Y2, -, Yn)-

Definition 8.0.2. A loose Legendrian submanifold C (M?"*! ¢) is a Legendrian submanifold that admits
aloose charti.e., there exists a neighborhood/df of the form@ x P, where

Q= {lwal . 2| < 3} SR, P = {0/ < poly'| < p} C RIS,

Z,21,Y17
LN(Q x P)= Ly x{y =0,]2'| < p}, and we have a quantitative constrgint- 1. HereL, C ) agrees
with 31; = z = 0 near the boundary and projects to a zigzag in the front piojetk?

Zixll

Remarl8.0.3 Alternatively, we can usé, that “looks like a fish” instead af,. The quantitative constraint
| think is alsop > 1 (check this).

Certain stabilization operations yield loose Legendrians

(1) If we spin a zigzag in the front projection around (thirfklte zigzag as a geodesic emanating from
the north pole in standarsl” and spinning around the north pole), the result is a looseheégan.

(2) In the front projectiorﬂ@;},_wxn suppose we have two sheets= 0 andz = 1. On|z| < 1
we replacez = 0 by z = f(x), supported onz| < 1, so that some portion of is greater than
1. This stabilization operation does change the isotopy tffee embedding, but can be used in

conjunction with a careful bookkeeping of crossing changes

Theorem 8.0.4(Murphy). Letn > 2. For each formal Legendrian isotopy clagsthere exists a loose
Legendrian inl. Moreover, loose Legendrians hare unigue up to contact isotopy.

The idea of the proof is summarized in the following progi@ss

. convex _ _ .__resolve sin .
formal Legendrian — ° e-Legendrian— wrinkled Legendrian  — gLegendrlan

Step 1. Using convex integration, given a formal Legendrian embegldf : L — M, F; : TL — TM),
aC%-small isotopy takes it t¢f : L — M (keeping the same nanf@ which ise-close to a Legendrian for
smalle > 0. [Recall we discussed-Lagrangian embeddings; tlel egendrian case is analogous. Check
this for HW.]

Step 2. Using this, we can covef(L) by sufficiently small Darboux char@®?%t1 dz — Y, y;dx;) such

Z7x7y ’

that f (L) projected thQj;l (the front projection) is graphical ov&’. We also subdividd. so that each cell
is small and lies in a Darboux chart as above. Now we #&#™! = J(R”, R,) and note that a holonomic
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section ofJ1(R™, R) is a Legendrian submanifold with respectdto— 3" y;dz;. Hence we can apply the
usual holonomic approximation theorem to eacell where: < n to makef (L) Legendrian on thén—1)-
skeleton and eacfi(D"™) graphical in a front projection. [It is clear th@toD™) is graphical in some front
projection, but it is crucial to show thgt(0D™) is graphical in every front projection that it nontrivially
intersects. It is also not a priori obvious since holononpipraximation is aC°-small approximation result
and wiggles the map a bit! For HW verify that if the subdivisiof L is sufficiently small theryf (0D™) is
graphical in every chart.]

Now we apply Theorerh 7.0.2 t¢(D") c J'(R%,R.) to obtain a wrinkled embedding in the front
projection RZ*! that is C'-close to the front projection fof(D™) (and hence gives rise to a wrinkled
Legendrian embedding). The important thing to observe as the wrinkles are contained in Darboux
charts.

Remark8.0.5 Let S be the unfurled swallowtail set of a wrinkled Legendrian Then L does not have
a well-defined tangent space&;t so a priori we can't even talk about its formal homotopy sjdbere is
some modification we can do toinside the Darboux charts to make sense of the formal horyatiags.

Step 3.In order to recover a Legendrian from a wrinkled Legendne@ keep track ofwist markings

Definition 8.0.6. A twist markingM on awrinkled Legendriaf is an embeddels” ! —fin. many disk$ C
L which boundsS. We also require each component/ef to lie in a Darboux chart.

By creating a family of zigzags alon§t, we can resolves. This gives us a Legendrian, but we might
still need to adjust its formal Legendrian isotopy class jpylging stabilizations and using the discussion of
formal Legendrian isotopy classes.

Step 4. Given two loose Legendriansy and L, in the same formal homotopy class, they are isotopic
through wrinkled Legendrians;. We would like to getL; such thatZ; is never smooth (i.e., always has
wrinkles). To do this, we need to convdrg and L, right away to wrinkled Legendrians; this is where the
loose condition plays a crucial role. The loose chart candmwearted into an “inside out” wrinkle, which
we assume persists for dli. The “inside out” wrinkle naturally comes with a small twistarking M (or
My). It then remains to find a family1; of twist markings so that when we crogswith an embryonic
singularity, M, ;. is obtained fromM;,_. by removing a disk so that the newly created boundary of
M., +- bounds the newly created unfurled swallowtail set, or vieesa. The family of genuine Legendrians
obtained by resolvind.; along M, are all Legendrian isotopic.

For HW, provide more details!
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9. FLEXIBLE WEINSTEIN MANIFOLDS

For more details see Chapters 9 and 14 of [CE]. Unfortunateéy again need to introduce a lot of
terminology before we get to the main point....
A Morse cobordism(W?2", ¢) is a compact manifold with bounda@W’ = o_W U 9. W such that
¢ : W — Ris a Morse functiong_W ando, W are regular level sets @f, andg(0_-W) < ¢p(0+W).
A Weinstein cobordisrtiV?", 3, ¢) is a Morse cobordismiiV, ¢) such that:
(1) the Liouville vector field given byxds = 8 points inward alon@_W and outward along, W;
(2) X is a gradient-like vector field af.
If O_W = @, then(W,$, ¢) is aWeinstein domain Recall that(0+W, B|s,w ) is contact, where the
orientations ob W (resp.0_W) agrees with (resp. is opposite that i\ d3" 1.

9.1. Weinstein homotopy.

Definition 9.1.1.
(1) (W, ¢,X) is aSmale cobordisnf (W, ¢) is a Morse cobordismX is gradient-like forg, and X
points inward along_W and outward along, V.
(2) (W, ¢, X) is anelementary Smale cobordigmX has no trajectories between distinct critical points.
(3) (W, ¢), t €]0,1], is aMorse homotopyf 0T are regular level sets of; and¢, is Morse except
at finitely many times; where we have a birth/death (also called embryonic) simigyle;. We also
assume thady, (e;) is not equal tap,, of the other critical points of,,. Any ¢, in this family is
often called ageneralized Morse functiorNote that a generi¢, (rel endpoints and boundary) is a
Morse homotopy.
(4) (W, ¢, Xy), t € [0,1], isaSmale homotopy (W, ¢;) is a Morse homotopy and; is gradient-like
for P, t € [0, 1]
(5) (W, ¢y, Xy), t € [0, 1], is anelementary Smale homotofiyt is one of the following:
I An elementary Smale cobordism for all
lIb There existg, € (0, 1) such that fort < ¢y ¢; has no critical points, fot = ¢y ¢, has a birth-
type critical point, and fot > ¢y ¢; has two critical points of consecutive indices connected by
a uniqueX;-trajectory.
Ild Same as llb with time reversed.

Definition 9.1.2. A Weinstein homotopig a family (W, 3;, ¢;) such that W, ¢,, X;) is aSmale homotopy
whereix,dB; = f;.

9.2. Flexible Weinstein structures.

Definition 9.2.1. A Legendrian linkL = UleLi C (M?"1¢) (i.e., a Legendrian submanifold with
connected components)l@seif there is a pairwise disjoint collection of loose chaitsC M for L; such
thatU; N L = U; N L.

Remark9.2.2 The union of a collection of pairwise disjoint loose Legeaadrknots is not necessarily a
loose Legendrian link. HW: find an example!

Definition 9.2.3. A partition of (I, ¢) is a subdivision o#¥ into
{fco<o<eafu---U{c1 <o < el

where
co = (b(a_W) << <1< = (Z5((9+W)
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andc; are regular values af.

Definition 9.2.4. An elementary Weinstein cobordistiV, 3, ¢) is flexibleif the attaching manifolds of all
indexn critical points form a loose Legendrian link in. 1. A Weinstein cobordisniiV, 3, ¢) is flexibleif
there exists a partition into elementary flexible cobordism

Theorem 9.2.5(Eliashberg-Cieliebak) Supposéd? has dimensio2n > 4.

(1) If (W, 3, ¢) is a flexible Weinstein domain ang, ¢ € [0, 1], is a Morse homotopy without critical
points of index> n such thatpy = ¢, then there exists a homotopW, 5;, ¢:), t € [0, 1], of flexible
Weinstein structures such thdl’, 8y, o) = (W, 3, ¢), fixed onOp(0— W) and fixed up to scaling
onOp(94+W).

(2) If (W, By, do) and (W, 31, ¢1) are flexible Weinstein domaing;, t € [0, 1], is a Morse homotopy
without critical points of index- n connectingg, to ¢, and there is a homotopy rélp(o_W) of
nondegenerat@-forms connecting/j, to dj;, then there exists a homotopW, 5;, ¢.), t € [0, 1],
of flexible Weinstein structures connectifi§f, 5o, ¢o) to (W, 51, ¢o), fixed onOp(0_W).

Proof. For more details see Sections 14.2 and 14.3 of [CE] (whiclbislaard to read). We will just explain
the main idea of the proof of (1). One of the key technical {sis to introduce and keep track of gradient-
like vector fieldsX; for ¢, such thatXj is the Liouville vector field for5 = 5y. In the endX; may not
match the Liouville vector field foB;, but it's ok.

We subdivide the Morse homotogyV, ¢,) according to time and then partition each subdivision sb tha
each small piece is an elementary Smale cobordism.

Model situation.Suppose&W, 3, ¢, X) is a flexible Weinstein cobordism andis gradient-like fory such
that (W, ¢,Y) is an elementary Smale cobordism. Then we claim there is #dyfaky, ¢ € [0, 1], of
gradient-like vector fields fop and Liouville formsp; for Xy, t € [0,1/2], such that:
(A) (W, B, 0, Xy1), t €]0,1/2], is a flexible Weinstein homotopy witfiV, 8y, ¢, Xo) = (W, 3, ¢, X),
which is fixed onOp(0_-W).
(B) X1 =Y and the Smale cobordisnt®’, ¢, X;) are elementary of Type | fare [1/2,1].

It's not hard to modifyY” slightly (through elementary Smale cobordisms) so ihagrees withX on small
neighborhoods of the critical points ¢f Hence without loss of generality we assume thiaandY” differ
only on¢~!([a,b]) = ¥ x [a,b] and there are no critical values ¢fon [a, b]. Interpolating fromX to Y’
via X, there are well-defined holonomy maps

Holy, : ¥ x {a} = X x {b}
given by backwards flow along;. We considerA, the intersection of the stable manifolds of the critical
points with: x {a}. By definition,Holx,(A) is a loose Legendrian (or isotropic) link and thgrinciple
implies thatHol x, (A) can beC-approximated by an isotopy of loose Legendrians (or igi¢s) A; such
that Ay = Holy,(A). Handle attaching alond; and rescaling0,1] — [0,1/2] gives (A). The slight
discrepancy betweeh; andHoly, (A) gives (B).
In the end an elementary Smale cobordiéW, ¢;, X;), t € [0,1], of Type | starting at a Weinstein

cobordism(W, By, ¢0, Xo) can be readjusted using a diffeotofpy: W = W, ¢ € [0, 1], with hg = id and
(h1)«¢0 = ¢1. This gives the Weinstein cobordisfiV, (k). 50, (ht)«Po)- O
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10. OVERTWISTED CLASSIFICATION IN ALL DIMENSIONS

Reference: Borman-Eliashberg-Murphy, “Existence andsifization of overtwisted contact structures
in all dimensions”.

Let M be a closed2n + 1)-manifold. Anovertwisted (or BEM-overtwisted) disk a 2n-dimensional
disk Do with a certain contact gerfpr on it, to be made precise later. Fix an embeddingDor —
M. Let Cont(M, ¢) be the set of contact structuréson M for which ¢ : (Dor,Cor) — (M,() is a
contact embedding, and l&Cont (M, ¢) be the set of almost contact structugesn M for which ¢ :
(Dor,Cor) — (M, €) is a contact embedding.

Theorem 10.0.1.The inclusionCont (M, ¢) — ACont (M, ¢) is a weak homotopy equivalence.

Corollary 10.0.2. On any closed manifold/ any almost contact structure is homotopic to a BEM-ovettuds
contact structure which is unique up to homotopy.

Remarkl0.0.3 There is a relative version of Theorém 1010.1. For HW try &tesit.

In this lecture we will explain the first part of Corolldry 002, i.e., the existence of a BEM-overtwisted
contact structure in a given homotopy class of almost costacctures.

10.1. Reduction to saucers.Given a contact manifold)/2"+!, ¢ = ker o) and a hypersurfacE c M,
recall thecharacteristic foliation¥¢ which is the singular line field given byer da|¢nrs,. For HW verify
that if N2"~! C ¥ satisfiesV th X, thenN is a codimensior2 contact submanifold af/.

Definition 10.1.1. A saucerB = {(w,v) € D** xR | f_(w) < v < f.(w)}, wheref,, f_ : D** - R
are smooth functions such that = f, ondD?", andf_ < f, onint(D?"). We writed, B andd_ B for
the portions ob B wherev = f, (w) andv = f_(w).

Definition 10.1.2. A regular semicontact saucés a sauceiB such that each o, B ~ D?" , admits a
graphical embedding intaD?" g X Ry, dz =371 yida;) such thab (01 B) maps ta)D?" x {0} and the
characteristic foliations oA, B andd_ B are diffeomorphic to the characteristic foliation on thanstard

unit disk{y; = 0}.

Lemma 10.1.3. An almost contact structurg on M is homotopic tt’ such that there exist regular semi-
contact saucers3;,i = 1,..., k, for which¢’ is genuine on\/ — U; B;.

Proof. Use Gromov'sh-principle for¢ restricted to the open manifoltd — B2"*! to obtaing” homotopic
to & which is genuine onV/ — B?"*1, We next viewB?*" ! as D?" x [0,1],. Then applying Gromov's
h-principle again (in parametric/relative form) there isnao®th family¢”, s € [0, 1], of contact germs on
D?" x {s} which agrees witlf” on D" x {0,1}; such a family will be called aemicontact structureFor
convenience we may also assume that¢thall agree oro D",

By the compactness of the interval, there exists 0 small such that eacf(, s € [0, 1], is defined on
D*" x [s — ¢, s + €]. Now using the usual Moser technique, for- 0 small, there is a diffeomorphism

¢s:|:5,8 : (D2n X {8 ié}»&?ﬂ:&) — (D2n X [3 —-&S +€]> ;/)7

whose image is graphical ovér*. If Dy s := Im(ts1s) lies aboveD?" x {s}, then the regiorD?" x
[s, s + d] can be filled with a genuine contact structure.

What's interesting is whed; s does not lie abové®?" x {s}. An important observation is that we may
assume that a small neighborhood of the singular pointsof;).~ lies aboveD?" x {s}: We can use a
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Reeb vector field of” or its negative, depending on the sign of the singularitypueh the positive and
negative singularities abov®?" x {s}. For this we may need to make> 0 even smaller. This means
that the portion ofD; 5 below D?" x {s} has nonsingular characteristic foliation. & C D?" be such
thatis1.5.s(W) has nonsingular characteristic foliation and containthalipoints ofD; 5 below D?" x {s}.
ThenW x [s, s + ¢] can be subdivided into sufficiently small regular semicongaucers. Repeating the
procedure gives the lemma. d

10.2. Circular shell model. Observe that if we round the bounda®B of a regular semicontact saucer
B, then its characteristic foliatiofd3), (after renaming contact structures) consists of two simgfigs: a
source and a sink. We now recast (&), in terms of a “circular shell model” (cf. Lemnia 10.P.2).

Definition 10.2.1(Domination) Let(; and(, be contact germs ofp(S52"). Then(, dominates; if there
exists a contact structure ¢it" x [1, 2] which agrees witlj; on $?" x {i} fori =1, 2.

Let A2"~1 be a star-shaped domain (i.e., the intersectior\ofith every line through the origin is a

"E7y7’z
n—11

single line segment through the origin)@®2" !, X\ = dz + >, 3 (zidy; — yida;)) and let

T,Y,%
K:Apy.xSt =R

be a “contact Hamiltonian” satisfying’ \a(Ax sy > 0. We also Write%(w,-dyi — yidx;) = u;deo;, where
u; = x2 + y? andg; is the angular coordinate.

We consider &2n + 1)-disk Bx with boundarydBx = Y1 U Xk 2, Where

EK,l = {U = K(a:,y,z,t) | (l'vyaz) € Avt € Sl} C (A X T*Sil),tvﬁ = /\+Udt)a
Yro={v < K(z,y,2,t),x € 0A} C (A X C,3 =X+ vdt),
and the contact germ is induced from the inclusions. H&g! has Liouville formuvdt and we are viewing
T*S' as a subset of where(v,t) = (12, ¢) and(r, ¢) are polar coordinates dii. Here we are viewing a
(2n + 1)-disk D21 = D% x D?"~1 with boundary
d(D?* x D> 1) = (8! x D™ HYyu (D*uaD*™ ).

It's instructive the consider the case = 1, whereA = [-1,1], £x ;1 ~ [-1,1] x S, andXg o ~
{~1,1} x D2

To understand B better, let us calculate its characteristic foliation. &&fer HW that the characteristic
foliation onX ; is directed by

(10.2.1) Z =0+ Xk — 355 3 (i0r; +yi0y,) + (5 Xi(zi5e + yiGe) — K)o,
where X is the Hamiltonian vector field ok (x, y, z,t) onR2".~2 with respect toy ! d;dy; and with

z,t treated as constants.
Note thato B also has two singularities — a source and a sink —3apd has no singularities.

Lemma 10.2.2. The boundary of a regular semicontact saué¢edominates) By for somet-independent
K:AxSt =R

The proof is omitted. The lemma implies that we can reduaa fregular semicontact saucers to circular
shellsoBy.

Examples. Whenn = 1, Z = 9; — K0.. Ignoring theX g » portion which is standard and contains the
two singularities, we are reduced to consider the (paytdgfined) holonomy mapy : [-1,1] --» [—1, 1]
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obtained by flowing along the characteristic foliation ofrcéhe S/ -direction andh is basically given by
the function— K. If K > 0, then the holonomy is negative, and the contact structunebeaextended as
discussed in the first half of the course.

For anyn, when K is a constant, the = 9, — K9,. Also note that whemA is small, thenZ =~
O+ Xg—KO0.;if AisasmallD?" times[—1, 1] (i.e., a cylinder), then the holonomy, : D27 x[—1,1] --»
D?"x[-1,1] is given by— K in thez-direction and the Hamiltonian diffeomorphism obtainedritggrating
the time-dependent Hamiltonian vector fieXgs in the z, y-directions.

10.3. BEM overtwisted disk. We takeA.,; = {|z| < 1,u < 1}, whereu = ), u;. Lete > 0 be small.
Definek. : [0,1] — R such thatt.(z) = 0forz <1 —ecandk.(z) =z — (1 —¢) forz > 1 — . Letting
A. = {|z|,u < 1 — ¢}, define theS*-invariant contact Hamiltonian

K.: Ay x ST =R

such thatk. is dependent only on and v and K.(z,u) = max(k.(u),k:(]z])) on Ay — A, and
K.(z,u) < 0onint(A,).

The BEM overtwisted dilef{”s is the subset 0B, consisting of points such thate [-1,1 — ¢].
Observe thaD? has one singular point on= —1.

Example. Whenn = 1, A = [—1,1]. andD7_ consists off —1} x D* C Yo and[-1,1—¢] x S' C
Y k.1, and contains the usual overtwisted disk.

10.4. How to fill contact shells. By now we are running out of time and getting to the most texdimart
of [BEM], so we will content ourselves with explaining whaigpens in dimensios, i.e.,n = 1.

Suppose we want to fill the contact shelB i where the holonomy majpx can be positive. The BEM
overtwisted diskDf(E will “help create disorder” in the following WayDg(E has an—1, 1]-invariant neigh-
borhood; we “erase” the contact structure that has alreaey liefined orD%{E x (—1,1). Next take a
transverse are; from the (say negative) elliptic point dD%Q x {—1} to a (say positive) elliptic point
of 0Bg; we “erase” the contact structure on the neighborhoody.of This gives us a connected sum
D' := (D%. x {~1})#0Bk. We now compare the characteristic foliationsfof:= D7 x {1} and
D’. The neighborhoods of the negative elliptic pointsbaind D’ can be matched and we are left compar-
ing the holonomy maps : [-1,1] --» [-1,1] andh’ : [-1,1] --» [-1,1] for D and D’ The key point
is that, even if we do not havé < h which is what we want, we can conjugatg i.e., takeg o b/ o ¢p~*
where¢ is a diffeomorphism of—1, 1], so thatp o b’ o ¢! < h. This is the miracle of creating disorder by
introducing a portion with positive holonom@nce we have o b’ o ¢~! < h, we can easily fill the region
betweenD and D’.

10.5. Comparison with other overtwisted objects. There are other overtwisted objects. Unlike the BEM
overtwisted disk, they are all compagt + 1)-dimensional objectsV that admit singular foliations by
Legendrian submanifolds.

(PS) plastikstufe due to Gromov and Niederkriiger, where we tak@-a@imensional overtwisted disk?
with the usual characteristic foliation and take the praduith an (n — 1)-manifold P so that the
Legendrian leaves are leavesiof times P, including (90D?) x P.

(bLob) bordered Legendrian open boottue to Massot-Niederkriiger-Wendl, which is a partialropeok
with Legendrian pageS such that)S splits into disjoint unions of components.S andd; S such
thatdyS becomes the binding arit] S x S' becomes the Legendrian boundary.



NOTES FOR MATH 234: CONTACT GEOMETRY 23

(O0) Overtwisted orangedue to Huang and myself, which has the topological typp'ok S'/ ~, where
the north pole oD D" timesS! is squashed to a point. The fibed¥ x {#} are Legendrian and the
outer boundary is a singular Legendrian. The overtwistesh@e is the onlyn + 1)-dimensional
object that is contractible; it is also natural in the serss it is obtained by gluing two higher-
dimensional bypasses together.

Casals-Murphy and Huang showed that (BEM)(PS). It was shown by Huang and myself that (BEM)

< (00). It is still not known whether (BEM)= (bLob) in general, although this was shown by Huang for
M5,
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