NOTES FOR MATH 227A: ALGEBRAIC TOPOLOGY

KO HONDA

1. CATEGORIES ANDFUNCTORS

1.1. Categories. A categoryC consists of:

(1) A collectionob(C) of objects
(2) AsetHom(A, B) of morphismdor each ordered pai4, B) of objects. A morphisnf € Hom(A, B)

is usually denoted by : A — Bor A 4 B,
(3) A mapHom(A4, B) x Hom(B,C) — Hom(A, C) for each ordered tripl¢ A, B, C') of objects,
denotedf,g) — gf.
(4) Anidentity morphismid 4 € Hom(A, A) for each objectA.
The morphisms satisfy the following properties:
A. (Associativity) (fg)h = f(gh) if h € Hom(A, B), g € Hom(B, C), andf € Hom(C, D).
B. (Unit)idp f = f = fida if f € Hom(A, B).

Examples: (HW: take a couple of examples and verify that all the axiofns category are satisfied.)

1. Top = category of topological spaces and continuous maps. Tjeetstare topological spacés and
the morphism&lom (X, Y") are continuous maps frofi to Y.

2. Top, = category of pointed topological spaces. The objects are (&, x) consisting of a topological

spaceX and a pointt € X. Hom((X, z), (Y, y)) consist of continuous maps froXi to Y that taker to y.
Similarly defineTop? = category of pair§ X, A) where X is a topological space and C X is a

subspaceHom((X, A), (Y, B)) consists of continuous mags: X — Y such thatf(A) C B.

3. hTop = homotopy category of topological spaces. The objectsopadgical spaceX andHom (X, Y")
is the set of homotopy classes of continuous mapsX — Y. Recall thatfy, f1 : X — Y arehomotopic
if there is a continuous map : X x [0,1] — Y such thatF'|x . ;;3 = f;, @ = 0,1. Homotopy induces an
equivalence relation- and the equivalence classes are calflethotopy classes

4. Grp = category of groups and group homomorphisms. The objeetgraupsG and the morphisms
Hom(G, H) are group homomorphisms fro@ito H.

5. R—-Mod = category of leftR-modules of an associative rir§. The objects are lefR-modules and the
morphismsHom (M, N) are left R-module maps. Also leMod—R be the category of righR-modules.
We sometimes writél\ b (category of abelian groups) f@—Mod.

6. Ch(R—-Mod) = category of chain complexes of (le®-modules and chain maps.
Recall that achain complexs a sequencé’, of R-module maps:

On

8'rL+1
— Cht1 Ch Cpo1 —
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such thato,, 0,1 = 0 and achain mapis a collection of R-module maps’, & D,,, often denoted

¢ : C. — D,, such that the diagram commutes:
O

On+1
Cn—i—l Cn

Cn—l
l¢n+1 l(z)n l(ﬁnfl
Dn+1 Dy, on Dy
1.2. Functors. A covariant functorF’ : C — D from a category to a categonyD is a rule which sends:
(1) an objectd € 0b(C) to F'(A) € ob(D); and
(2) every morphisny € Hom(A, B) in C to a morphismF'(f) € Hom(F(A), F(B)) in D,
such that:

A. F(gf) = F(9)F(f).
B. F(ids) = idpa.

On+1

A contravariant functorF’ assigns tof € Hom(A, B) an elementF'(f) € Hom(F(B), F(A)) satisfying
F(fg) = F(9)F(f)-

Examples: (HW: verify the axioms of a functor)
1. Thesingular chain complex functd&ing : Top — Ch(Z-Mod), which is defined as follows:

Brief review of singular homologyGiveny, . .., v, € R™, let[uvy, ..., v,] be the convex hull ofy, . . . , vy,
ie.,
[Uo,... ,Un] = {Z:-L:Oti’ui c R™ | Z:'L:()ti =1,t, > 0,1 =0,... ,TL}.
Thestandardn-simplexA™ is [eg, . . . , e,] C R,
Let X € ob(Top). A continuous map : A” — X is called asingular n-simplex We defineC,,(X) to
the freeZ-module generated by singularsimplices; an element af,, (X ) is calledsingular n-chain The
boundary ma@,, : C,,(X) — C,,—1(X) is given by:

n
ana = Zi:o(_l)na‘[eo,...,éi,...,en]'
Hereol,....é;......,) Means the composition ¢fy, ..., e,—1] — [eo, .- -, é;, ..., e,] given by the canonical
linear homeomorphism, followed hyrestricted tde, ..., é;, ..., en].

One can verify thab,, 0,1 = 0, i.e.,Cj41 a"—*% Ch On, C,,—1 is a chain complex.
Given a continuous map : X — Y, we define the induced maf, : C,,(X) — C,(Y) by mapping
o: A" - Xto foo: A" — Y and extending linearly. One can verify that, 1 f,,11 = fn0n+1-

1. Similarly, define theelative singular chain complex functSing : Top? — Ch(Z-Mod) which sends
(X,A)to

Cu(X,A) = (= Co(X, A) 2% 1 (X, A) ),
whereC,, (X, A) = C,(X)/C,(A) and 9, is the mapC,,(X,A) — C,_1(X,A) induced fromg,, :
2. Thehomology functord; : Ch(R—-Mod) — R-Mod which assigns to a chain compl&X, the

homology
HZ(C*) = ker(dl)/lm(dzﬂ),
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and to a chain map : C, — D, the induced homomorphism, : H;(C,) — H;(D).

3. The compositior#; o Sing : Top — Z-Mod is thesingular homology functowhich takesX +—
H™ (X Z).
4. Thefundamental group functar; : Top, — Grp sends( X, z) — (X, x).

5. Given a ringR and a rightR-module N, there is a functotV®gr : R—Mod — Z-Mod given by
M+— N®grM.

5. More generally, given ring®, S, and anS — R bimoduleN (this means tha$ acts onN from the left
and R from the right), we have the functdf ® p : R—Mod — S—Mod given byM — N @ M. We can
also extendV®p to Ch(R-Mod) — Ch(S-Mod).

6. Given anR-module N, there is a covariant functdiom(N, —) : R—Mod — R-Mod given by
M +— Hompg(N, M) and a contravariant functdfom(—, N) : R-Mod — R-Mod given by M —
Hompg(M, N). We can also extend the Hom functorsGt(R-Mod) — Ch(R-Mod).

1.3. Adjoint functors. Two functorsF' : C — D andG : D — C areadjointif for each A € ob(C) and
B € 0b(D) there is a bijection

Tap : Homp(F A, B) — Hom¢(A, GB),

subject to the following naturality condition: For afflye Hom(A, A’) andg € Hom(B, B’), the diagram
commutes:

Homp(FA', B) BLEAN Homp(FA, B) —£— Homp(FA,B')

TA’BJ/ TABJ/ TAB' l
Hom¢ (A, GB) SEARR Home (A, GB) G-, Home (A, GB').

We say thatF' is aleft adjoint of G and(G is aright adjoint of F'.

Example: Given anR — S-bimodule N, the functors® gk N : Mod—-R — Mod—S andHomg (N, —) :
Mod-S — Mod-R are adjoint functors.

1.4. Natural transformations. Given two functorsF, G : C — D, anatural transformatiory : F = G
associates a morphismy : F(A) — G(A) for eachA € ob(C) such that for each morphisifi: A — A’ in
C the following diagram commutes:

— F(A)

[ [

9 qran.
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Example: A right R-module mapp : N — N’ gives a natural transformation: N®r = N'®g where
N®pg, N'®g : R-Mod — Z-Mod: Given a leftR-module mapf : M — M’,

N®rM M) N ®r M’

lnM ln]w/

N oM XED N1 g M
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2. HOMOLOGY WITH COEFFICIENTS

2.1. Definitions. Let X be a topological space arid be aZ-module (aka abelian group). An-chain on
X with coefficients irG is finite formal sum) . n,0;, whereo; is a singulam-simplex onX andn; € G.
The setC,,(X; G) of n-chains onX with coefficients inG can be written as

Cn(X;G) = Cn(X) ®2G.

The functor®G : Ch — Ch, whereCh = Ch(Z-Mod), sendsC,(X) to C.(X; G). (Note thatZ is
commutative, so left and right modules are the same; we sog@hsoring over.) In particular this means

that C,, (X) LA Cr—1(X) passes t@,,(X; G) 09idg Cn-1(X;G) and (0 ® idg)? = 0. The homology of
C.(X; G) is written asH,(X; G) and is called théhomology ofX with coefficients inG. This is the result
of the composition

H, o ®G o Sing: Top — Z—-Mod.

Similarly, we can defin€,, (X, A;G) = C,,(X,A) ® G. Therelative homology of X, A) with coeffi-
cients inG is its homology group.

Remark: If we take homology with coefficients i /27 or Q, then everything involved become vector
spaces, and the calculations are often easier.

Question: Is H,,(X;G) ~ H,(X;Z) ® G?

In order to answer this question, we take a detour in homoédbgilgebra.

2.2. Right exactness ofg. Let N be a leftR-module and
0-A—-B—-C—0
be an exact sequence of rightmodules. Then we have the following:
Fact: The functor® gV : Mod—R — Z-Mod is right exact i.e.,
AQr N -B®r N —->C®rN —0

is an exact sequence. HW: check this!
However,A ® N — B ® N is not always injective. (We omik from the notation from now on.)
Prototypical Example:

0757 —Z/nZ — 0.

If we tensor withZ /nZ, then we have

Z/nZ > Z/nZ — Z/nZ — 0
exact, but the left arrow is not injective.

To continue this exact sequence to the left, we introducelé¢hniged functorof QV.
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2.3. Projective resolutions.

Definition 2.3.1. A (right) R-module P is projectiveif it satisfies the following lifting property: given a
mapa : P — N and a surjection/ N 0, there exists a life : P — M such that = ba.

HW: Prove thatP is projective if and only if it is a direct summand of a fr@emodule.

Definition 2.3.2. A projective resolutiorof an R-moduleM is an exact sequence

(2.3.1) PR PSP M0,

where P; are projectiveR-modules. (We often writd’, — M.) As a special case, if we take tl#& to be
free, we have &ee resolution

Lemma 2.3.3. AZ-moduleM has a free resolutio® — F; — Fy — M — 0.

Proof. Let {a,} be a generating set fdv/ and F;y be the free abelian group generated{by,}. Then the
kernel of the natural mapy, — M is a subgroup of a free abelian group, and hence is free. (Nistés not
obvious.) This gives the injectioh; — Fy. O

Remark: The same proof applies to show that @ymoduleM admits a free resolution.

Example: If A =Z/mZ, then
0-Z27Z—7Z/mZ—0
is a free resolution of./mZ. We could also have taken

05252257 - Z/mZ — 0,
wherei : 1 +— (0,1) andj : (1,0) — m, (0,1) — 0.
In particular the example shows that projective/free ngsmhs are not unique!

Lemma 2.3.4.

(1) Given projective resolution®, of A and P, of B and a mapp_; : A — B, there is a chain map
¢ : P, — P! which extend®_1, i.e., the following diagram commutes:

— s p s p 254 0
l% l% l¢—1
— P, p g 0

(2) Any two chain maps, ¢ : P, — P! extendingp_; are chain homotopic.

Recall that two chain maps v : (C,,d) — (C., d") arechain homotopidf there exist map%; : C; —
Cj,, such thatp; — 1; = 0;, h; + h;_10;. Moreover, chain homotopic chain maps induce the same maps
on homology.

Proof. (1) The mapp, is defined using the lifting propertyg¢o = ¢_1ip. Foro,, we show thati; (P1) C
Im ¢} = ker i;,. Indeed,if¢oi; = ¢_1ipi; = 0. Hencegp; can be defined using the lifting property.

(2) Sinceif(po — o) = 0, it follows that (¢g — 100)(Fo) C Im(i}). Henceh, can be defined using the
lifting property. Next observe thaf (¢1 — ¢1 — hoi1) = (¢o — Yo — i} ho)is = 0. Henceh; can also be
defined using the lifting property. O
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2.4. Definition of Tor. Given a projective resolutio®, — M, we tensor with a rightR-module N to
obtain

B PRNDB RN 0,
which is no longer exact but is a chain complex. Its homolaggenoted bylor; (M, N).

Theorem 2.4.1. Tor;(M, N) only depends o/ and V. In particular, it is independent of the projective
resolution used foil].

Proof. This follows from Lemma 2.314: Given projective resolusah,, P, — M, there exist chain maps

¢ : P, — Pl andvy : P, — P, such that)¢,id : P, — P, are chain homotopic. Tensoring wif# still
preserves this property. d

Remark: Given a projective resolutio®, of M, there is a chain map

P "R 0
bl
0 M 0

which induces an isomorphism on homology. A chain nfiapg’, — D, which induces an isomorphism on
all homology groups is calledguasi-isomorphismHenceP, is a quasi-isomorphic replacement bf .

Properties of Tor:

(1) Tor;(M,N) = 0if i > 1 andR = Z. (This follows from the existence of a free resolution
0—F, — Fp—>M—0)

(2) Torg(M,N) = M®N. (If P, - Py — M — 0is exact, therP; ® N UN PhpON - M®N —0
is exact. HenceTorg(M,N) = Py ® N/Imiy ~ M ® N.)

(8) Tor;(M,N) = Tor;(N, M) if Ris commutative. (Proof is not obvious.)

(4) If M is projective, therlor;(M, N) = 0 for ¢ > 1. (If M is projective, the®) — M — M — 0
is the projective resolution fa¥/. Hence0) — M ® N — 0 is the chain complex which computes
Tor.

(5) Tor,-)(M @& M' N) ~ Tor;(M,N) & Tor;(M', N).

(6) Tory(Z/mZ,7/nZ) = ker(Z/nZ % Z/nZ) = Z/kZ, wherek = GCD(m,n). In particular,
Tory(Z/nZ,7/nZ) = Z/nZ. (Tensor the truncated free resolution— Z % 7 — 0 to obtain
0— Z/nZ > Z/nZ — 0.)

2.5. More on the Tor functor.

Theorem 2.5.1.Given an exact sequente—~ A — B — C — 0 of right R-modules, there exist projective
resolutionsF, — A, G, — B, H, — C and exact sequencés— F, — G, - H, — 0 which make
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the following diagram commutative:

0 0 0
— K fi FO fo A 0
’i1 io 7;71
E— Gl 91 Go g0 B 0
J1 Jo J-1
— s H, M gy s o 0
0 0 0

Proof. Take projective resolutions, — A andH, — C. Thenwe seG; = F; ® H; andi : F; — G;
andj : G; — H; to be the usual inclusion and projection maps. The goal iefme the mapgg, ¢1, etc.
For go, lift hg to @ maphg : Hy — B. Then letgy = (i_1 fo, ho) : Fo © Hy — B. We verify thatg, is
surjective: Giverb € B, there existd’ € B such thatj_; (V' — b) = 0 andd’ = hy(y) for somey € Hy.
Now &’ — b € Imi_y, so there exists € Fj such that_; fo(z) = & — b. Thusgy maps(z,y) — b. The
definitions ofg; etc. are similar and it remains to verify tHah g; 1, = ker g; (HW). O

We now apply the functop M where)M is a left R-module.

Fact: The sequencé - F; @ M — G; @ M — H; @ M — 0is exact sincdd - F; — G; — H; — 0
splits andG; ~ F; & H;. (HW: check this!)

Hence we have an exact sequence of chain complexes
0—-FOM -G, @M — H, M — 0.
The corresponding long exact sequence is:

-+« — Tor; (A, M) — Tor; (B, M) — Tor;(C, M) —
- AM - BoM - CoM —0.

Example: Applying ®Z/mZ to
072237 —7/mZ —0,
we obtain

0 — Tory(Z/mZ,7./mZ) = Z./mZ ~ Z/mZ 9, Z.)mZ = 7.JmZ — 0.
2.6. Universal Coefficient Theorem. We now restrict tdZ-modules.
Theorem 2.6.1(Universal Coefficient Theorem for homologyyhere is an exact sequence
0— Hy(X)®M — H,(X; M) — Tori(H,—1(X), M) — 0,
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and the exact sequence splits, albeit noncanonically. &fbes,
H, (X; M) ~ (Hp(X) ® M) & Tory (Hy—1(X), M).
HW: Show that if an exact sequenge— A B i> C — 0 splits, i.e., there exists : C — B such that
jk =id,thenB~ A& C.
Proof. Start with the exact sequence

0—>Zn—>0nﬁ>Bn_1—>0,

whereC,, = C\,(X), Z,, = ker9,, andB,,_; = Im 9,,. The exact sequence can be viewed as a row in an
exact sequence of chain complexes; Z, — C, — B, — 0, where the boundary maps f&@;, and B, are
zero. Now apply® M : sinceB,,_1 is a submodule of’,, 4, it is free, andTor (B,_1, M) = 0. Hence the
exact sequence remains exact ungeér, i.e.,

(2.6.1) 0—-Z, M —-C,M — B,_1 M — 0
is exact. The corresponding long exact sequence is:
in®id in—1®id

Ba®M "™ 7, @ M — Hy(X; M) = By @ M "5 Z,_1 @ M.

(HW: check that the connecting homomorphidsy — Z, actually agrees with the inclusion map.)
Hence
0= (Z, ® M)/ Im(i, ®id) — H,(X; M) — ker(i,_1 ®id) — 0.
We also have the exact sequefice> B,, — Z,, — H,(X) — 0, whose derived exact sequence is:

0 — Tory (Hn(X), M) = B, ® M ™% 7, @ M — H,(X)® M — 0.

We obtainH,,(X) ® M ~ (Z, ® M)/ Im(i, ®id) andTory (H,—1(X), M) ~ ker(i,—1 ® id); this proves
the first assertion of the theorem.
To prove the noncanonical splitting, notice that there iplittg j : B,_1 @ M — C, @ M of
Equation[(2.6.11) sinc&,,, C,,, B,,_ are all freeZ-modules. Restricf to ;' on
Tory (Hyp—1(X), M) ~ ker(ip,—1 ®id) C B,—1 @ M.

Then by the definition of the connecting homomorphisi; ® id for Equation [[2.6.1), we see that
(0, ®id)j'(z) = 0 € Cp_qy @ M for z € Tory(H,—1(X),M). Hence;’ descends to a map :
Tory(H,_1(X),M) — H,(X;M). The fact thatj is a splitting implies thatj is a splitting (check
this!). O
Example: X = RP2. Recall thatH(X) = Z, H1(X) = Z/2Z, andH»(X) = 0. Then we compute that
Ho(X;7/27) = Hy(X) ® Z)27 = 1./ 27,
H\(X;Z/27) = (H\(X) ® Z/2Z) ® Tor,(Z,Z)2Z) = 7.)2Z,
Hy(X;Z/)27) = Tor((Z/2Z,7./27) = 7.]2Z.
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3. COHOMOLOGY
3.1. Definitions. Given an abelian grou@, recall the contravariant functéfom(—, G) : Ab — Ab such
that A — Hom(A,G) andf € Hom(A, B) is mapped tof* : Hom(B, G) — Hom(A, G) which sendsp
N ?i't?e{é is also a contravariant funcdbm(—, G) : Ch — Ch which sends a chain complex
-~—>Cnﬁ>~-i>(}0—>0,
to thecochain complex

-+« Hom(C,, G) i"j LI Hom(Cy, G) + 0,

where the cochain map is given by_; = 9 (note slightly awkward indexing), anfl : C, — D, to
Hom(—, G)f : Hom(D.,G) — Hom(C\, G).

Now we compose with the functdfing : Top — Ch: We denoteHom(C,,, G) by C™ or C™(G) or
C"(X; Q) if C, = C,(X). Unwinding the definition of,,_; = 9;, giveng € C"~! anda € C,,, we have
n—10(a) = p(Opa).

Claim: §2 = 0.
Proof. This isd? = 0 dualized:(62¢)(a) = §¢(0a) = ¢(9*a) = 0. O

The homology of this chain comple™(C'; G) = ker §/ Im ¢ is thenth cohomology group

3.2. Interpreting cohomology. The cochain groug™(X; G) = Hom(C,(X), G) is the set of functions
¢ : {singularn-simplices of X} — G.

In particular, € C°(X;R) assigns a real number to each pointfanddsp € C1(X,R) assigns a real
number to each are : A = [0,1] — X as follows:

dp(ar) = ¢(9a) = ¢((1)) — ¢(ar(0)).
For example, ifi, b € X, ais a path fromuto b, andg(a) = r, ¢(b) = s, thendp(a) = ¢(b)—¢p(a) = s—r.
Note thatd¢ = 0 meansp assigns the same value to all the points in a connected campohX.
Next, if € C*(X;R), thendp € C%(X;R) is given by:
5¢(a) = (b(a’[vhvz}) - (b(a‘[vo,vz}) + (b(a‘[vo,m])'

Observe thaf¢ = 0 meansp(a(yy,v,)) = (Al [ug,01]) + P( vy 0))-
One way of constructing a cochaine C?. (X;R), if X is a manifold and all the simplices are smooth,
is to integrate am-form w, i.e., define
o(B) = fg w-

Thendo(a) = fé)aw = fa dw by Stokes’ Theorem. (Heré is the exterior derivative.) Hence there is a
chain map of (co)-chain complexes:

C— O(X3R) —% QYXGR) —— .

l |

L —— " (X;R) —— OTHY(X;R) —— ...
HereQ"(X;R) is the space of smooth-forms onX.
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3.3. Universal coefficient theorem. Just as the functapG is only right exact, thélom(—, G) functor is
only left exact:

Fact: If A5 B % ¢ — 0is exact, ther) — Hom(C, G) EAN Hom(B, G) AN Hom(A, G) is exact.

Proof. j* is injective: Sincej : B — C'is surjective, giverf € Hom(C, G), the compositiorf o j(x) = 0
for all z € B implies thatf(y) = 0forall y € B.

Im j* = keri*. C: Given f € Hom(C, G), i*j*f = (ji)*f = 0. D: If i*g : A — B — G is zero, then
we can take the quotient m@&p= B/A — G. g

Prototypical Example: Given0 — Z % Z — Z/nZ — 0, applyingHom(—, Z) gives:
0 — Hom(Z/nZ,7) ~ 0 — Hom(Z,Z) ~ Z % Hom(Z,Z) ~ Z.

As in the case offor, take a projective resolutioR, — A and applyHom(—, G) to obtain:
Hom(Py, Q) := (- -+ < Hom(Py, G) + Hom(Py, G) < 0).
The (co)-homology of this chain complex is denotedibyt’ (A, G). As before Ext’(A, G') does not depend
on the choice of projective resolution.

Properties of Ext:
(1) Ext?(A, G) = Hom(A, G). (Follows from the left exactness of the Hom functor.)
(2) Ext'(A,G) =0fori > 1if R =Z. (Use the free resolutiod — Iy — Fp — 0 for A.)
(3) Ext'(A,G) = 0if Ais projective. (Use the resolutidgh— A — 0 for A.)
(4) Ext'(A® B,G) = Ext'(A,G) @ Ext'(B, G).
(5) Ext'(Z/nZ,Z) = Z/nZ. (Take the resolutiod — Z % Z — 0 for Z/nZ, and dualize to obtain
0—7Z %7 — 0. ThenExt®(Z/nZ,7Z) = Hom(Z/nZ,Z) = 0 andExt (Z/nZ,7) = Z/nZ.)
Now, given an exact sequence of abelian graups A — B — C — 0, take the corresponding exact
sequence of projective resolutiofs— P, — Q. — R. — 0 and applyHom(—,G). Its long exact
sequence is:
0 — Hom(C, G) — Hom(B,G) — Hom(A, G) —
— Ext'(C,G) — Ext}(B,G) — Ext'(A,G) — ...
We have the following (proof similar to homology case):

Theorem 3.3.1(Universal Coefficient Theorem for cohomologylf a chain complexC, of free abelian
groups have homology groug$, (C.), then the cohomology groug$™(C,; G) are given by:

0 — Ext'(H,_1(C,),G) — H"(C,;G) — Hom(H,(C.),G) — 0.
The sequence splits, albeit noncanonically.

Example: X = RP?. HY(X;Z) ~ Hom(Hy(X;Z),Z) = Z. (In fact, H*(X;Z) ~ Hy(X;Z) al-
ways.) H'(X;Z) ~ Hom(H(X;Z),Z) always, sinceHy(X;Z) is always free. Hencél!(X;Z) ~
Hom(Z/2Z,Z) = 0. Finally,

H*(X;7) ~ Hom(Hy(X;7Z),Z) ® Ext'(H\(X;Z),7) = Ext'(Z/2Z,7) = 7.)2Z.
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Remark: The Universal Coefficient Theorem basically states #Hat.X; G) can be computed from the
knowledge ofH,(X; G). Then why do we care about cohomology?

3.4. Properties of cohomology. The cohomology groups satisfy all the properties enjoyetidimology,
but with the arrows in the other direction. This includes lineg exact sequence for relative homology,
homotopy invariance, excision, Mayer-Vietoris, etc. Favtale we suppress the coefficient moddle

Relative groups. Starting with0 — C,(A) N Cn(X) AN Cn(X,A) — 0, applyingHom(—, G) yields:

0 C"(X,4) 5 on(x) 5 om(A) - 0,

whereC™(X, A) := Hom(C, (X, A), G). The sequence is exact sinCg (X, A) is free.

Note thaty € C™(X, A) can be viewed as a map : {singularn-simplices ofX} — G such that
¢(o) =0if Imo C A.

We also definedx 4 : C"(X,A) — C"T1(X,A) as the dual of the mapx 4 : Cni1(X,A) —
Cn(X, A). (For the time being also writ&y andd 4 for the duals oDy andd,.)

By dualizing all the arrows for the case of homology, we abthie commutative diagram:

0 —— X, 4) 2 orx) T or4) —— 0

o

. i

0 —— C™H(X,4) —— (X)) S O (4) —— 0
and a long exact sequence in relative cohomology:
— H"(X,A) - H"(X) — H"(A) = H"TY(X, A) — .
HW: Verify that §x 4 agrees with the restriction ¢fy : C"(X) — C"}(X) to C*(X, A) — C™(X, A)
(this is with respect to the inclusigit : C™(X, A) — C"™(X)).
HW: Verify that the diagram commutes, where the mapsandhx 4 arise in the Universal Coefficient
Theorem and the maj is the dual of the connecting homomorphismH,, 1 (X, A) — H,(A):
H"™(A) — H" (X, A)
lhA hx,a

Hom(H,(A),G) —2— Hom(H,.1(X, A),G).

Homotopy invariance. This follows from observing that i&,vy : C, — D, are chain homotopic chain
maps, i.e., there exists : C, — D, such thatp — ¢ = hdc + Oph, theng*,v* : Hom(D,,G) —
Hom(C,, G) are chain homotopic as cochain maps, i.e., there ekistsHom(D,+1,G) — Hom(C,, G)
such thatp* — o* = O5h* + h*0},.

Excision. SupposeZ C A C X and the closure of is in the interior of A. Recall that the inclusion
i:(X—-2Z,A-7)— (X,A) induces an isomorphism on homology. The Universal Coefficidveorem
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is natural in the following way (i.e., the following diagracnmmutes):
0 —— Ext!'(H,_1(X, A),G) —_— H"(X,A) —_— Hom(H, (X, A),G) —— 0

l | !

0 —— BExt'(H, (X -Z2,A-2),G) —— H"X -Z,A—Z) —— Hom(H,(X — Z,A—-2),G) —— 0.
HW: Check the commutativity of the diagram.
The left and right arrows are isomorphisms; hence by the éwera the middle one is also.

HW: Hatcher, Section 3.1: 3,7,11.
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4. CUP PRODUCTS

Today we highlight the key difference between homology aodomology: cohomology has a ring
structure.

4.1. Definition of cup product. Givencochains¢ € C*(X;R) andvy € CY(X;R) (hereR is a com-
mutative ring), define theup producty U ¢y € C*+'(X: R) by evaluating on a singuldik + 1)-simplex
o : A* 5 X and extending bilinearly:

(UY)(0) = d(Tleq,....cn) ) V(T lien,..ensi])-
Lemma 4.1.1.5(¢p Uv) = §p Uth + (—1)*¢p U §ep.
Proof.
S(oU)(o) = (9U)(90) = (¢ U)X (=1)'0lico,.. e, enirsa])>
(dpUY)(o) = 66(Olieo,...er 1)V Ollerinsmensiin])

- (b(Zi(_1)i0’[60,...,éi,...,€k+1])w(al[6k+1,---76k+1+1])
(¢U5¢)(U) = ¢(U’[eo,...,ek})5¢(U’[ek,...,ek+l+1})

= ¢(O-|[eo,...,ek})(_1)k¢(2f:kl;+1(_1)i0-|[ek,...,éi,...,ek+l+1}) |:|

A graded ring/algebrad over R comes with a decompositiod = ©:°,A; of R-modules and a multi-
plication A; x A; — A;; which is R-bilinear. If an element € A; we write |a| = ¢ and call it thedegree
of a. The graded algebrd is adifferential graded algebra (dgdj it has a differentiald : A; — A; 1 such
thatd(ab) = (da)b + (—1)%ladb. HenceC*(X; R) := @2,C*(X; R) is a dga with multiplicationJ and
differential §.

HW: Verify that the cup product o6 (X; R) is associative.

If ¢ = 0 anddyp = 0, i.e, both¢ andy areclosed thend(¢ U ¢)) = 0 by the lemma. Also, ity = dn
andoy = 0, i.e.,¢ is exactand) is closed thend(n U ) = dnUp = U1, i.e.,¢ U is exact. Therefore,
the cup product on the chain level induces a map

H*(X:R) x H(X;R) = H**'(X; R).
Since the cup product is bilinear, by the universal propeftgnsor product, we have a map

H*(X:R) ® H(X;R) > H**(X; R).

HenceH*(X; R) := & H'(X; R) is an associative graded ring.
Lemma4.1.2.Givenf : X — Y, the induced mag™* : C"(X; R) — C™(Y; R) satisfies
[HoU) = foU fy.
Proof. Just unwind definitions. Given cocyclésc C*(X; R) andy € C'(X; R),

f*(¢ U 1/})(0) = (¢ U ¢)(f o U) = ¢(f o U’[eo,...,ek])w(f o U‘[ek,...,ek+l])
= [ 0(0leo,...ex)) SV (Oey.,..erpn) = (FTOU f7Y)(0). O
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4.2. Supercommutativity.
Theorem 4.2.1.aU B = (-1)¥3Uq, if a € H*(X; R) andp € H'(X; R).

Such arelation is callegraded commutativeskew-commutativer supercommutativeNote that the cup
product iSNOTsupercommutative on the chain level. The proof (which iseainvolved) will be postponed
until next time.

Comparison with de Rham theory: If we havew € QF(X) andn € Q/(X), then we have thevedge
productw A1 = (—1)*n A w, already on the chain level! This is because the skew-comtimity was built
into the definition:w(x)(vy, ..., vx) = (—1)I?lw(z)(o(vy, ..., vx)), where|o| is the sign of a permutation
g.

Example: ConsiderX = 7?2 given as in Figur€]l. We will do calculations in simpliciabjehomology.
Supposep € CH(X) is given byg(a) = ¢(c) = 1 and¢(b) = 0. Thendp(A) = 5¢(B) = 0. Hence

FIGURE 1.

§¢ = 0. Similarly, v € C'(X) is given byy(b) = (c) = 1 andy(a) = 0, andsyy = 0. Now,
(pU)(A) = ¢(a)(b) = 1 and(pUv)(B) = ¢(b)y(a) = 0. SinceA— B generatesis(X) = Z, we have
(¢U)(A—B) = 1, in other wordsgpUr) generatesi?(X ) = Z. We also verify thafyU¢)(A—B) = —1,
although the skew-commutativity does not hold on the chaigll

Finally, we discuss a little bit of Poincaré duality. Obsethat¢ could have been defined as follows: take
a closed curvé’ parallel to and oriented in the same directiorhaheng(z) is the oriented intersection
number ofz with &’. Similarly 1) can be defined by taking the oriented intersection numbédr wit. The
curvest’ and—a’ are said to be thBoincaré dualsof ¢ and).

4.3. Proof of Theorem[4.2.1. The proof is given in several steps.

Step 1.We denote bye;, ..., e; ] the restriction taA™ — A" of the linear mafR™ — R" that sends;;,
i=0,...,m, toe;,. A particular case we are interested iffds, ..., eg] : A" — A™ which sends; to
en—;. This induces the map

p:C"(X) = C™(X),

o enolen, ..., e,
wheree,, is the constant—1)"("+1)/2,
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Step 2.pis a chain map, i.egp = po.
Foro : A" — X,
9p(c) = d(enolen, . e0)) =end ;(—1)olen, ... en—i,--- €0,
pa(a):p(Zz(_l)l [607"'7ei7" ])_En 12 ( ) [en7 "7/6\737"'760]
=en-1 3 ;(=1)" " en, .., Eniy- -+, nl,
anddp = pd holds by observing that, = (—1)"¢,,1.

Step 3. p andid are chain homotopic, i.e., there exists an operafor. C,(X) — C.+1(X) such that
—id = 9P + Po.
The chain homotopy operatét is a variation of the prism operator. Consider the pristnA™ x [0, 1] —

A™; label its vertices); = e; x {0} andw; = ¢; x {1},7=0,...,n. We then define

Po =Y ,(—1)ep_iom[vo, ..., v, Wy, .., w;il,
wherelv, . .., v;, Wy, . .., w;] refers to composition witd™ — A™ x [0, 1] sendinge; to thejth vertex in
the list. (Recall the prism operator maps— >_.(—1)!(c x id)[vo, - . . , vi, W4, . . ., wy)].)

Omitting o from the notation, we compute:
oP = Z(— )i€n i@[vo, ey Uiy Whyy e v ,wi]

= ZZ>J( 1)itie, Z[’uo, ey Uy U Why o wy] Zigj(—l)”_j“&?n_i[vo, U Wy e, Wy, W,
PO =P, (-1) 00y -+ 3 gy, Up))
= Ziq(— Y (=1)¢ En_i_l[vo,...,vi,wn,...,@j,...,wi]
+ zi>j(—1)j(—1)i+15n_i[vo, ey Uy Uy Why e WG
= Zi>j(—1)i+j+15 —ilvos . Ujy e v Why w5
+ZZ<J( 1)ite, ;i 1[V0, -y Vi Wy o, Wy, W5
Apart from thei = j terms indP, we have cancellation by observing that ; = (—1)"‘c,_;_1. The
remaining terms give, [w,, . .., wq] — [vo, . . ., v,] (check this!); this prove the chain homotopy.

Step 4.Recall that if two chain map$, g : C, — D, are chain homotopic, then they induce the same map
on cohomologyf*, ¢* : H*(D,) — H*(C\). In particular, this holds foid, p : C..(X) — Ci(X).
Given cocycles) € C*(X), ¢ € CY(X), p*(¢ U) is conomologous tg U ¢ and
P (@UY)(0) = (9 UY)(po) = eprid(olerti, . .-, el)¥(oler, . . ., o)
= eprcier(poleo, ... al))d(ploler, ..., extil))
= (=1)Mp"p U p* (o).
by noting thate;,,; = (—1)*e;e;. This shows thalp] U [¢] = (—1)F ] U [¢].
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5. COMPUTATIONS

HW: Hatcher, Section 3.2: 1-8.
5.1. Preliminaries. Recall the cup product on the level of chainsylie C*(X), v € C{(X), ando €
Cr+1(X), then

(pU)(0) = d(olen, ... ex])(oler, .., erv]).
The cup product descends to cohomology and gives:
H*(X) x H(X) — HM(X),
H*(X,A) x H(X) - H"(X, A),
H*(X,A) x H(X,A) — HY(X, A).

The latter two are straightforward when we recall that C*(X, A) is ¢ € C*(X) such thaip(Cy,(A)) =
0.

Lemma 5.1.1. The cup product descends to a map:
H*(X,A) x H(X,B) — H*Y(X, AU B),
if A, B are open subsets df or subcomplexes of CW complexesXof

Proof. Note that it is not clear whetherU (o) = 0for ¢ € C*(X, A), ¢ € CY(X,B), 0 € Cry(AUB).
Hence we consider the replacement
CH(X,A) x CY{X,B) —» C*"(X, A+ B),

where elements af (X, A + B) vanish on sums of chains i and chains in5.

Now recall the inclusiorni : C,,(A + B) — C,,(A U B). It was shown to have a chain homotopy inverse
in Math 225C. Hence, dualizing, we obtain a quasi-isomamphi* : C"(A U B) — C"(A + B). Thisin
turn implies that the map™ (X, AU B) — C"(X, A + B) is a quasi-isomorphism: Apply the five lemma
to:

H"(X,AUB) —— H"(X) —— H"(AUB)

I Ji 5
H"(X,A+B) —— H"(X) —— H"(A+ B).
The lemma then follows. O
We also have a natural pairig) : H'(X, A) x H;(X, A) — Rinduced from
(,) : C"(X,A) x Ci(X,A) = R,
(¢,0) = (¢,0) = ¢(0).

(Check this is well-defined!) Givefi : X — Y, there are mapg. : H;(X) — H;(Y)andf* : H/(Y) —
H'(X) satisfying the adjoint condition:

<¢7 f*0‘> = (f*¢v 0>'
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5.2. Basic calculation. Giveni + j = n, R" = R? x R/, R = R’ x {0}, R = {0} x R/,
H'(R",R" — R7) x H/(R",R" — R’) — H"(R",R" — {0})
takes generator times generator to generator. Not&that {0} = (R” — R7) U (R™ — R?).
Intuition: The basic calculation is the Poincaré dual aeftttact that two planeR’ andR’ of complemen-

tary dimension intersect at a point.
Consider the projections

71 (R",R" — RY) = (RY, R® — {0})
7y ¢ (R",R" —RY) — (R/,R7 — {0})

that project out théR’/-and R‘-directions. Observe that; (R, R' — {0}) is generated by an affine linear
simplexo; : A — R’ which passes througf0} in its interior. Lets; be a lift of o, i.e., m10; = o;.
Let € H' (R, R’ — {0}) be a cocycle such that,s;) = 1; its existence is guaranteed for example
by the Universal Coefficient Theorem. Thénmj¢,o;) = 1. Similarly, there exist; and+ such that
(m31p,05) = 1. Finally, itis not hard to find an-simplexa,, for H,,(R",R" — {0}) whose front face and
back; face agree with some; ands ;. This implies thatn}¢ U 731, 0,,) = 1.

5.3. Calculation of H*(CP™;Z).
Theorem 5.3.1. H*(CP"; Z) = Z[a]/(a™*!), and the degree af is 2.

Proof. We suppres<Z-coefficients and writéP”™ for CP". Recall thatP™ has a singlei-cell for i =
0,2,4,...,2n. HenceH!(P") = Z for i = 0,2, ..., 2n and0 otherwise.

We argue by induction on. Forn = 1, H*(P!) = Z[a]/(a?) = 0. Suppose?* (P" 1) = Z[a]/(a™).
We consider the inclusion : P*~! — P" and the induced mag : H*(P") — H*(P"~!), which is an
algebra homomorphism and is an isomorphismHémwith i < 2n—2. Hence ifa is a generator foff? (P")
thena™~! generateg7?"~2(IP"). It remains to show that™ generates?>" (P").

Let P! andP/, i + j = n, be projective planes iR" that intersect transversely (i.e., in a point). The fact
that they intersect in a point will be translated iatoU o/ generating 2" (P™).

We have the diagram

Hi(P™) x HI(P") 2 H"(P")

K [r

Hi(]P’”,]P’" _ ]sz) % Hj(]P’”,]P’” _ ]P>i) Y H™(P™, P™ — {pt})

Je |
H{(C",C" — CI) x HI(C",C" — C) —=— H"(C™,C" — {0}).
This commutes by the naturality of the cup product.
It remains to show that the mapsb, ¢, d are isomorphismsb is an isomorphism by the relative exact
sequence for the pafP™, P* — {pt}). d is an isomorphism by excision (excige= P"~!). For one of the

components ofi, we consider the relative sequence (B, P" — P7), observing that*(P" — P7) = 0
sinceP™ — P/ deformation retracts ont® —! (HW!). c is similar. O
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6. EILENBERG-ZILBER THEOREM
This presentation follows Greenberg-Harper, “Algebraipdlogy”.

6.1. Statement of theorem. Given chain complexe&’,, d) and(D,, @), their tensor product can also be
viewed as a chain complex whet€, ® D.), = ®;(C; ® D,,_;) and the boundary map is

ORI rzey) =0rxy+(—1)zxdy,
wherex € C; andy € D,,_;.
Question: Do you need thé—1)/?
Goal: Given topological space¥ andY, relateC,(X) @ C.(Y) andC.(X x Y).

There is a map going one way, called téenberg-Zilber map
A:Cp(X X Y) = (Cu(X) @ Co(Y))n,

n

0= (ﬂ-XU» 71-YO-) = ZTFXO-[G(M ERE) ei] ® 71-YO-[eiv s 7en]>
i=0
whererx : X x Y — X andny : X x Y — Y are projections.

HW: Verify that A is a chain map.

We now view this more categorically: Latop x Top be the product ofTop with itself, i.e., the objects
are paird X, Y") of spaces and the morphisms are pairs of nidps”) (f—’gg (X',Y"). Then there exist two
functorsF, F’ : Top x Top — Ch,

F(X,)Y)=C.(X xY), F(X,Y)=C.(X)®CY).
HW: Check these are actually functors.

Lemma6.1.1. A: F = F'is a natural transformation.

Proof. We unwind definitions: Givell.X,Y") (L’gg (X',Y"), we verify the commutativity of the diagram

Cox xv) 9 ox xy)

[ 4
(C.(X) ® OV ) L2 (Cu(X) ® CulY))
One way maps

A
o= (rxo,myo) — Z?‘('Xo'[ﬁo, e @myole;, ..., en]
%
F'(f,
'(_f>g) Zfﬂ'xO'[ﬁo, e @gmyole, ..., en].
%
The other way gives the same result. O

Theorem 6.1.2(Eilenberg-Zilber) There exists a natural transformatioR : F’ = F such thatAB :
F'= F'andBA : F = F are chain homotopic.
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What do we mean by “chain homotopic” natural transforma®Given functord”, F’ : C — Ch, two
natural transformationd, B : G = G’ arechain homotopidf there existH (X) : F(X) — F'(X), where
F;(X) is mapped taFj, , (X) such thatA(X) — B(X) = 0H(X) — H(X)0, and such that the following
diagram commutes:

Fx) s By

| oo |y
Fx) 2 oy,
In particular,A : C.,(X ® Y) — (C.(X) ® C.(Y)) is a chain homotopy equivalence.

Remark6.1.3 The homotopy invers® : C,.(X) ® C.(Y) — C.(X x Y') can actually be given explicitly
using “shuffle homomorphisms”.

Corollary 6.1.4 (Kunneth formula) If R is a principal ideal domain (PID), then
Hy (X xY) > (&1L Hi(X) @ Hp—i(Y)) & (®ig Tory (Hi(X), Hp—i—1(Y)))-
The proof is very similar to the proof of the Universal Cod#fitt Theorem and can be found on pp.
253-256 of Greenberg-Harper.

6.2. Acyclic models. A category with model§A, M) is a category4 with a set of objects\1, called the
set ofmodels

If £: A — Chis a functor, then lef; : A — R — Mod be the functor which sendX to the degree
i part(F(X)); of F(X). (For today assume th&th = Chx, i.e., chain complexes such thaf = 0 for
1<0.)

Definition 6.2.1. A basis forF; is a collection{dy € F;(N) | N € N;}, whereN; C M, such that, for
any X € ob(X), F;(X) is the freeR-module generated by

{F;(u)(dn) | N € N;,u € Hom(N, X)}.
We sayF' is freeif all the F; have bases far> 0.
Examples. The functorsF, F’ : Top x Top — Ch
F(X,Y)=C (X xY), F(X,Y)=C.(X)®C.(Y).
from the previous subsection have mod#ts= {(A?, A7),4,j > 0} and are free.

1. ForF,, chooseN,, = {(A", A™)} andd; € F, (A", A™) = C,(A™ x A™) given by the diagonal map
A" — A™ x A™. GivenF,(X,Y) = C,(X x YY), considers : A™ — X x Y. It can be written as a
composition

A dny A1 s pn =TT
so thato = F,,(rxo, myo)(d,).

2. ForF}),, chooseN,, = {(A", A7) | i+ j =n} andd; @ §; € F) (A", AT) = (C.(AY) ® C(A7)),, such
thatd; = id : A® - APandd; = id : AV — AJ. Giveno @ 7 € F/(X,Y) = (Cu(X) ® Ci(Y))n, Where
o: A" Xandr: AV 5 Y, 007 =F)(0 x7)(6; ® ;).

X xY,



NOTES FOR MATH 227A: ALGEBRAIC TOPOLOGY 21

An augmented chain compléx a chain complex wittC; = 0 fori < —1, C_; = R, andCy = C_;
surjective. Recall that givefi',(X) we can extend it to an augmented chain complex— C1(X) —
Co(X) = R — 0 by settinge(>", a;o;) = 3, a;. Its homology is theeduced homology oX .

Let Ch/ C Chx_; be the (full) subcategory of augmented chain complexes. akleview F' and F’ as
functors toCh’ instead by augmenting. (X x Y) andC,(X) ® C.(Y).

Definition 6.2.2. A functor F' : A — Ch' is acyclicif for every H,(F(M)) = 0 for everyM € M.

Examples. I and F” are both acyclic. F is clear, sinceA’ x A/ is contractible and hence its reduced
homologyH.(A? x A7) = 0. The case of” is HW.

Theorem 6.2.3.Let (A, M) be a category with models anfd I’ : A — Ch’ be functors such tha¥ is
free andF” is acyclic. Then there is a natural transformatidn: F = F’ which is unique up to chain
homotopy.

Corollary 6.2.4. If F and F’ are both free and acyclic, theR, F’ are chain homotopy equivalent.

Proof of Theorerh 6.213We will prove the existence of the natural transformatianThe definition of the
chain homotopy is similar.

For eachX € ob(.A) we want to defined(X) : F(X) — F'(X). Let{dy € F(N)}nen; be a basis for
F;. ThenF;(X) is freely generated b¥;(u)(dx) asdy ranges inV; andu ranged inHom(N, X).

Step 1. Suppose we have defidgtV)(dy) forall N € N;. Then®;(X) : F;(X) — F/(X) is determined
by the following commutative diagram:

i.e., ®;(X)(Fi(u)(dn)) = Fj(u)(®i(N)(dn))-
We need to verify the naturality @b, : F; = F/, i.e., forf : X — Y with ®;(X), ®;(Y) that we just
defined, the diagram is commutative:

@;(X)

This is HW. Note that this step only uses the freeness.of

Step 2By induction oni we defined;(X) for all X € ob(.A) so that®; : F; = F is a natural transforma-
tion. Suppose for alj < i we have defined (the uniqué);(X) for all X € ob(A) so that®; : I = Fjis
a natural transformation.
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We define®;(N)(dy), N € N;, to be any element such tha®;(N)(dy) = ®;_1(N)9ddy; such an
element exists by the acyclicity &’ and the fact tha®;_; (IV)ddy is closed.

F(N) —2— F_ (V)

<I>Z-(N)l l@i,l(zv)

FI(N) —2— FL_(N).

Then by Step 1 we can defidg (X) for all X € ob(A).
Wheni = 0, we similarly definePy(N)(dy) to be any element such thtbo (V) (dy) = edn:

Fp(N) —— R
‘Po(N) l:
and extend tab,(X) using Step 1.

Step 3.To combine the natural transformatiods into ®, we need to verify tha®®;(X) = ®,_1(X)o0:
0%;(X) (Fy(u)(dn)) = O(F] (u)®i(N)dy) = Fi_ (w)0(®;(N)dn) = F_; (u)®;1(N)9dy
= q)i_l(X)E_l(u)adN = (I)Z_l(X)a(E(u)dN)
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7. ORIENTATIONS

Today our topological spaces are topological manifaldsof dimensionn, i.e., Hausdorff topological
spaces covered by open sets homeomorphRto

7.1. Definitions.

Basic Calculation. Givenx € M,

H,(M,M — x) ~ H,(R",R" — x) ~ H, 1(R" —x) ~ H,_1(S"!) ~ Z.

We write H,, (M |A) 1= H,(M, M — A).

Definition 7.1.1.

(1) Anorientation atz is a choice of generator df,, (M |z).

(2) An orientation of M is a functionz — u, € H,(M|z) with local consistency: for each € M
there exists an open balt > = andup € H,(M|B) such that., = ¢p,up for all y € B under
the natural mapg , : H,(M|B) — Hy,(M]|y).

(3) If an orientation exists foM, thenM is orientable

Recall that ifM is smooth, thenV/ is orientable if the “determinant line bundl&™ 1™ M is trivial (take
this as the definition fof/ smooth), which is equivalent to the existence of a nonvamgskection (aka
volume form)M — A™T*M. This is equivalent to a smooth (with respectid choice of orientation of
TxM.

Orientation double cover. Denote the units off,,(M|z) by H,,(M|z)*. Then

M =[] Ha(M]z)*
zeM

and there is a map : M — M which sendsH,,(M|z)* — z. We topologize]\?f by choosing a basis

{UB,u} so thatr : M — Misa covering space: Given an open bBll> x and a generatonp of
H,(M|B),1etUp uy == {¢B,y(uB) |y € B}.

Claim/HW: M is orientable.

Lemma 7.1.2.If M is connected, thei is orientable if and only ifi/ has2 connected components.

Proof. If M has2 components, then each sheet is homeomorphid t@and hencél! is orientable. IfAM is
orientable, then it ha® orientations and each orientation defines a component. O

Analogously, we can definB-orientations forR a commutative ring with identity in a similar manner.
Note thatH,,(M|z; R) ~ H,(M|x) ® R ~ R. Then:

e an R-orientation atz is a choice of uni € H, (M |z; R)*,
e there is a covering spadd zx — M with fibersH,,(M|z; R)*, and
e an R-orientation ofM is a section oM zx — M.
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7.2. Fundamental class.

Theorem 7.2.1.Let M be a closed (= compact without boundary), connectetianifold.
(A) If M is R-orientable, therd,,(M; R) — H, (M |z; R) is an isomorphism for alt € M.
(B) If M is not R-orientable, thenH,,(M;R) — H,(M|z; R) ~ R is an injection with imaggr €
R|2r =0}.
(C) Hi(M;R) =0fori > n.

A generator off,,(M; R) ~ R is called afundamental clasfor M with respect taR.

Proof. We'll prove (A) and (C), leaving (B) for HW. IfM is R-orientable, then there is a sectienof
MRx — M.

We inductively prove that for ald ¢ M compact,
(i) there exists a unique class, € H,(M|A, R) such thaip, ,(c4) = o(z), and
(i) Hi(M|A;R) =0fori > n.

Suppressingz, we show the following:

(1) If (i) and (ii) hold for compact setd, B, AN B, then they hold ford U B.

(2) Write Aas aunion ofd, ..., A,, where each; is contained in an open ball. Sinég, (M |A;) ~
H,(R™|A;) by excision, we reduce to the casé ~ R".

(3) If Ais aclosed ball il = R™, (i) and (ii) are immediate.

(4) Argue for an arbitrary compact sdtc R™.

(1) follows from the Mayer-Vietoris sequence

0 —— Ho(M|AUB) —2 H,(M|A) & H,(M|B) —— H,(M|AU B),
where®(a) = (o, —a) and¥(a, f) = a+ 5. In particular¥ (o4, —op) = 04 — op = 0, and comes from
someo 4, under the maf®. (Check consistency + uniqueness!)

(4) If Ais an arbitrary compact set IR", supposex € H;(R"|A) is represented by a relative cycle
ThenSupp(0z) is a compact subset & — A, and hence has positive finite distancedtoWe can then
cover A with closed ballsBy, . . ., By, disjoint from Supp(dz) and view it as an element &f;(R"| U; B;)
which maps tay underH;(R"| U; B;) — H;(R"|A). If i > n, then (3) implies thatv = 0. If i = n, then
existence in (i) is clear. (Check uniqueness!) O
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8. POINCARE DUALITY
HW: Hatcher, Section 3.3: 1,2,5,6,16,22,26.
8.1. Cap product. Thecap productis defined as follows:
N: Cp(X) x CHX) = Cr_y(X)
(0,0) — ¢(oleo, ... e])oler, ..., ekl
Lemma8.1.1.9(c N ¢) = (—1)"(do N ¢ — o N 66).

This is left for HW; it's the same kind of verification as foretltup product. The lemma implies that
descends to:
N: Hy(X) x H(X) = H_(X).

Naturality. Givenamapf : X — Y, consider the diagram

Hyp(X) x H/(X) —"— H,_(X)
e ] I
H(Y) x H(Y) —"—= Hy(Y).
Lemma8.1.2. fuo N = fu(o N f*P).
Proof. Follows from¢(foleg, ..., el)folen, ... ex] = f*d(oleo, ..., e]) foles, ..., ekl d
8.2. Statement of Poincag duality.
Theorem 8.2.1.Let M be a closedR?-orientablen-manifold and /] an R-fundamental class. Then
[M]N = H*(M; R) = H,_1,(M; R)
is an isomorphism.
The most important thing to know about Poincaré dualithét it is really docal result.

Theorem 8.2.2. There exists a cohomology thedt/ (X ; R) called compactly supported cohomologyd
a duality map
Dy HY(M;R) =5 H,,_.(M;R).

In particular, we may také/ = R".

8.3. Compactly supported cohomology.Suppress the coefficient ring. The chain complex’:(X) con-
sists of¢ € C*(X) such that there exists a compact &8t- X for which ¢ (o) = 0 for all o with support
on X — K. Sinceds also has the same properdyy € C:T1(X) and(C(X), ) is a cochain complex. Its
cohomology isH’(X), calledcompactly supported cohomology

Comparison with de Rham theory. Recall from Math 225B the de Rham complex:
o QM) S QM)
In this setting we defined the compactly supportddrms by
QUM) = {w € Q(M) | Supp(w) is compac},
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and its cohomology i#1} ;(M).
Omitting “dR”, the version of Poincaré duality for de Rhaneory is that
HY (M) x H" (M) — H*(M) R
(W) mwAn—= [wAn
is a nondegenerate pairing, i.e., for eack H_(M) there exists) € H"~*(M) such that/ w A n # 0.

Compare this to the situation in singular theory (ignorirgms):

(M];id ()

H!(M) x H" (M) H, (M) x H" (M) =% R,
(¢, 0) = ([M] N ¢, ¢) = ([M] N ¢, ) = ([M], ¢ U).

Hence[M]|N corresponds to integration in de Rham theory.

We will now explain a more algebraic definition Bf (X) in terms of direct limits. The initial observation
is the following: Eachp € C(X) belongs to somé"(X|K) for K C X compact. Also ifK C L there is
an inclusion of chain complexes

ok, C'(X|K) — CY(X|L)
and a corresponding map on cohomology
¢k, H'(X|K) — H'(X|L).

Definition 8.3.1. A directed systens a partially ordered s€tf, <) such that given, 5 € I there existgy
such thatr < yandg < .

In our case the directed systéahis the set of compact subsetsXfand< is given by inclusion.
A directed systen{I, <) can be viewed as a categdfysuch thatob(Z) = I andHom(a, 3) is one
element ifa. < g and empty otherwise.

Definition 8.3.2. Given a functotF” : Z — C (so this means we have assignments> F'(«) and morphisms
F.s: F(a) = F(p)), its direct limit or colimit is an objectC in C together with morphismée,, : F/(o) —
C'} such that ifa < 3 theng, = ¢3F,3, and it satisfies the universal property: Afis any other object
in C together with morphismg,, : F(«a) — A satisfyingy, = ¢3F,s, then there is a uniqgue morphism
f:C — Asuchthat), = foa.

Slightly confusing notationtim_, F'(«) or colim_, F'(«).
Lemma 8.3.3. Colimits exist inAb or R — Mod.
Proof. This is an explicit construction: Take,F'(«)/ ~, wherez, € F(«) is identified withF,5(x.) €
F(B). Check the universal property! O
HW: Show that taking direct limits commutes with taking homglag R — Mod. In particular, the direct
limit of exact sequences is exact.
Claim 8.3.4. lim_, H*(X|L) = Hi(X).

Proof. This is a straightforward unwinding of the definitions. Aement oflim_, H'(X|L) is represented
by a cocyclep € C(X|K) for someK and[¢] = 0 € lim_, H'(X|L) if and only if ¢ is a coboundary in
someC‘(X|L) for K C L. O
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8.4. Definition of D,;. We now defineD,, : H(M) — H,_;(M) for an R-oriented M. For each
compact sei’ C M, we have the “fundamental clasg’ and we define

prN: H(M|K) — H,_;(M).

WhenK C L compact, we want to show thatN = piz, N oy ;, i.e., the following diagram is commuta-
tive:
HY(M|K) 255 H, (M)
l . HLN
¢K,L

This follows fromux N ¢ = ¢r k(L) N = pr N <Z5*L,K(¢)- By the universal property of direct limits, we
have a unique map

Dy H(M) — H,_;(M).

8.5. Proof of Poincaré duality. The proof is given in several steps.

Step 1. The base cas@/ = R". Let B; C R" be a closed ball of radiug about the origin. Then
H!(R"™) = lim;_,o, H'(R"|B;). Using excision etc., we find that’(R"|B;) ~ Rif i = n and0 otherwise;
also H(R"|B;) — H'(R"|Bj+1). HenceH!(R") ~ R if i = n and0 otherwise. Since1,,_;(M) ~ R
if ¢ = n and0 otherwise, it suffices to check

,quﬂ : Hn(Rn‘Bj) = H()(Rn)

This is immediate from taking:, to be an “embeddedh-simplex which contains3; and taking the
generator of/" (R"|B;) to evaluate td on up; .

Step 2.Assume the following diagram is sign-commutative: EQrl” openand/ = U UV,

H(]f(UﬂV) —_— H§(U) @H(]f(V) —_— Hf(M) — H§+1(UOV)
(8.5.1) lDUﬁV lDU@_DV lDJW lDUﬁV
Hn—k(U N V) E— Hn—k(U) ® Hn—k<v) B Hn—k’(M) — Hn—k:—l(U N V)

By the five lemma, ifDy, Dy, Dy~y are isomorphisms, then soi,.

Step 3. Suppose there is a filtratiobi; ¢ U, C ... of open sets such that;,U; = M and Dy, is an
isomorphism, then so iB,;: Observe that

H*U;) = lim HYU;|K) ~ lim H*(M|K)
KcU; KcU;
and hence

HF(M) = lim H*¥U;).

1—00
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Similarly we can prove thatl,, (M) = lim;_o H,_(U;) (HW). It is also easy to show (HW) the
commutativity of:

Dy,
HEU) ——— H,_1(Uh)

| J

Uit1

D
H¥Uiy1) — Hp i (Uigr).
HenceDy;, isomorphism for eachimplies D, isomorphism.

Step 4.For M an open subset @&", coverM by countably many open ballg; their finite intersections are
convex open balls R™. Then by repeated application of Step 2,8r:= U;<;V;, Dy, is an isomorphism.
Next Step 3 applied td/1, Us, ... implies thatD,,; is an isomorphism. For second countablg cover
M by countably many open ballg;; their finite intersections are open subsetfRéffor which D, is an
isomorphism. Hence the same exhaustion procedure show$rais an isomorphism for/ second
countable. In general, need to use Zorn’s lemma....

8.6. Proof of (8.5.1) We need to verify three things:

(a) The exactness of the top row.
(b) The commutativity of the left two squares.
(c) The commutativity of the right square.

(a) follows from the exactness of
. —— HYM|KNL) —— H*¥M|K)® H¥(M|L) —— H*¥(M|KUL) — ...,

whereK C U andL C V compact, identification&*(M|K N L) ~ H*(UNV|K N L) andH*(M|K) ~
H*(U|K), and the fact that the direct limit of an exact sequence istexa
(b) follows from the commutativity of

HY(M|K N L) —— H*(M|K)

thKmLﬁ \LMKO

Hy (UNV) —— Hy_,(U).

Sincedx knritk = frnL, it suffices to show thatyny.u (¢x knLpx N @) = pr N ¢*K,KmL(¢)- where
¢ € H*¥(M|K n L). Take a representative of ux with support inU and a representative of ¢ with
support onJ N V. Then both sides givé:, ). The three other squares are analogous.

(c) is the hardest part:

HYM|KUL) " HY(M|KNL) —=— H*YUNV|KNL)
\LHKULO lﬂKﬁLm
Hn—k(M) . Hn—k—l(U N V)

Write A = M — K andB = M — L. We first unwind the definitions of the connecting homomaspts
r, s. Forr, consider the short exact sequence:

0 —— C*(M, A+ B) — C*(M,A) ® C*(M,B) —— C*(M,ANB) —— 0.
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whereC*(M, A + B) means cochains vanishing on chainsdirand on chains im3. Starting with¢ €
C'(M,AnN B) with §¢ = 0, we pick (¢4, —¢p) € C(M,A) & C*(M, B) so thatp = ¢4 — ¢5. Then
r(¢) = dpa = d¢p. Similarly, starting withz € C; (M) with 9z = 0, we pick(zy, —zy) € C;(U)®Ci(V)
such that: = zyy — zy. Thens(z) = zy = zy.

We also decomposerxur, = ay_r1 + apny + ay_x (Why can we do this?) with supports 6h— L, U N
V,V — K, respectively. Draw a picture of this! Note that_;, + ayny representgi .

We then compute

s(urur N @) = slav—r N+ (aunv +av_k) N @)
=0(ay-r N o)
=+0ay-L N¢=Fday_r N (¢a — ¢B)
=x0ay_r Noa
= +0ayny N Pa,

where the first line to the second follows from observing that ;, is supported iV andayny + ay_k IS
supported ifV/; the third line to the fourth follows sincgp is zero onU — L; the the fourth to fifth follows
sinceg 4 is zero onV — K andd(ay -1 + ayny) vanishes ol — K.

We also compute

prnL N7(9) = prnL Ndda = ayny Ndpa ~ F0ayny N ¢p,
where~ means “cohomologous to”.

8.7. Lefschetz duality. Let M be a compacR-orientedn-manifold with boundarny M .

Theorem 8.7.1(Lefschetz duality) The following diagram commutes:

H¥(M,0M) ——— H*(M) ————— H¥(OM) ——— HFY(M,0M)

l[M]ﬂ l[M]ﬁ l[aM]n l[M}m

Hy (M) —— Hyy_ (M, 0M) —— Hy_4—1(0M) —— H,_p (M),
and each of the vertical arrows is an isomorphism.

For a slightly more general statement, see Hatcher, The8ré81 We'll explain the terms in the diagram
and indicate the proof:

(1) Fact: There is a collared neighborhood@¥ < M of the form (—e¢, 0] x OM wheredM =
{0} x OM.

(2) We define the fundamental cldgd] € H,,(M,0M) as:

fia, € Hy(M — OM|A.) ~ H,(M,0M),

whereA, = M — ((—¢,0] x OM).

(3) HE(M — OM) = lim._,o H*(M — OM|A.) ~ H*(M,9M) since the direct limit stabilizes. Hence
[M]N: H¥(M,0M) — H,_p(M)isreallyps N : H*(M — OM|A.) — H,_(M).

(4) The first, third, and fourth vertical arrows are isomaspis by Poincaré duality; hence the second
one is also by the five lemma.

(5) The second and third squares are consequene¥$di N ¢) = £(I[M]N¢—[M]Ndp). The main
thing to check is thad[M] = [0M], which is HW.
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8.8. Alexander duality. Refer to Greenberg-Harper, Section 2.7 since we omit thefpro

Theorem 8.8.1(Alexander duality) Let M be a compactR-orientedn-manifold andA C M a closed
subset. Then there is an isomorphism

R H k ~ _
Da: lim HHU) = Hy (M. M — A).

The direct limitlimy~ 4 H*(U) is with respect to the directed system which consists of setstU > A
directed by reverse inclusio’ C U impliesU < V.
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9. HOMOTOPY COEXACTNESS
9.1. Basic constructions. We list some basic constructions. LEtY be topological spaces.
1. TheconeCX is X x [0,1]/(x,1) ~ (2/,1) for all z, 2" € X.
2. Thesuspensiorb X is
X x [-1,1]/(x,1) ~ (2, 1), (z,—1) ~ (2, —1)
forall 2,2’ € X. For exampleSS™ = S"*1,

C andS induce functorsTop — Top (these are called “endofunctors”). In the cas&oX — SX and
f: X =>Yismappedt®cf: SX — SY.

3. Thejoin X *Yis X x Y x [0,1]/ ~, (z,9,0) ~ (x,y,0), (z,y,1) ~ (2, y,1).

The following are operations in the category Jaj pointed topological spaces. LeX, z) and (Y, yo)
be pointed topological spaces.

4. Thereduced con€™ X = CX/(zg,t) ~ (xo,t') for all ¢, € [0, 1]. The basepoint is the equivalence
class of(z, 0).

5. Thereduced suspensioBX = SX/(zg,t) ~ (zg,t') for all t,¢' € [-1,1]. The basepoint is the
equivalence class ¢f:o,0). We also hav&s™ = S +1,

Similarly, C**d and¥. induce endofunctor§op, — Top,.

6. Thesmash produodf (X, zg) and(Y,y0) is X AY = X xY/(X x {yo}) U ({zo} x Y'). The basepoint
is the equivalence class @fg, yo) This is the replacement foX' x Y in the pointed category.

9.2. Mapping cones and mapping cylinders.For more details see Spanier, Chapter 7, Section 1.

Givenf : X — Y, we can form themapping cylinderM; = Y U (X x [0,1])/(z,1) ~ f(x) and the
mapping con&’y = My /(x,0) ~ (2,0). In Top, we can analogously form tireduced mapping cylinder
and thereduced mapping cortgy collapsing{zo} x [0, 1].

Remark9.2.1 Unfortunately, people usually use the same notation fohn ltieé reduced and nonreduced
objects; we need to be careful about which category we’re in.

Recall that[X, Y] is the homotopy class of maps — Y. In [(X,z¢), (Y, y0)] there is a distinguished
homotopy class, denotdy] i.e., the homotopy class of maps that are nullhomotopibéccbnstant map to

Yo-
For the moment let us work in TQmr hTop,.

Definition 9.2.2. The sequenc& L.y 9, 7Zis coexactf for all W the sequence
zw] L v, w] s xw)
is an exact sequence of “pointed sets”, ilen(g*) = (f*)~1(0).

Theorem 9.2.3.Givenf : X — Y, the sequenc& Ly 4 Cy is coexact. Herg : Y — (' is the
obvious inclusion.
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Proof. Let us first unwind definitions: Considét’s, V] AN Y, W] EAN [X, W]. We want to show that
Imi* = (f*)7(0).

Note thath : Cy — W is equivalent to the following:
e hoi:Y — W, and
e anullhomotopy fromh o i : X — W to the constant map which maps to the basepoine .
This interpretation immediately implies thiat i* = (f*)~1(0). O

Corollary 9.2.4. Givenf : X — Y, there exists a long coexact sequence:

. . 1 .
(9.2.1) xLy Lo Lotlio Son

HW: There is also a relative version: Givgn= (fo, f1) : (X, A) — (Y, B), its mapping cone i&C,, C, )
and we have the coexact sequence

f i
(X, 4) = (Y, B) — (Cf,, Cpy).
9.3. Puppe sequence.

Theorem 9.3.1(Puppe sequenceYhe long coexact sequenf@2.1)can be written as:
(9.3.1) x Ly Lo Lex Hay Bne, —

Proof. Starting with Equation{9.211), we show that () ~ X, (ii) C; ~ XY, and (iii) f* ~ Xf. For
Hatcher’s picture proof see p.397.

(i) Note thatC’; = C'y Uy CY, where we are identifying the “bases” of the two cones, amt&€’; is the
union of CX andCY glued withf : X — Y. Letr : C; — C;/CY = XX be the quotient map. Define
s: XX — C;,whereX X = X x [-1,1]/ ~ands mapsX x (0,1]/ ~— CX by inclusion(z,t) — (z,t)
andX x [-1,0] = Y x [-1,0] by (z,t) — (f(x),t). HW: Write down precise formulas that shovand
s are homotopy inverses.

(i) Now C; = C; U C(Cy) glued alongC}. Itis not hard to see thai(C) deformation retracts t@'Y
and we are left wittC'Y U C'Y” glued alongY’, which isXY. Lett : C; — XY be the corresponding map.

(iii) It is not hard to see thatf's : X — XY is equal toL f.

O

9.4. Homological algebra version of Puppe sequenceConsider a chain map : (Cy,dc) — (Dx,0p).
Just as the mapping coiigr enabled us to put any map: X — Y into a “coexact” sequence, there is a
way to putg, into a long exact sequence in homology.

We define the chain compléone(¢), d), called themapping cone of, as follows:

Cone(¢) = Cr—1 @ Dy,
and
d:Cr1® Dy — Cr2® Dr_1
mapsd(z,y) = (Ocx, ¢(x) — Opy). We check that
d*(x,y) = (0p@, $dc(x) — Opd(z) + Opy) = 0.
The mapping con€one(¢) fits into the following short exact sequence of chain comgdex
0 — D, — Cone(¢) = Cy—1 — 0.
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HW: (1) Show that its long exact sequence has the form

HZ(D*) — HZ(COHG(gb)) — Hl_l(C*) = Hi_l(D*),
where the connecting homomorphismpis
(2) If fi: Cu(X) — D, is the induced map fronf : X — Y, thenCone(f,) is quasi-isomorphic to
Ci(Cy).
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10. HIGHER HOMOTOPY GROUPS

Today we introduce the higher homotopy groupg X, z() of a pointed topological spacéX, z,) and
describe their basic properties.

10.1. Definitions. Let I = [0,1] x - -+ x [0, 1] be then-dimensional unit cube. Denote its bound&/
as the set of points i where at least one coordinatefisr 1. As a set, let
(X, z0) = [(I",01"), (X, x0)].
Whenn = 0, we takel” to be a point andI® = @. Hencer(X, z¢) is the set of path components of

X.
Givenf,g: (I",0I") — (X, o), definefg : (I",0I") — (X, x0) via

f(2s1,89,...,8,), 0<s1<1/2
(s om) e { JEm o) S =

The product descends to a productoi{ X, xo) — the proof is identical to the case of (X, x¢).

Remark: There is an apparent asymmetry in the definition, as the ti@tdinates; is preferred. For HW
show the independence ¢f on the choice of coordinate; this is similar to the proof betd the fact that
(X)) is abelian forn > 2.

Thenth homotopy groupr,, (X, z¢) is equivalent tq(S™, ), (X, zo)] (verify this for HW), by recalling
that S™ is the quotient ofD™, whered D" is identified to a point.

10.2. Properties of the homotopy groups.
Lemma 10.2.1. 7, is a functorTop, — Grp forn > 1 and Ab for n > 2.

Proof. Given¢ : (X, z0) — (Y, o), the induced homomorphism, : 7, (X, xo) — 7,(Y, y0) is given by
f— ¢o f.ltisimmediate that:

(1) idy : T (X, o) = ™ (X, x0) is the identity map.

(2) (po)x = dx 0 s

We give a pictorial proof thafg ~ ¢f for n > 2. For HW, make it rigorous. Leto : I™ < I™ be an

embedding with image a small squaren the interior. First homotoyf to f’ so thatf’(z) = o forx & C
andf'(z) = frgl(a:) for s € C. Similarly defineg’. Then we homotog”’g’ to ¢’ f’ by precomposing with
an isotopy ofl™ that switches the orders of the squatgsandC, for f andg, respectively. O

HW: Prove thatr,, (X X Y, (zo,y0)) =~ mn (X, z0) X (Y, y0).

HW: Prove thatr, (X, z¢) = 0 for n > 1, if X is contractible i.e., X has the homotopy type of a point.

HW: Let 7 : (Xi, Zo) — (X,xz0) be a path-connected, locally path-connected coveringespdtien
7'd'n()(*7 xo) = Wn(X,fo) forn > 2.

It follows that, forn > 2, 7, (RP™) = m,(S™) andr,(S!) = m,(R) = 0.

Facts: 7,(S™) = 0if n < m, = Z if n = m, and is unknown in general for > m. For example
73(S5?) = Z. (See Hatcher, Section 4.1 for a partial table.)

Open question: Give a general formula for,, (S™).
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10.3. Relative homotopy groups. We can generalize,, to Top? — Grp. To definer, (X, A, zy) of a
pair (X, A) with zg € A, view I"~! as part ofdI™ with s,, = 0, defineJ"~! as the closure ap/™ — "~}
and take homotopy classes of maps

(In>In_l> ']n_l) - (X,A,ﬂj‘o).

Whenn = 0, let mo(X, A, xo) be the quotient sety (X, z¢)/m (A, zo).
Thenth relative homotopy group,, (X, A, x() is equivalent td(D™, D™, %), (X, A, xg)].

Lemma 10.3.1.7,(X, A, z¢) is a group forn > 2 and an abelian group for > 3.

Note in particular thatr; (X, A, o) is not a group since we cannot compose: giyen0, 1] — X with
f(0), f(1) € Aandf(0) = xo, we needf(1) = z in order to compose....

Exact sequence for X, A). Analogous to the relative sequence in homology, we have:
Theorem 10.3.2.There is a long exact sequence of homotopy groups
— mp(A) = T (X) = (X, A) = o1 (A) — .
Proof. This is an application of the Puppe sequence
(8%, %) — (5°,8% — (D', 0DY) — (S, %) — (S, 81 — (D?,0D?) — .

Just apply[, (X, A)]. Itis easy to se§(S™, %), (X, A)] = m,(X) and[(D",0D"), (X, A)] = m,(X, A).
Finally we also see thatD™, D"), (X, A)] = m,(A). O

10.4. Compact-open topology and loop spacesGiven topological spaceX, Y, we can defin@ X to be
the space of continuous maps X — Y. It can be topologized via theompact-opemopology, defined by
taking asubbasiconsisting of setd/ (K,U) = {f : X — Y continuous f(K) C U}, whereK C X isa
compact set antf C X is open. Hence a basis is given by finite intersectiond/¢fs;, U; ).

For example, itX = I, then two paths,g : I — Y are “close” if there exists a subdivisidh= t; <
t1 <ty <---<t,=1andopen set§; C Y so thatf andg both map[t;, t;,1] to U;.

If Y is a metric space with metritand X is compact, then the compact-open topologyyoh coincides
with the topology induced frord(f, g) = sup,cx d(f(z), g(x)). (Check!)

Given a continuous map : Z — Y X, we can define) : Z x X — Y by ¢(z,z) = ¢(2)(x). We have
the following:

Lemma 10.4.1. SupposeX is a locally compact Hausdorff space. Thgiis continuous if and only if) is
continuous.

A topological spaceX is locally compacif Vx € X andU > x open there is a compact s&tsuch that
x €V C K C U for some open sér.

Now let (X, o) be a pointed topological space. Then Hased loop spac&2 X, Zy) is the set of loops
f:(I,0I) = (X,z0), endowed with the compact-open topology. Its basepajris the constant loop at
xQ.

Corollary 10.4.2. If X is locally compact and Hausdorff, thgk X, Y| ~ [X,QY]. In particular, if
X = 85", thenm,11(Y) ~ 7, (2Y).

Proof. SinceX is locally compact and Hausdorff, there is a bijection betweontinuous mapX¥ x [0, 1] —
Y and continuous map¥ — Y%l Now observe that a map : X — Y is equivalent to a map

f: X x[0,1] — Y such thatX x {0,1} and{zo} x [0, 1] map toY'. It can therefore be viewed as a map
g: X — Map((I1,0I), (X, x0)) such thay(zo) is the constant map — X that maps taz. O
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In categorical languagé) is an endofunctor d'op, and>: and(2 are adjoint functors in the full subcat-
egory ofhTop, whose objects are locally compact and Hausdorff.

10.5. Proof of m,(S™) = 0 for n < m. View a representative of,, (S™) as

f{I"0I") — (R™ U {oo}, 00).
The goal is to homotoy to f; so that0 is not in the image off. Once this is dong; maps toR™ and any
map toR™ is contractible to a point.

Assuming0 € Im(f), consider closed ball®;, B, ¢ R™ of radius1 and2 centered ab. Their
preimagesf—!(B;) and f~1(B;) are compact. Take a sufficiently fine cubical meshi'of Let K; be
the union of closed cubes that (nontrivially) intersgct! (B;) and let K, be the union of closed cubes
intersectingK;. Then f(K;) C Bs. Subdivide each cube df, into simplices (for example using the
subdivision used in the definition of the prism operator). géach simplexA™, we considerf (ey), ..., f(en)
and defing (> aje;) = > a; f(e;), 1.e.,g Is linear on each simplex and agrees wftbn each vertex. Also
define a functionp : K, — [0, 1] such thaty = 0 on 9K, and¢ = 1 on K.

We then definef, : Ky — R™ by settingf; = (1 — t¢)f + t¢g. OnOK, we havef = f; and we can
extendf; = ftoI" — K,. OnK; we havef, = g. Also f; (K, — K7) will not pass througlf). For a generic
choice of values of (verticeg, g will miss 0.

10.6. Cellular approximation theorem. Recall that a CW compleX( is constructed by starting with a
discrete setX? and inductively attaching-cellse” to the (n — 1)-skeletonX"~! via mapse,, : de? —
X"=1 to obtain then-skeletonX™. ThenX = U, X (. For more information on the topology &f, refer
to the Appendix of Hatcher on the topology of cell complexes.

Definition 10.6.1. Amap f : X — Y of CW complexes igellular if f(X™) c Y™ for all n.
The above method can be used to prove the following:

Theorem 10.6.2(Cellular approximation theoremjvery mapf : X — Y of CW complexes is homotopic
to a cellular map.

Proof. Supposef : X — Y is cellular onX™~!. Consider”. Sincee” is compactf(e?) intersects finitely
manym-cells withm > n. (Check this!) By the method to prowsg,(S™) = 0 for m > n, the image of
f(el) misses a point on each-cell of Y and hence can be homotoped into thekeletonY ™. This works
for finite CW complexes; for HW figure out how to deal with infmiCW complexes. O

10.7. Whitehead'’s theorem.

Definition 10.7.1. Amap f : X — Y is aweak homotopy equivalenddt induces isomorphismsf,),, :
(X, o) = T (Y, f(z0)) for all n > 0 and all choices of basepoimp.

We have the following amazing theorem:

Theorem 10.7.2.1f f : (X,z9) — (Y,y0) is @ weak homotopy equivalence between connected (=path
connected) CW complexes, theérs a homotopy equivalence.

Remark10.7.3 The theorem does not say that two pointed topological spakes,) and (Y, yg) with
isomorphic homotopy groups for allare homotopy equivalent. You need a map from one to the other.

We'll give a proof for finite CW complexes. HW: Explain how tatend the proof to infinite CW com-
plexes.
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Proof. Suppose thaf is an inclusion of a subcomplex. Then by the relative hompsemuencer,, (Y, X) =
0 for all n. Lete], be ann-cell in Y with boundary inX. Thene] can be homotoped int& relative to
Oel’ (note that this needs an argument) and the collection okthesnotopies can be combined into a
deformation retraction of onto X .

In the general case, first homotgp: X — Y so thatf is a cellular map. Then replage: X — Y by
g : X — My, wherelM; is the mapping cylinder of (which gluesX x {1} toY") andy is the identification
of X with X x {0}. Note thaty” — M, is a homotopy equivalence agds an inclusion. It suffices to
show that)/; deformation retracts ont&. But this is immediate from the previous paragraph because
an inclusion of a subcomplex. d

10.8. CW approximations.

Definition 10.8.1. A CW approximatiorof a topological spac&’ is a CW complexZ together with a weak
homotopy equivalencé¢ : Z — X.

Theorem 10.8.2.CW approximations exist for any pointed topological spakez).
Proof. The point is to model the generators and relations,dfX, x) using cellular attaching maps.

Step 1. Without loss of generalityro(X,zp) = 1. Start with one poink and a mapf(x) = xo. Next
choose a generating sgt” } o<1, for m,(X, o). For eachf?, take am-cell e that is attached te via the
attaching map?. : dell — *. Definef : e — X so it agrees witlf. Then

[:Z0={+}U(Upaey) = X
is surjective onr,, for all n.

Step 2.Next we kill off the kernel off, (aka the relations). Suppose we have constructed uf;,tq and
(f)i : Wi(Zn—1,%) = m(X, o) is an isomorphism up tb=n — 1. Attach(n + 1)-cellse;™" to Z, , for
all generators3 of ker( f), to obtainZ,, = Z,,_1 U (Uﬁeg—’_l) and extendf to Z,,; this is possible since all
the 8’s are nullhomotopic inX, xo).

We claim thatr,, _1(Z,_1,*) =~ T,_1(Zy, *), since any homotopg™~! x [0, 1] — X can be homotoped
to a map to thew-skeletonX™ by the cellular approximation theorem. Al§f.),, : T, (Zn, *) = T (X, 20):
The mapr,(Z,—1,*) — 7, (X, zo) factors intof.i., wherei is the inclusionZ,,_; — Z,,. Hence(f.),, is
surjective. The kernel of,,(Z,,—1, *) — 7, (X, z¢) is killed by the cell$g+1, and we have an isomorphism.

Observe that attachir‘@Jrl might maker,,,(Z,,, ) larger form > n, but that is ok. O

Next we discuss the uniqueness of CW approximations:

Theorem 10.8.3(Uniqueness of CW approximationssiven CW modelg : 7 — X and f' : 72/ — X
with Z, Z', X path-connected, there is a homotopy equivaleneeZ — 7.

Proof. Consider the mapping cylindé¥/; as a replacement foX. We view the compositio END i
My as a map(Z,z)) — (My,Z"). Sincem,(My) ~ m,(X) ~ m,(Z') for all n, m,,(Ms,2") = 0
for all n by the relative exact sequence. This implies that all thés aél.Z can be compressed intd,
giving a homotopy ofif to h : Z — My with image inZ’. This implies thath : Z — Z'is a weak
homotopy equivalence. Finally, by Whitehead's theorérs a homotopy equivalence singg Z’' are CW
complexes. O

Proposition 10.8.4. A weak homotopy equivaleng¢e Y — Z induces:
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(1) bijectionsf, : [X,Y] — [X, Z] for all CW complexesX, and
(2) isomorphism¢.,. : H,(Y) — H,(Z).

Proof. We'll prove (1). See Hatcher, Prop. 4.21 for (2). The ideainsilar to the uniqueness theorem.
ReplaceZ by My and show thaff, : [X,Y] — [X, M/] is a bijection: Givery : X — My, view it as a
map(X,zg) = (My,Y). Sincer,(M¢,Y) = 0 for all n, g is homotopic tah : X — M with image inY'.
This implies the surjectivity of.. To prove the injectivity, if we havé’ : (X x I, X x 0I) — (M;,Y),
the same method shows thétcan be homotoped to a map: (X x I, X x dI) — (My,Y') with image
inY. O

Postnikov towersGiven a CW complexX, there exist spaceX,, with inclusion mapsX LY X, such that
(in)s = (X)) = m(X,) fori < nandm;(X,,) = 0 for i > n and theX,, can be put in a sequence

—>X3S£X23X1

with s,i, = i,_1. The X,, are “truncations” ofX with successively better approximationsias> ~c.
Starting with.X', we can attaclin + 2)-cells to kill 7,11, then(n + 3)-cells to kill 7,2, etc. to obtainX,,.
This gives the desired’,, with inclusion maps,, : X — X,,. It remains to defing,,;1 : X,.1 — X, as
an extension of,, : X — X,,. SinceX,,;; is obtained fromX by attaching(n + 3)-cells and higher and
Tnt1(Xn) = mae2(X,) = -+ = 0, the attaching map of the cells are nullhomotopic. This iegpthatX
can be extended to: + 3)-cells and higher.

Definition 10.8.5. (X, x¢) is n-connectedf m;(X,z¢) = 0 forall 0 < i < n. (X, A) is n-connectedf
mi (X, A,z9) = 0forall0 <i < nandzxy € A. (Note that there is an extra condition that we need to take
all zy € A; this is to take care of the situation whetehas multiple path components.)

Also recall that a subcomplex of a CW complédxC X is a union of cells ofX such that the closure of
each cell ofA is contained inA (i.e., for each cell the image of its attaching map is cormtaim A).

Definition 10.8.6. An n-connected CW model f¢X, A) with A a nonempty CW complex is arrconnected
CW pair(Z, A) and amapf : Z — X such thatf|4 = id and f, : m;(Z) — m;(X) is an isomorphism for
i > n and injective fori = n.

Sincer;(Z) agrees withr;(A) for i < n and withr;(X) for i > n, Z approximatesd up ton and X
aftern. There is an analogous CW approximation theoremfopnnected models, whose proof we omit.

Theorem 10.8.7.For each(X, A) with A a nonempty CW complex, there existsiaconnected CW model
f:(Z,A) — (X,A) forall n > 0. We may also assume th&tis obtained fromA by attaching cells of
dimension> n. Then-connected CW model is unique up to homotopy equivalence.
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11. EXCISION
HW: Hatcher, Section 4.1: 1,2,8,9,10,11,18,19.

11.1. Excision.

Theorem 11.1.1(Excision) Let X be a CW complex that can be written ¥s= A U B, whereA, B, C =
A N B are subcomplexes and is nonempty and connected. (I, C') is m-connected andB, C) is n-
connected forn,n > 0, thenm;(A,C) — m;(X, B) is an isomorphism fof < m + n and surjective for
t=m-+n.

Sketch of proofA corollary of the CW approximation theorem is the followikiyV:

Corollary 11.1.2. If (X, A) is ann-connected CW pair, then there is a CW p@if, A) homotopy equivalent
to (X, A) relative to A such that all the cells of — A have dimension- n.

Hence we may assume that all the cellsdof- C' have dimension> m and all the cells o8B — C' have
dimension> n.

The idea of the proof can be explained in the following sifigadi case wherel is obtained fromC' by
attaching a singlém + 1)-cell ™+ and B is obtained fronC' by attaching a singlén + 1)-cell e" 1.

To prove the surjectivity, consider a map

f:(I%0I,0) = (X, B, x).

Pick pointsp € int(e™*1) andq € int(e"*!). By the method of proof ofr;(S™) = 0 for i < n, we can
homotopyf (while keeping the same name) so tifatestricted to neighborhood$, andU, of f~(p) and
f~1(q) are piecewise linear maps from a unionigimplices.

This allows us to apply standatcansversality argumentsin particular, f ~(p) is piecewise linear of
dimensioni — (m + 1) and f~(q) is piecewise linear of dimensian- (n + 1); moreover we assume that
they are generic. If

Im(f ™ (p) +Im(f(q)) = 2i — (m+n+2) <i—1,
then the projections of ~'(p) and f~(¢) to I'~! are disjoint. This is equivalent tb< m + n + 1 or
1 <m+n.

Hence there exists a functign: 7'~ — [0, 1) such thatf~!(q) lies below the graph afin I = '~ x I,
f~(p) lies above the graph af, and¢ = 0 on 9I'~!. We then take the homotopft, ¢ € [0,1], to be
a map obtained by composing : I™ = {s, > t¢(s1,...,s,-1)} and f; view it as a magI¢,0I°) —
(X, X — {p}), noting that( X, B) ~ (X, X — {p}). Thenf; can be viewed as a map

(I',01") = (X = {q}, X — {p,q}) =~ (4,0).
To prove the injectivity, we consider the homotopy
F: (I',0I',0) x [0,1] — (X, B, x0)
betweenfy, f1 : (I*,0I¢,0) — (A, C,z). The proof is similar. O
11.2. Stable homotopy groups.An immediate corollary of the excision theorem is:

Corollary 11.2.1 (Freudenthal suspension theorerithe suspension map(X) — m;+1(SX) is an iso-
morphism fori < 2n — 1 and a surjection foi = 2n — 1 if X is (n — 1)-connected.
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Proof. DecomposeSX into two conesC. X andC_X. Thenm;(X) ~ 741 (C+ X, X) by the relative
sequencer;+1(C+ X, X) — m4+1(SX,C_X) is the excision map, ang; 1 (SX,C_X) ~ m;11(SX)
again by the relative sequence. The excision map is an iggnson fori + 1 < 2n since(C1 X, X) is n-
connected ifX is (n — 1)-connected by the relative sequence(iot. X, X). (HW: check that the sequence
of maps agrees with the suspension map.) d

This implies thatr;(X) — m11(SX) — m42(5%2X) — ... eventually stabilize (i.e., are isomor-
phisms): if X is m-connected, the X is (m + 1)-connected, and* X is (m + k)-connected, and even-
tually i + k < 2(n + k) — 1. The direct limit is called thetable homotopy group;(X). WhenX = S°,
7$(8%) = mi1n(S™) for n > i + 1. Itis also abbreviated? and called thetablei-stem
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12. HUREWICZ ISOMORPHISM THEOREM
12.1. Some calculations.
Example. 7,,(S™) = Z forn > 2.

Method 1.Consider the sequence of suspension maps
m(SY) B m9(S%) B my(S3) — ...

By the Freudenthal suspension theoreénis surjective and,, is, . .. are isomorphisms. Sineg (S!) = Z,
m2(S?) is a quotient ofZ.
Now there exists a map, called thieirewicz map

H:m(X)— H(X;Z) ~Z, (f:8" = X)w— fea,

wherea is a generator off,,(5™; Z). (HW: show this is a homomorphism!)
WhenX = S", H is surjective sincéd is mapped tax. Hencers(S?) = Z andn,,(S™) = Z for all
n > 2.

Method 2. Given f € m,(S™,z¢) for n > 2, we can homotogy so thatf restricted to a neighborhood
U, of f~1(p) is a piecewise linear map from a union efsimplices. Hence by the usual transversality
argument we may assume that! (p) is finite and intersects eaehsimplexA in its interior. By a further
homotopy and subdivision of the simplice&,on the complement of thimt(A)'s map toxg and f|;(a)

is a homeomorphism ont6™ — {zy}; in other words,f is homotopic to the sum of standaddg = +1
homeomorphisms. The mdp implies thatr,,(S™) = Z.

The following two examples can be proved using Method 2.

Example. Forn > 2, m,(V,Sq) is free abelian with basis which consists of homotopy clas$éclusions
So = VaSa.

Example. Forn > 2, m,41(X, VaSY), where X is obtained fromv,S? by attaching cellggJrl via

bp - aegﬂ — VaoSh, is free abelian with basis in bijection Wi{hzgﬂ}.

12.2. Change of basepoints for higher homotopy groupsWe now discuss the change-of-basepoint map
By : (X, x1) = m(X,20), n > 2, wherey is a path fromz; to zy. Viewing a representative of
(X, z1)asf : (D",0D™) — (X, 1), we defineyf : (D",0D™) — (X, z¢) such thatyf(z) = f(2z)

if 2| < § andy(2|z| — 1) if § < |2| < 1. Theng, ([f]) = [v/].

Lemma 12.2.1. 3, is a group homomorphism and has inverse .

The first assertion is not obvious and is left as HW.
Hencer (X, z¢) acts onm, (X, xg), i.e.,m,(X, z¢) is @ module over the group rirg[m; (X, xo)].

Example. Considerr, (S! v 5™) for n > 2. The universal covel of M = S' v S" is a lineR with 5™'s
attached at all integers, and is homotopy equivalent;t,Sy. Hencer,(S* v S™) is the freeZ-module
with basis{ S} }rez. On the other handr;(S* v ™) ~ m(S!) ~ Z, and its group ring iZ[t,¢t~']. One
can see that, (S v S™) is the freeZ[t,t~1]-moduleZ[t, t~1].
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12.3. The Hurewicz theorem.

Theorem 12.3.1.1f X is (n — 1)-connected with, > 2, then the reduced homology groups(X) = 0
fori < nand H,(X) ~ m,(X). If (X, A) is (n — 1)-connected witmm > 2 and A simply connected and
nonempty, theif; (X, A) = 0fori <nandH, (X, A) ~ m,(X, A).

Proof. We will only prove the first statement. In view of Proposit{®6.8.4, we may assumg is a CW
complex by taking a CW approximation. Also by Corollary 12 Wve may assume tha has a single
0-cell and no othet-cells withi < n. HenceH;(X) = 0 for i < n. We may further assume thaf
has noi-cells withi > n + 1 since such cells do not affect both,(X) and H,(X); this means that
X =(VaSHU (U5€g+1). We have a commutative diagram where the top and bottom reexact:

Tt (X, VaS™) —2 5 1, (VaS?) — mn(X) — 0

| | l

Hp1(X,VaS") —2 H,(VaS?) —— Hp(X) — 0.

By the calculations in Sectidn_12.1, the first two verticaloars are isomorphisms. Hence the theorem
follows from the five lemma. O

We'll state without proof a slightly more general versiontioé Hurewicz theorem: Let/, (X, A, z() be
the quotient ofr,, (X, A, z() obtained by identifying~y f] = [f] wherey € 71 (A, zp). Then the homomor-
phism

h:mp(X, A xo) = Hp(X, A)
descends té’ : 7}, (X, A, x¢) — H,(X, A).
Theorem 12.3.2(Hurewicz, general version)f (X, A) is (n — 1)-connected witm > 2, X, A are path-

connected, andl # @, thenh' : (X, A, z9) — H,(X, A) is an isomorphism and/;(X, A) = 0 for
1< n.
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13. FABRATIONS
13.1. Definitions.

Definition 13.1.1. A mapp : £ — B satisfies thdifting property with respect to the paiiZ, A) if for any
commutative diagram

L>E

A
i

7z 2 B,
there exists amap: Z — F such thapg = g andgi = f.

Definition 13.1.2. A surjective magp : E — B is afibration (resp.Serre fibration if it satisfies the lifting
property with respect toA x I, A x {0}) for all topological spaces (resp. CW complexds)

Given a fibratiorp : £ — B, if B has a basepoirtk, thenp~!(by) is thefiber F at by. Pickingzg € F,
we often denote the fibration By, z:9) = (E, zo) 2 (B, by).

Lemma 13.1.3. A fiber bundle is a Serre fibration.

AmapFE % Bis afiber bundlewith fiber F if there is an open cove¥ of B and¢y p 1 (U) S UXF
forall U € U such thap = my¢y. Hereny, np : U x F — U are the projections t& and F'.

Proof. We may reduce to the case whete= I" andZ = I" x I since we can do homotopy lifting in
stages using the CW structure. We may also subdi¥itleo thatf : 7 — B has image inside somé.
Given aliftg : I" x {0} — p~}(U) = U x F, we just need to extendrg from I x {0} to all of I" x I;
this is straightforward. d

13.2. Fibration sequence.

Theorem 13.2.1.If p : E — B is a Serre fibration, thep,. : 7, (E, F, z9) — 7,(B, by) is an isomorphism
for all n > 1. Hence the relative homotopy sequence(for F', z() becomes the fibration sequence

e — 7Tn(F,SL'0) — Wn(E,ﬂj‘o) — Wn(B,bo) — 7Tn_1(F,ZL'0) — ...

Proof. We first show thap.. is surjective: Letf : (I",0I") — (B,by) be a representative af, (B, bo).
View it as a mapf : (I",J"1) — (B,by). We want to lift it to a mapf : (I",J" 1) — (E,z).
The constant map™~! — {x¢} is a lift of f|;»-1. Then since(I™, J*~1) and (I, "1 x {0}) are

homotopy equivalentf can be lifted tof on (I, J"=1). We finally observe thaf|n-1,1y maps toF
sincef|a-1, 1y is the constant map te. This gives usf : (I", 01", J"~1) — (E, F, xp).

The injectivity of p, is similar: Givenfy, fi : (I",8I",J" ') — (E,F,z,) and a homotopyf; :
(I",dI"™) — (B, by) from fo = p.foto fi = p.f1, the homotopy can be viewed #s (I"+!, J"~1 x I) —
(B, bo). fislifted to f on (1" x {0,1}) U (J** x I) = J" sinceJ"~! x I is mapped ta:y. Again, since
(1"t gn=1 % I) and(I"*!, J") are homotopy equivalent, we can ljftto f taking f; to f;. O
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13.3. Examples.

Example. TheHopf fibrationS' — S3 — 52 is given as follows: Given the unit spheé c C?, S! acts
freely onS® via (e, (21, z2)) +— (21, ¥25). The quotient iCP' = S2. Itis not hard to see the quotient
map is a fiber bundl&® — S? with fiber S'. We now consider the fibration sequence:

70 (SY) = 1 (S3) = mp(S8%) = mu_1(SY) = mu_1(S3).

Sincer,(S') = 0forn > 1andZforn = 1, forn > 3 7,(5%) ~ 7,(5%) andm(S?) ~ 7 (S1). In
particular,73(5?) ~ Z, generated by the Hopf fibration.
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14. HOMOTOPY AND COHOMOLOGY

14.1. Eilenberg-MacLane spaces.An Eilenberg-MacLane spack (G, n) with G a group anch > 0 is a
connected CW complex such thg{ K (G,n)) = G if i = nand1 if i # n.

Theorem 14.1.1.A K (G, n) exists (ifn. > 1 we assumé is an abelian group) and any twl' (G, n)’s are
homotopy equivalent.

A K(G,n) can be constructed as in the CW approximation theorem usipgsentation foiG: Let
{fa}acr be the generators @f. Then starting with the wedge,c;S%, we attachngrl for the relations.
We can then Kkill offr; for i > n by attaching(n + 2)-cells and higher. Let us call thi&. In order to
prove the homotopy equivalence of any t&q G, n)’s, it suffices to show that there is a weak homotopy
equivalence fronX to any otherK (G, n). This follows from the uniqueness of CW models up to homotopy
equivalence. (Check the details for HW.)

Note thatH, (K (G,n);Z) ~ m,(K(G,n)) ~ G by the Hurewicz theorem. By taking a wedge of
K (G,n)’'s we can construct a CW complex with arbitrary homotopy g=ou

14.2. Spectra.

Definition 14.2.1. An Q-spectrumX is a sequence of based CW complexés, },.cz together with weak
homotopy equivalences (the “structure maps;)= ;X : X, — QX 1.

Recall that2.X,, is the based loop space &f,; by a theorem of Milnor, the loop space of a CW complex
has the homotopy type of a CW complex. A mapskpectraf : X — Y is a collection of based maps
fn: X, — Y, such that! f,, = f,a;X. Denote the category 6i-spectra byS. It has a zero object given
by a sequence of 1-pointed spaces.

Remark14.2.2 There are variants of this definition, depending on whatXheare and what restriction
to put on the maps;,,, and moreover the definitions are not all the same! The diefnib Weibel is that
for a spectrumwe take X,, to be based topological spaces angdto be based homeomorphisms and for a
prespectrunwe takec, to just be based maps.

Example. The Eilenberg-MacLane spectrum an{2-spectrum withX,, = K (G, n). Recall the adjunction
[T K(G,n)] = [2S%, K(G,n)] = [S", QK (G, n)).

This implies thatQK (G,n) is aK(G,n — 1). Leta,—1 : K(G,n — 1) — QK(G,n) be a homotopy
equivalence.

Example. The suspension spectrum® X of a spaceX is given by X,, = ¥"X anda,, : ¥"X —
Q¥+ X which corresponds ta, = id : ¥(X")X — X+ X under the adjunction

(XX, QX" TLX] = [B2(Z"X), 2T X

Herea, is not a weak homotopy equivalence (and heneéeX is a prespectrum). Refer to Hatcher, Section
4.J for more information on the topology 9&.X .

14.3. From -spectra to cohomology theories.

Theorem 14.3.1.If K is an{2-spectrum, then the (contravariant) functoXs— h"(X) := [X, K,,], n € Z,
give a reduced cohomology theory on the categ@NV* of pointed connected CW complexes.
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Proof.
Step 0.The functoriality is clear: Givep : X — Y, we havep* : [Y, K,,] — [X, K,,] given by f — f¢.
Step 1.We first give a group structure d&X, K,,|. This is a consequence of

(X, Kn] = [X, QKp 1] = [BX, Knia],

where the second equality is the adjointness ahd2. The key isthatthereisamap XX — XX VXX
and that the sunf + g of f,¢g : ¥X — K, 1 is given by(f Vv g)r.
Similarly, the abelian group structure @K, K] follows from [X, K,,] = [22X, K, 12].

Step 2. Verify the reduced cohomology axioms: There are naturalooodary maps) : h"(A) —
h"+1(X/A) such that

(1) (Homotopy axiom) Iff ~ ¢g: X — Y, thenf* = g* : h"(Y) — A" (X).
(2) (Relative sequence) There is a long exact sequence

— h"(X/A) = h™(X) = h"(A) — h"TH(X/A) — .
(3) (Wedge axiom) IfX = v, X,, thenh(X) — II,h"(X,) is an isomorphism.
Here “natural” means givefi : (X, A) — (Y, B) the following diagram commutes:

h"(A) —— h"(X/A)
h(B) —— h"™(Y/B).
(1) and (3) are clear. For (2), recall the Puppe sequenceXfpA):

A—i>X—>Ci—>EA—>EX—>EC,-—>...,
whereC; ~ X/A. Apply [-, K,,] to obtain:
(A, K, « [X, K,] « [X/A K]+ XA K, + [2X,K,] + [XX/A, K,],

where[¥ A, K] = [A,QK,] = [A, K,—1], X, K,,] = [X, K], [EX/A, K] = [X/A, K,,—1]. This
then becomes:

R(A) + h™(X) < h"(X/A) « h"1(A) « " Y(X) « A" 1(X/A). -

Observe thab™(X) ~ h"+t1(XX). This can be proved by using the relative sequence or by geck
[Xv Kn] = [EXv Kn—i-l]'
Corollary 14.3.2. For the Eilenberg-MacLane spectruki, = K(G,n), X — [X, K(G,n)] agrees with
the (usual) reduced cohomolod¥/*(X; G) with G-coefficients.

Theoren14.3]1 implies that — [X, K(G,n)] gives a reduced cohomology theory. Note that the
Hurewicz map

[, K(G,i)] = H'(S™; G)
is an isomorphism for all. To prove the corollary it remains to find natural isomorptss
T:[X,K(G,n)] = H'(X;G)
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for all CW complexesX; we omit the proof and just remark that the isomorphisms camdnstructed
cell-by-cell.

14.4. Brown representability. Theoreni_ 14.3]1 has the following amazing converse:

Theorem 14.4.1(Brown representability theoremEvery reduced cohomology theory 6@W?* has the
formh"(X) = [ X, K,,] for someQ-spectrumK = { K, }ncz.

We will not give full details of the proof (cf. Hatcher, Semti 4.E). A functorF' : C — Set is repre-
sentableif there existsK” and a natural transformation: Hom(X, K') — F(X) which is a bijection for
eachX. (So, strictly speaking, we want to vieki? as a functor from the homotopy categdr@W*.)

If we know h™(S?) for all i, then we can try to construdt,, by the requirement;(K,,) = h"(S*). One
case where this works is " is reduced singular cohomology with-coefficients. Thenk,, must be a
K (G,n). This implies Corollary 14.3]2.

Theoreni 14.4]1 follows from the following slightly more geal theorem, together with a step relating
the K,,’s (which will not be explained here).

Theorem 14.4.2.Let F': CW* — Set® be a contravariant functor such that:
(1) (Homotopy axiom) Iff,g : X — Y are homotopic, the'f = Fg. (Equivalently viewF' as a
functor from the homotopy categolyCW?*.)
(2) (Sheaf axiom) IfX € CW*®and X = AU B, whereA, B,AN B € CW?*, thenifa € F(A) and
b € F(B) that restrict to the same element (A N B), there exists € F(X) that restricts toa
andb.
(3) (Wedge axiom) IX = V,X,, thenF(X) =11, F(X,).
Then there exist&’ € CW* andu € F(K) such that
Ty :[X, K] > F(X), Tu(f) = Ff(u)
is a bijection for all.X. (Note thatT’, is a natural transformation.)
Remarkl4.4.3 Axiom (3) implies thatF'(pt) is a one-element set. (HW: Verify this usidg A {x} = X.)

Remarkl4.4.4 Axioms (1)—(3) forF’ = h" together with the existence of natural isomorphigi§X’) ~
r"H1(2X) for all X € CW* is equivalent to the reduced cohomology axioms. (Proofteahibere.)

Example. If T is a pointed connected topological space, then apply Thed#®4.2 to the functof, 7).
Then there exist€’ € CW?* such that X,C] = [X,T] for all X € CW?*. In other words, the Brown
representability theorem implies the CW approximatiorothen.

14.5. Proof of Theorem[14.4.2.

Step 1.We constructK inductively cell-by-cell as usual so thtite theorem holds for all spheres = S™
withn > 1. Recall that if we know#'(S™) for all n > 0, then we can try to construét by the requirement
T (K) = F(S™) (just like for K(G,14)). The complication in the proof comes from keeping trackhef t
elementy € K.

Start with Ky = pt. Letug be the unique element df(K)), recalling Remark14.413. Arguing by
induction, assume that there exist, andu,, € F(K,,) such that

Ty, : mi(Ky,) — F(SY), fw Ff(uy),
is surjective fori < n and has trivial kernel foi < n.
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We will constructK,,.1 D K, andu,, .1 that restricts ta.,: Denote the representatives of the kernel of
Ty, : T (Kyp) = F(S™) by fo : S} — K, and setf = Vv, f,. Let M; andC be the mapping cylinder
and mapping cone of. We then set

K1 =CrV (VgS5),
wheref ranges oveF(S"1).
Fact/HW: Axioms (1)—(3) in Theorermn 14.4.2 imply the exactness of
F(X/A) —» F(X) — F(A)
for each inclusiod — X.

Apply the fact toF'(Cy) — F(K,) = F(Ms) — F(VoS2). Viewing u, € F(Mjy), it is mapped
to 0 € F(VoS2), and hence comes from € F(Cy). We then defines, 1 € F(K,41) to restrict to
u, € F(K,)andg € F(Sg“); this exists by (3) and the fact thaf, andj restrict to the same point. For
HW, verify thatT;,, ., is surjective fori < n + 1 and has trivial kernel for < n + 1.

We then setk’ = U, K,,. For technical reasons of defining we use thenapping telescopef Ky —
Ky — ... given by

T =U;(K; x [i,i+1]) C K x [0,00),
with the appropriate quotienting in the pointed categotye Mapping telescogE is homotopy equivalent
to K. CutupT = AU B whereA (resp.B) is the union of the(; x [i,i + 1] for i even (resp. odd). Since
A andB are wedges, we can defifg eert; andV; ogqu; 0N A and B. They can be glued into using (2).

Step 2.Show that the theorem holds for aly € CW*.

Surjectivity of T',: we show that given any € F'(X) there exists amap : X — K such thatF'f (u) =
z.LetZ =XV Kandz =xVue F(X V K). By the methods of Step 1, there exi§ z) — (K’ u’)
where (K’ ') also satisfies the conditions of the theorem for spherese Hét,+') > (K,u) and is a
weak homotopy equivalence. Hengg deformation retracts ont&” and we obtain a ma — K’ with
the desired property.

The injectivity of T}, is analogous and is omitted.

Example. Let G be a topological group and Iét : CW* — Set® be the functor such thdt(X) is the set
of isomorphism classes of principétbundlesP — X. ThenF is represented b = BG, theclassifying
space ofGG. While BG admits an explicit construction, the Brown representibilneorem proves the
existence oBG.

Example. (Complex topological< -theory) LetVect(X) be the group of isomorphism classes of complex
vector finite rank complex vector bundles ov&r Vect(X) is a monoid under direct sum, and the
Grothendieck grougk®(X) is thegroup completiorof the monoidVect(X). [The group completiorof a
monoidM is M x M/ ~, where(my, ms) ~ (m/, mb) if there existsn € M such thatn; +m/, +m =

m/ +mg +m. Think of (m1,ms) asm; —ms.] There is a reduced version &f°(X), denoted by 0(X).
The functorkK? is represented bU x Z, whereBU = lim,,_,, BU(n).

Bott periodicity: Apply2 iteratively to BU x Z. It's not hard to see th&2(BU x Z) ~ U, where~
denotes weak homotopy equivalence. Bott periodicity stétatQU ~ BU x Z and hencé)?(BU x Z) ~
BU x Z. This implies that th&* (BU x Z) are2-periodic. TheQ-spectrumi,, = U for n odd andBU x Z
for n even represents the “higheK'—groupsR’".
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This would be a good starting point for the study of vectordies andK -theory, but alas we are out of
time....
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