
NOTES FOR MATH 227A: ALGEBRAIC TOPOLOGY

KO HONDA

1. CATEGORIES ANDFUNCTORS

1.1. Categories. A categoryC consists of:

(1) A collectionob(C) of objects.
(2) A setHom(A,B) of morphismsfor each ordered pair(A,B) of objects. A morphismf ∈ Hom(A,B)

is usually denoted byf : A→ B orA
f
→ B.

(3) A mapHom(A,B) × Hom(B,C) → Hom(A,C) for each ordered triple(A,B,C) of objects,
denoted(f, g) 7→ gf .

(4) An identity morphismidA ∈ Hom(A,A) for each objectA.

The morphisms satisfy the following properties:

A. (Associativity)(fg)h = f(gh) if h ∈ Hom(A,B), g ∈ Hom(B,C), andf ∈ Hom(C,D).
B. (Unit) idB f = f = f idA if f ∈ Hom(A,B).

Examples: (HW: take a couple of examples and verify that all the axioms of a category are satisfied.)

1. Top = category of topological spaces and continuous maps. The objects are topological spacesX and
the morphismsHom(X,Y ) are continuous maps fromX to Y .

2. Top• = category of pointed topological spaces. The objects are pairs (X,x) consisting of a topological
spaceX and a pointx ∈ X. Hom((X,x), (Y, y)) consist of continuous maps fromX to Y that takex to y.

Similarly defineTop2 = category of pairs(X,A) whereX is a topological space andA ⊂ X is a
subspace.Hom((X,A), (Y,B)) consists of continuous mapsf : X → Y such thatf(A) ⊂ B.

3. hTop = homotopy category of topological spaces. The objects are topological spacesX andHom(X,Y )
is the set of homotopy classes of continuous mapsf : X → Y . Recall thatf0, f1 : X → Y arehomotopic
if there is a continuous mapF : X × [0, 1] → Y such thatF |X×{i} = fi, i = 0, 1. Homotopy induces an
equivalence relation∼ and the equivalence classes are calledhomotopy classes.

4. Grp = category of groups and group homomorphisms. The objects are groupsG and the morphisms
Hom(G,H) are group homomorphisms fromG toH.

5. R–Mod = category of leftR-modules of an associative ringR. The objects are leftR-modules and the
morphismsHom(M,N) are leftR-module maps. Also letMod–R be the category of rightR-modules.
We sometimes writeAb (category of abelian groups) forZ–Mod.

6. Ch(R–Mod) = category of chain complexes of (left)R-modules and chain maps.
Recall that achain complexis a sequenceC∗ of R-module maps:

−−−−→ Cn+1
∂n+1

−−−−→ Cn
∂n−−−−→ Cn−1 −−−−→
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such that∂n∂n+1 = 0 and achain mapis a collection ofR-module mapsCn
φn
−→ Dn, often denoted

φ : C∗ → D∗, such that the diagram commutes:

Cn+1
∂n+1
−−−−→ Cn

∂n−−−−→ Cn−1yφn+1

yφn

yφn−1

Dn+1
∂n+1
−−−−→ Dn

∂n−−−−→ Dn−1

1.2. Functors. A covariant functorF : C → D from a categoryC to a categoryD is a rule which sends:

(1) an objectA ∈ ob(C) toF (A) ∈ ob(D); and
(2) every morphismf ∈ Hom(A,B) in C to a morphismF (f) ∈ Hom(F (A), F (B)) in D,

such that:

A. F (gf) = F (g)F (f).
B. F (idA) = idFA.

A contravariant functorF assigns tof ∈ Hom(A,B) an elementF (f) ∈ Hom(F (B), F (A)) satisfying
F (fg) = F (g)F (f).

Examples: (HW: verify the axioms of a functor)

1. Thesingular chain complex functorSing : Top→ Ch(Z–Mod), which is defined as follows:

Brief review of singular homology. Givenv0, . . . , vn ∈ Rm, let [v0, . . . , vn] be the convex hull ofv0, . . . , vn,
i.e.,

[v0, . . . , vn] = {
∑n

i=0 tivi ∈ Rm |
∑n

i=0 ti = 1, ti ≥ 0, i = 0, . . . , n} .

Thestandardn-simplex∆n is [e0, . . . , en] ⊂ Rn+1.
LetX ∈ ob(Top). A continuous mapσ : ∆n → X is called asingularn-simplex. We defineCn(X) to

the freeZ-module generated by singularn-simplices; an element ofCn(X) is calledsingularn-chain. The
boundary map∂n : Cn(X)→ Cn−1(X) is given by:

∂nσ =
∑n

i=0(−1)
nσ|[e0,...,êi,...,en].

Hereσ|[e0,...,êi,...,en] means the composition of[e0, . . . , en−1]→ [e0, . . . , êi, . . . , en] given by the canonical
linear homeomorphism, followed byσ restricted to[e0, . . . , êi, . . . , en].

One can verify that∂n∂n+1 = 0, i.e.,Cn+1
∂n+1
−→ Cn

∂n−→ Cn−1 is a chain complex.
Given a continuous mapf : X → Y , we define the induced mapfn : Cn(X) → Cn(Y ) by mapping

σ : ∆n → X to f ◦ σ : ∆n → Y and extending linearly. One can verify that∂n+1fn+1 = fn∂n+1.

1’. Similarly, define therelative singular chain complex functorSing : Top2 → Ch(Z–Mod) which sends
(X,A) to

C∗(X,A) = (→ Cn(X,A)
∂n−→ Cn−1(X,A)→),

whereCn(X,A) := Cn(X)/Cn(A) and ∂n is the mapCn(X,A) → Cn−1(X,A) induced from∂n :
Cn(X)→ Cn−1(X).

2. The homology functorHi : Ch(R–Mod) → R–Mod which assigns to a chain complexC∗ the
homology

Hi(C∗) := ker(di)/ im(di+1),
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and to a chain mapφ : C∗ → D∗ the induced homomorphismφ∗ : Hi(C∗)→ Hi(D∗).

3. The compositionHi ◦ Sing : Top → Z–Mod is thesingular homology functorwhich takesX 7→
Hsing

i (X;Z).

4. Thefundamental group functorπ1 : Top• → Grp sends(X,x) 7→ π1(X,x).

5. Given a ringR and a rightR-moduleN , there is a functorN⊗R : R–Mod → Z–Mod given by
M 7→ N ⊗R M .

5’. More generally, given ringsR, S, and anS −R bimoduleN (this means thatS acts onN from the left
andR from the right), we have the functorN⊗R : R–Mod→ S–Mod given byM 7→ N ⊗R M . We can
also extendN⊗R toCh(R–Mod)→ Ch(S–Mod).

6. Given anR-moduleN , there is a covariant functorHom(N,−) : R–Mod → R–Mod given by
M 7→ HomR(N,M) and a contravariant functorHom(−, N) : R–Mod → R–Mod given byM 7→
HomR(M,N). We can also extend the Hom functors toCh(R–Mod)→ Ch(R–Mod).

1.3. Adjoint functors. Two functorsF : C → D andG : D → C areadjoint if for eachA ∈ ob(C) and
B ∈ ob(D) there is a bijection

τAB : HomD(FA,B)
∼
−→ HomC(A,GB),

subject to the following naturality condition: For anyf ∈ Hom(A,A′) andg ∈ Hom(B,B′), the diagram
commutes:

HomD(FA
′, B)

Ff∗

−−−−→ HomD(FA,B)
g∗
−−−−→ HomD(FA,B

′)

τA′B

y τAB

y τAB′

y

HomC(A
′, GB)

f∗

−−−−→ HomC(A,GB)
Gg∗
−−−−→ HomC(A,GB

′).

We say thatF is a left adjoint ofG andG is aright adjoint ofF .

Example: Given anR − S-bimoduleN , the functors⊗RN : Mod–R → Mod–S andHomS(N,−) :
Mod–S →Mod–R are adjoint functors.

1.4. Natural transformations. Given two functorsF,G : C → D, a natural transformationη : F ⇒ G
associates a morphismηA : F (A)→ G(A) for eachA ∈ ob(C) such that for each morphismf : A→ A′ in
C the following diagram commutes:

F (A)
Ff
−−−−→ F (A′)

yηA

yηA′

G(A)
Gf
−−−−→ G(A′).
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Example: A right R-module mapφ : N → N ′ gives a natural transformationη : N⊗R ⇒ N ′⊗R where
N⊗R, N

′⊗R : R–Mod→ Z–Mod: Given a leftR-module mapf :M →M ′,

N ⊗R M
(N⊗R)f
−−−−−→ N ⊗R M

′

yηM

yηM′

N ′ ⊗R M
(N ′⊗R)f
−−−−−−→ N ′ ⊗R M

′.
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2. HOMOLOGY WITH COEFFICIENTS

2.1. Definitions. LetX be a topological space andG be aZ-module (aka abelian group). Ann-chain on
X with coefficients inG is finite formal sum

∑
i niσi, whereσi is a singularn-simplex onX andni ∈ G.

The setCn(X;G) of n-chains onX with coefficients inG can be written as

Cn(X;G) = Cn(X) ⊗Z G.

The functor⊗G : Ch → Ch, whereCh = Ch(Z–Mod), sendsC∗(X) to C∗(X;G). (Note thatZ is
commutative, so left and right modules are the same; we are also tensoring overZ.) In particular this means

thatCn(X)
∂
→ Cn−1(X) passes toCn(X;G)

∂⊗idG−→ Cn−1(X;G) and(∂ ⊗ idG)
2 = 0. The homology of

C∗(X;G) is written asH∗(X;G) and is called thehomology ofX with coefficients inG. This is the result
of the composition

Hn ◦ ⊗G ◦ Sing : Top→ Z–Mod.

Similarly, we can defineCn(X,A;G) = Cn(X,A) ⊗ G. Therelative homology of(X,A) with coeffi-
cients inG is its homology group.

Remark: If we take homology with coefficients inZ/2Z or Q, then everything involved become vector
spaces, and the calculations are often easier.

Question: IsHn(X;G) ≃ Hn(X;Z)⊗G?

In order to answer this question, we take a detour in homological algebra.

2.2. Right exactness of⊗. LetN be a leftR-module and

0→ A→ B → C → 0

be an exact sequence of rightR-modules. Then we have the following:

Fact: The functor⊗RN : Mod–R→ Z–Mod is right exact, i.e.,

A⊗R N → B ⊗R N → C ⊗R N → 0

is an exact sequence. HW: check this!

However,A⊗N → B ⊗N is not always injective. (We omitR from the notation from now on.)

Prototypical Example:

0→ Z
n
→ Z→ Z/nZ→ 0.

If we tensor withZ/nZ, then we have

Z/nZ
0
→ Z/nZ→ Z/nZ→ 0

exact, but the left arrow is not injective.

To continue this exact sequence to the left, we introduce thederived functorsof ⊗N .
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2.3. Projective resolutions.

Definition 2.3.1. A (right) R-moduleP is projective if it satisfies the following lifting property: given a

mapa : P → N and a surjectionM
b
−→ N → 0, there exists a lifta : P →M such thata = ba.

HW: Prove thatP is projective if and only if it is a direct summand of a freeR-module.

Definition 2.3.2. A projective resolutionof anR-moduleM is an exact sequence

(2.3.1) · · · → P2
i2→ P1

i1→ P0
i0→M → 0,

wherePi are projectiveR-modules. (We often writeP∗ → M .) As a special case, if we take thePi to be
free, we have afree resolution.

Lemma 2.3.3. AZ-moduleM has a free resolution0→ F1 → F0 →M → 0.

Proof. Let {aα} be a generating set forM andF0 be the free abelian group generated by{aα}. Then the
kernel of the natural mapF0 →M is a subgroup of a free abelian group, and hence is free. (Notethis is not
obvious.) This gives the injectionF1 → F0. �

Remark: The same proof applies to show that anyR-moduleM admits a free resolution.

Example: If A = Z/mZ, then
0→ Z

m
→ Z→ Z/mZ→ 0

is a free resolution ofZ/mZ. We could also have taken

0→ Z
i
→ Z2 j

→ Z→ Z/mZ→ 0,

wherei : 1 7→ (0, 1) andj : (1, 0) 7→ m, (0, 1) 7→ 0.

In particular the example shows that projective/free resolutions are not unique!

Lemma 2.3.4.
(1) Given projective resolutionsP∗ of A andP ′

∗ of B and a mapφ−1 : A → B, there is a chain map
φ : P∗ → P ′

∗ which extendsφ−1, i.e., the following diagram commutes:

−−−−→ P1
i1−−−−→ P0

i0−−−−→ A −−−−→ 0
yφ1

yφ0

yφ−1

−−−−→ P ′
1

i′1−−−−→ P ′
0

i′0−−−−→ B −−−−→ 0

(2) Any two chain mapsφ,ψ : P∗ → P ′
∗ extendingφ−1 are chain homotopic.

Recall that two chain mapsφ,ψ : (C∗, ∂) → (C ′
∗, ∂

′) arechain homotopicif there exist mapshi : Ci →
C ′
i+1 such thatφi − ψi = ∂′i+1hi + hi−1∂i. Moreover, chain homotopic chain maps induce the same maps

on homology.

Proof. (1) The mapφ0 is defined using the lifting property:i′0φ0 = φ−1i0. Forφ1, we show thatφ0i1(P1) ⊂
Im i′1 = ker i′0. Indeed,i′0φ0i1 = φ−1i0i1 = 0. Henceφ1 can be defined using the lifting property.

(2) Sincei′0(φ0 − ψ0) = 0, it follows that(φ0 − ψ0)(P0) ⊂ Im(i′1). Henceh0 can be defined using the
lifting property. Next observe thati′1(φ1 − ψ1 − h0i1) = (φ0 − ψ0 − i

′
1h0)i1 = 0. Henceh1 can also be

defined using the lifting property. �



NOTES FOR MATH 227A: ALGEBRAIC TOPOLOGY 7

2.4. Definition of Tor. Given a projective resolutionP∗ → M , we tensor with a rightR-moduleN to
obtain

· · ·
i2→ P1 ⊗N

i1→ P0 ⊗N → 0,

which is no longer exact but is a chain complex. Its homology is denoted byTori(M,N).

Theorem 2.4.1.Tori(M,N) only depends onM andN . In particular, it is independent of the projective
resolution used forM .

Proof. This follows from Lemma 2.3.4: Given projective resolutions P∗, P
′
∗ → M , there exist chain maps

φ : P∗ → P ′
∗ andψ : P ′

∗ → P∗ such thatψφ, id : P∗ → P ′
∗ are chain homotopic. Tensoring withN still

preserves this property. �

Remark: Given a projective resolutionP∗ of M , there is a chain map

−−−−→ P1
i1−−−−→ P0 −−−−→ 0

y0

yi0

−−−−→ 0 −−−−→ M −−−−→ 0

which induces an isomorphism on homology. A chain mapf : C∗ → D∗ which induces an isomorphism on
all homology groups is called aquasi-isomorphism. HenceP∗ is a quasi-isomorphic replacement ofM .

Properties ofTor:

(1) Tori(M,N) = 0 if i > 1 andR = Z. (This follows from the existence of a free resolution
0→ F1 → F0 →M → 0.)

(2) Tor0(M,N) =M ⊗N . (If P1 → P0 →M → 0 is exact, thenP1⊗N
i1→ P0⊗N →M ⊗N → 0

is exact. Hence,Tor0(M,N) = P0 ⊗N/ Im i1 ≃M ⊗N .)
(3) Tori(M,N) = Tori(N,M) if R is commutative. (Proof is not obvious.)
(4) If M is projective, thenTori(M,N) = 0 for i ≥ 1. (If M is projective, then0 → M → M → 0

is the projective resolution forM . Hence0 → M ⊗N → 0 is the chain complex which computes
Tor.)

(5) Tori(M ⊕M
′, N) ≃ Tori(M,N)⊕ Tori(M

′, N).
(6) Tor1(Z/mZ,Z/nZ) = ker(Z/nZ

m
→ Z/nZ) = Z/kZ, wherek = GCD(m,n). In particular,

Tor1(Z/nZ,Z/nZ) = Z/nZ. (Tensor the truncated free resolution0 → Z
m
→ Z → 0 to obtain

0→ Z/nZ
m
→ Z/nZ→ 0.)

2.5. More on the Tor functor.

Theorem 2.5.1.Given an exact sequence0→ A→ B → C → 0 of rightR-modules, there exist projective

resolutionsF∗ → A, G∗ → B, H∗ → C and exact sequences0 → F∗
i
−→ G∗

j
−→ H∗ → 0 which make
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the following diagram commutative:

0 0 0
y

y
y

−−−−→ F1
f1
−−−−→ F0

f0
−−−−→ A −−−−→ 0

i1

y i0

y i−1

y

−−−−→ G1
g1
−−−−→ G0

g0
−−−−→ B −−−−→ 0

j1

y j0

y j−1

y

−−−−→ H1
h1−−−−→ H0

h0−−−−→ C −−−−→ 0
y

y
y

0 0 0

Proof. Take projective resolutionsF∗ → A andH∗ → C. Then we setGi = Fi ⊕ Hi andi : Fi → Gi

andj : Gi → Hi to be the usual inclusion and projection maps. The goal is to define the mapsg0, g1, etc.
For g0, lift h0 to a maph0 : H0 → B. Then letg0 = (i−1f0, h0) : F0 ⊕ H0 → B. We verify thatg0 is
surjective: Givenb ∈ B, there existsb′ ∈ B such thatj−1(b

′ − b) = 0 andb′ = h0(y) for somey ∈ H0.
Now b′ − b ∈ Im i−1, so there existsx ∈ F0 such thati−1f0(x) = b′ − b. Thusg0 maps(x, y) 7→ b. The
definitions ofg1 etc. are similar and it remains to verify thatIm gi+1 = ker gi (HW). �

We now apply the functor⊗M whereM is a leftR-module.

Fact: The sequence0 → Fi ⊗M → Gi ⊗M → Hi ⊗M → 0 is exact since0 → Fi → Gi → Hi → 0
splits andGi ≃ Fi ⊕Hi. (HW: check this!)

Hence we have an exact sequence of chain complexes

0→ F∗ ⊗M → G∗ ⊗M → H∗ ⊗M → 0.

The corresponding long exact sequence is:

· · · → Tor1(A,M)→ Tor1(B,M)→ Tor1(C,M)→

→ A⊗M → B ⊗M → C ⊗M → 0.

Example: Applying⊗Z/mZ to

0→ Z
m
→ Z→ Z/mZ→ 0,

we obtain

0→ Tor1(Z/mZ,Z/mZ) = Z/mZ
∼
→ Z/mZ

0
→ Z/mZ

∼
→ Z/mZ→ 0.

2.6. Universal Coefficient Theorem. We now restrict toZ-modules.

Theorem 2.6.1(Universal Coefficient Theorem for homology). There is an exact sequence

0→ Hn(X)⊗M → Hn(X;M)→ Tor1(Hn−1(X),M)→ 0,
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and the exact sequence splits, albeit noncanonically. Therefore,

Hn(X;M) ≃ (Hn(X)⊗M)⊕ Tor1(Hn−1(X),M).

HW: Show that if an exact sequence0 → A
i
→ B

j
→ C → 0 splits, i.e., there existsk : C → B such that

jk = id, thenB ≃ A⊕ C.

Proof. Start with the exact sequence

0→ Zn → Cn
∂n−→ Bn−1 → 0,

whereCn = Cn(X), Zn = ker ∂n, andBn−1 = Im ∂n. The exact sequence can be viewed as a row in an
exact sequence of chain complexes0→ Z∗ → C∗ → B∗ → 0, where the boundary maps forZ∗ andB∗ are
zero. Now apply⊗M : sinceBn−1 is a submodule ofCn−1, it is free, andTor1(Bn−1,M) = 0. Hence the
exact sequence remains exact under⊗M , i.e.,

(2.6.1) 0→ Zn ⊗M → Cn ⊗M → Bn−1 ⊗M → 0

is exact. The corresponding long exact sequence is:

Bn ⊗M
in⊗id
−→ Zn ⊗M → Hn(X;M)→ Bn−1 ⊗M

in−1⊗id
−→ Zn−1 ⊗M.

(HW: check that the connecting homomorphismBn → Zn actually agrees with the inclusion mapin.)
Hence

0→ (Zn ⊗M)/ Im(in ⊗ id)→ Hn(X;M)→ ker(in−1 ⊗ id)→ 0.

We also have the exact sequence0→ Bn → Zn → Hn(X)→ 0, whose derived exact sequence is:

0→ Tor1(Hn(X),M)→ Bn ⊗M
in⊗id
−→ Zn ⊗M → Hn(X)⊗M → 0.

We obtainHn(X)⊗M ≃ (Zn ⊗M)/ Im(in ⊗ id) andTor1(Hn−1(X),M) ≃ ker(in−1⊗ id); this proves
the first assertion of the theorem.

To prove the noncanonical splitting, notice that there is a splitting j : Bn−1 ⊗ M → Cn ⊗ M of
Equation (2.6.1) sinceZn, Cn, Bn−1 are all freeZ-modules. Restrictj to j′ on

Tor1(Hn−1(X),M) ≃ ker(in−1 ⊗ id) ⊂ Bn−1 ⊗M.

Then by the definition of the connecting homomorphismin−1 ⊗ id for Equation (2.6.1), we see that
(∂n ⊗ id)j′(x) = 0 ∈ Cn−1 ⊗ M for x ∈ Tor1(Hn−1(X),M). Hencej′ descends to a mapj :
Tor1(Hn−1(X),M) → Hn(X;M). The fact thatj is a splitting implies thatj is a splitting (check
this!). �

Example: X = RP2. Recall thatH0(X) = Z,H1(X) = Z/2Z, andH2(X) = 0. Then we compute that

H0(X;Z/2Z) = H0(X)⊗ Z/2Z = Z/2Z,

H1(X;Z/2Z) = (H1(X) ⊗ Z/2Z)⊕ Tor1(Z,Z/2Z) = Z/2Z,

H2(X;Z/2Z) = Tor1(Z/2Z,Z/2Z) = Z/2Z.
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3. COHOMOLOGY

3.1. Definitions. Given an abelian groupG, recall the contravariant functorHom(−, G) : Ab→ Ab such
thatA 7→ Hom(A,G) andf ∈ Hom(A,B) is mapped tof∗ : Hom(B,G) → Hom(A,G) which sendsφ
to φ ◦ f .

There is also a contravariant functorHom(−, G) : Ch→ Ch which sends a chain complex

· · · → Cn
∂n−→ · · ·

∂1−→ C0 → 0,

to thecochain complex

· · · ← Hom(Cn, G)
δn−1
←− · · ·

δ0←− Hom(C0, G)← 0,

where the cochain map is given byδn−1 = ∂∗n (note slightly awkward indexing), andf : C∗ → D∗ to
Hom(−, G)f : Hom(D∗, G)→ Hom(C∗, G).

Now we compose with the functorSing : Top → Ch: We denoteHom(Cn, G) by Cn or Cn(G) or
Cn(X;G) if Cn = Cn(X). Unwinding the definition ofδn−1 = ∂∗n, givenφ ∈ Cn−1 andα ∈ Cn, we have
δn−1φ(α) = φ(∂nα).

Claim: δ2 = 0.

Proof. This is∂2 = 0 dualized:(δ2φ)(α) = δφ(∂α) = φ(∂2α) = 0. �

The homology of this chain complexHn(C;G) = ker δ/ Im δ is thenth cohomology group.

3.2. Interpreting cohomology. The cochain groupCn(X;G) = Hom(Cn(X), G) is the set of functions

φ : {singularn-simplices ofX} → G.

In particular,φ ∈ C0(X;R) assigns a real number to each point ofX andδφ ∈ C1(X,R) assigns a real
number to each arcα : ∆1 = [0, 1]→ X as follows:

δφ(α) = φ(∂α) = φ(α(1)) − φ(α(0)).

For example, ifa, b ∈ X, α is a path froma to b, andφ(a) = r, φ(b) = s, thenδφ(α) = φ(b)−φ(a) = s−r.
Note thatδφ = 0 meansφ assigns the same value to all the points in a connected component ofX.

Next, if φ ∈ C1(X;R), thenδφ ∈ C2(X;R) is given by:

δφ(α) = φ(α|[v1,v2])− φ(α|[v0,v2]) + φ(α|[v0,v1]).

Observe thatδφ = 0 meansφ(α|[v0,v2]) = φ(α|[v0,v1]) + φ(α|[v1,v2]).
One way of constructing a cochainφ ∈ Cn

sm(X;R), if X is a manifold and all the simplices are smooth,
is to integrate ann-form ω, i.e., define

φ(β) =
∫
β ω.

Thenδφ(α) =
∫
∂α ω =

∫
α dω by Stokes’ Theorem. (Hered is the exterior derivative.) Hence there is a

chain map of (co)-chain complexes:

. . . −−−−→ Ωn(X;R)
d

−−−−→ Ωn+1(X;R) −−−−→ . . .
y

y

. . . −−−−→ Cn
sm(X;R)

δ
−−−−→ Cn+1

sm (X;R) −−−−→ . . .

HereΩn(X;R) is the space of smoothn-forms onX.
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3.3. Universal coefficient theorem. Just as the functor⊗G is only right exact, theHom(−, G) functor is
only left exact:

Fact: If A
i
→ B

j
→ C → 0 is exact, then0→ Hom(C,G)

j∗
−→ Hom(B,G)

i∗
−→ Hom(A,G) is exact.

Proof. j∗ is injective: Sincej : B → C is surjective, givenf ∈ Hom(C,G), the compositionf ◦ j(x) = 0
for all x ∈ B implies thatf(y) = 0 for all y ∈ B.

Im j∗ = ker i∗. ⊂: Givenf ∈ Hom(C,G), i∗j∗f = (ji)∗f = 0. ⊃: If i∗g : A→ B → G is zero, then
we can take the quotient mapC = B/A→ G. �

Prototypical Example: Given0→ Z
n
→ Z→ Z/nZ→ 0, applyingHom(−,Z) gives:

0→ Hom(Z/nZ,Z) ≃ 0→ Hom(Z,Z) ≃ Z
n
→ Hom(Z,Z) ≃ Z.

As in the case ofTor, take a projective resolutionP∗ → A and applyHom(−, G) to obtain:

Hom(P∗, G) := (· · · ← Hom(P1, G)← Hom(P0, G)← 0).

The (co)-homology of this chain complex is denoted byExti(A,G). As before,Exti(A,G) does not depend
on the choice of projective resolution.

Properties of Ext:

(1) Ext0(A,G) = Hom(A,G). (Follows from the left exactness of the Hom functor.)
(2) Exti(A,G) = 0 for i > 1 if R = Z. (Use the free resolution0→ F1 → F0 → 0 for A.)
(3) Exti(A,G) = 0 if A is projective. (Use the resolution0→ A→ 0 for A.)
(4) Exti(A⊕B,G) = Exti(A,G) ⊕ Exti(B,G).
(5) Ext1(Z/nZ,Z) = Z/nZ. (Take the resolution0 → Z

n
→ Z → 0 for Z/nZ, and dualize to obtain

0→ Z
n
→ Z→ 0. ThenExt0(Z/nZ,Z) = Hom(Z/nZ,Z) = 0 andExt1(Z/nZ,Z) = Z/nZ.)

Now, given an exact sequence of abelian groups0 → A → B → C → 0, take the corresponding exact
sequence of projective resolutions0 → P∗ → Q∗ → R∗ → 0 and applyHom(−, G). Its long exact
sequence is:

0→ Hom(C,G) → Hom(B,G)→ Hom(A,G)→

→ Ext1(C,G)→ Ext1(B,G)→ Ext1(A,G)→ . . .

We have the following (proof similar to homology case):

Theorem 3.3.1(Universal Coefficient Theorem for cohomology). If a chain complexC∗ of free abelian
groups have homology groupsHn(C∗), then the cohomology groupsHn(C∗;G) are given by:

0→ Ext1(Hn−1(C∗), G)→ Hn(C∗;G)→ Hom(Hn(C∗), G)→ 0.

The sequence splits, albeit noncanonically.

Example: X = RP2. H0(X;Z) ≃ Hom(H0(X;Z),Z) = Z. (In fact, H0(X;Z) ≃ H0(X;Z) al-
ways.) H1(X;Z) ≃ Hom(H1(X;Z),Z) always, sinceH0(X;Z) is always free. HenceH1(X;Z) ≃
Hom(Z/2Z,Z) = 0. Finally,

H2(X;Z) ≃ Hom(H2(X;Z),Z) ⊕ Ext1(H1(X;Z),Z) = Ext1(Z/2Z,Z) = Z/2Z.
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Remark: The Universal Coefficient Theorem basically states thatH∗(X;G) can be computed from the
knowledge ofH∗(X;G). Then why do we care about cohomology?

3.4. Properties of cohomology.The cohomology groups satisfy all the properties enjoyed byhomology,
but with the arrows in the other direction. This includes thelong exact sequence for relative homology,
homotopy invariance, excision, Mayer-Vietoris, etc. For awhile we suppress the coefficient moduleG.

Relative groups.Starting with0→ Cn(A)
i
−→ Cn(X)

j
−→ Cn(X,A)→ 0, applyingHom(−, G) yields:

0→ Cn(X,A)
j∗
−→ Cn(X)

i∗
−→ Cn(A)→ 0,

whereCn(X,A) := Hom(Cn(X,A), G). The sequence is exact sinceCn(X,A) is free.
Note thatφ ∈ Cn(X,A) can be viewed as a mapφ : {singularn-simplices ofX} → G such that

φ(σ) = 0 if Imσ ⊂ A.
We also defineδX,A : Cn(X,A) → Cn+1(X,A) as the dual of the map∂X,A : Cn+1(X,A) →

Cn(X,A). (For the time being also writeδX andδA for the duals of∂X and∂A.)
By dualizing all the arrows for the case of homology, we obtain the commutative diagram:

0 −−−−→ Cn(X,A)
j∗

−−−−→ Cn(X)
i∗

−−−−→ Cn(A) −−−−→ 0
yδX,A

yδX

yδA

0 −−−−→ Cn+1(X,A)
j∗

−−−−→ Cn+1(X)
i∗

−−−−→ Cn+1(A) −−−−→ 0

and a long exact sequence in relative cohomology:

→ Hn(X,A)→ Hn(X)→ Hn(A)
c
−→ Hn+1(X,A)→ .

HW: Verify that δX,A agrees with the restriction ofδX : Cn(X) → Cn+1(X) toCn(X,A) → Cn(X,A)
(this is with respect to the inclusionj∗ : Cn(X,A)→ Cn(X)).

HW: Verify that the diagram commutes, where the mapshA andhX,A arise in the Universal Coefficient
Theorem and the mapd∗ is the dual of the connecting homomorphismb : Hn+1(X,A)→ Hn(A):

Hn(A)
c

−−−−→ Hn+1(X,A)
yhA

yhX,A

Hom(Hn(A), G)
b∗

−−−−→ Hom(Hn+1(X,A), G).

Homotopy invariance. This follows from observing that ifφ,ψ : C∗ → D∗ are chain homotopic chain
maps, i.e., there existsh : C∗ → D∗+1 such thatφ − ψ = h∂C + ∂Dh, thenφ∗, ψ∗ : Hom(D∗, G) →
Hom(C∗, G) are chain homotopic as cochain maps, i.e., there existsh∗ : Hom(D∗+1, G) → Hom(C∗, G)
such thatφ∗ − ψ∗ = ∂∗Ch

∗ + h∗∂∗D.

Excision. SupposeZ ⊂ A ⊂ X and the closure ofZ is in the interior ofA. Recall that the inclusion
i : (X − Z,A − Z) → (X,A) induces an isomorphism on homology. The Universal Coefficient Theorem
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is natural in the following way (i.e., the following diagramcommutes):

0 −−−−→ Ext1(Hn−1(X,A), G) −−−−→ Hn(X,A) −−−−→ Hom(Hn(X,A), G) −−−−→ 0
y

y
y

0 −−−−→ Ext1(Hn−1(X − Z,A− Z), G) −−−−→ Hn(X − Z,A − Z) −−−−→ Hom(Hn(X − Z,A− Z), G) −−−−→ 0.

HW: Check the commutativity of the diagram.
The left and right arrows are isomorphisms; hence by the five lemma the middle one is also.

HW: Hatcher, Section 3.1: 3,7,11.
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4. CUP PRODUCTS

Today we highlight the key difference between homology and cohomology: cohomology has a ring
structure.

4.1. Definition of cup product. Given cochainsφ ∈ Ck(X;R) andψ ∈ C l(X;R) (hereR is a com-
mutative ring), define thecup productφ ∪ ψ ∈ Ck+l(X;R) by evaluating on a singular(k + l)-simplex
σ : ∆k+l → X, and extending bilinearly:

(φ ∪ ψ)(σ) = φ(σ|[e0,...,ek])ψ(σ|[ek ,...,ek+l]).

Lemma 4.1.1. δ(φ ∪ ψ) = δφ ∪ ψ + (−1)kφ ∪ δψ.

Proof.

δ(φ ∪ ψ)(σ) = (φ ∪ ψ)(∂σ) = (φ ∪ ψ)(
∑

i(−1)
iσ|[e0,...,êi,...,ek+l+1]),

(δφ ∪ ψ)(σ) = δφ(σ|[e0,...,ek+1])ψ(σ|[ek+1,...,ek+l+1])

= φ(
∑

i(−1)
iσ|[e0,...,êi,...,ek+1])ψ(σ|[ek+1,...,ek+l+1])

(φ ∪ δψ)(σ) = φ(σ|[e0,...,ek])δψ(σ|[ek ,...,ek+l+1])

= φ(σ|[e0,...,ek])(−1)
kψ(

∑k+l+1
i=k (−1)iσ|[ek,...,êi,...,ek+l+1]) �

A graded ring/algebraA overR comes with a decompositionA = ⊕∞
i=0Ai of R-modules and a multi-

plicationAi ×Aj → Ai+j which isR-bilinear. If an elementa ∈ Ai we write |a| = i and call it thedegree
of a. The graded algebraA is adifferential graded algebra (dga)if it has a differentiald : Ai → Ai+1 such
thatd(ab) = (da)b + (−1)|a|adb. HenceC∗(X;R) := ⊕∞

i=0C
i(X;R) is a dga with multiplication∪ and

differentialδ.

HW: Verify that the cup product onC∗(X;R) is associative.

If δφ = 0 andδψ = 0, i.e, bothφ andψ areclosed, thenδ(φ ∪ ψ) = 0 by the lemma. Also, ifφ = δη
andδψ = 0, i.e.,φ is exactandψ is closed, thenδ(η∪ψ) = δη∪ψ = φ∪ψ, i.e.,φ∪ψ is exact. Therefore,
the cup product on the chain level induces a map

Hk(X;R) ×H l(X;R)
∪
→ Hk+l(X;R).

Since the cup product is bilinear, by the universal propertyof tensor product, we have a map

Hk(X;R) ⊗H l(X;R)
∪
→ Hk+l(X;R).

HenceH∗(X;R) := ⊕∞
i=0H

i(X;R) is an associative graded ring.

Lemma 4.1.2. Givenf : X → Y , the induced mapf∗ : Cn(X;R)→ Cn(Y ;R) satisfies

f∗(φ ∪ ψ) = f∗φ ∪ f∗ψ.

Proof. Just unwind definitions. Given cocyclesφ ∈ Ck(X;R) andψ ∈ C l(X;R),

f∗(φ ∪ ψ)(σ) = (φ ∪ ψ)(f ◦ σ) = φ(f ◦ σ|[e0,...,ek])ψ(f ◦ σ|[ek,...,ek+l])

= f∗φ(σ|[e0,...,ek])f
∗ψ(σ|[ek ,...,ek+l]) = (f∗φ ∪ f∗ψ)(σ). �
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4.2. Supercommutativity.

Theorem 4.2.1.α ∪ β = (−1)klβ ∪ α, if α ∈ Hk(X;R) andβ ∈ H l(X;R).

Such a relation is calledgraded commutative, skew-commutative, or supercommutative. Note that the cup
product isNOTsupercommutative on the chain level. The proof (which is rather involved) will be postponed
until next time.

Comparison with de Rham theory: If we haveω ∈ Ωk(X) andη ∈ Ωl(X), then we have thewedge
productω ∧ η = (−1)klη ∧ω, already on the chain level! This is because the skew-commutativity was built
into the definition:ω(x)(v1, . . . , vk) = (−1)|σ|ω(x)(σ(v1, . . . , vk)), where|σ| is the sign of a permutation
σ.

Example: ConsiderX = T 2 given as in Figure 1. We will do calculations in simplicial (co)-homology.
Supposeφ ∈ C1(X) is given byφ(a) = φ(c) = 1 andφ(b) = 0. Thenδφ(A) = δφ(B) = 0. Hence

a

a

b b
c

A

B

FIGURE 1.

δφ = 0. Similarly, ψ ∈ C1(X) is given byψ(b) = ψ(c) = 1 andψ(a) = 0, and δψ = 0. Now,
(φ∪ψ)(A) = φ(a)ψ(b) = 1 and(φ∪ψ)(B) = φ(b)ψ(a) = 0. SinceA−B generatesH2(X) = Z, we have
(φ∪ψ)(A−B) = 1, in other words,φ∪ψ generatesH2(X) = Z. We also verify that(ψ∪φ)(A−B) = −1,
although the skew-commutativity does not hold on the chain level!

Finally, we discuss a little bit of Poincaré duality. Observe thatφ could have been defined as follows: take
a closed curveb′ parallel to and oriented in the same direction asb. Thenφ(x) is the oriented intersection
number ofx with b′. Similarly ψ can be defined by taking the oriented intersection number with−a′. The
curvesb′ and−a′ are said to be thePoincaŕe dualsof φ andψ.

4.3. Proof of Theorem 4.2.1.The proof is given in several steps.

Step 1.We denote by[ej0 , . . . , ejm ] the restriction to∆m → ∆n of the linear mapRm → Rn that sendsei,
i = 0, . . . ,m, to eji . A particular case we are interested in is[en, . . . , e0] : ∆

n → ∆n which sendsei to
en−i. This induces the map

ρ : Cn(X)→ Cn(X),

σ 7→ εnσ[en, . . . , e0],

whereεn is the constant(−1)n(n+1)/2.
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Step 2.ρ is a chain map, i.e.,∂ρ = ρ∂.
Forσ : ∆n → X,

∂ρ(σ) = ∂(εnσ[en, . . . , e0]) = εn
∑

i(−1)
iσ[en, . . . , ên−i, . . . , e0],

ρ∂(σ) = ρ(
∑

i(−1)
iσ[e0, . . . , êi, . . . , en]) = εn−1

∑
i(−1)

iσ[en, . . . , êi, . . . , e0]

= εn−1
∑

i(−1)
n−i[en, . . . , ên−i, . . . , en],

and∂ρ = ρ∂ holds by observing thatεn = (−1)nεn−1.

Step 3. ρ and id are chain homotopic, i.e., there exists an operatorP : C∗(X) → C∗+1(X) such that
ρ− id = ∂P + P∂.

The chain homotopy operatorP is a variation of the prism operator. Consider the prismπ : ∆n× [0, 1]→
∆n; label its verticesvi = ei × {0} andwi = ei × {1}, i = 0, . . . , n. We then define

Pσ =
∑

i(−1)
iεn−iσπ[v0, . . . , vi, wn, . . . , wi],

where[v0, . . . , vi, wn, . . . , wi] refers to composition with∆n → ∆n × [0, 1] sendingej to thejth vertex in
the list. (Recall the prism operator mapsσ 7→

∑
i(−1)

i(σ × id)[v0, . . . , vi, wi, . . . , wn].)
Omittingσπ from the notation, we compute:

∂P =
∑

i(−1)
iεn−i∂[v0, . . . , vi, wn, . . . , wi]

=
∑

i≥j(−1)
i+jεn−i[v0, . . . , v̂j , . . . , vi, wn . . . , wi] +

∑
i≤j(−1)

n−j+1εn−i[v0, . . . , vi, wn, . . . , ŵj , . . . , wi],

P∂ = P (
∑

j(−1)
j [v0, . . . , v̂j , . . . , vn])

=
∑

i<j(−1)
j(−1)iεn−i−1[v0, . . . , vi, wn, . . . , ŵj , . . . , wi]

+
∑

i>j(−1)
j(−1)i+1εn−i[v0, . . . , v̂j , . . . vi, wn, . . . , wi]

=
∑

i>j(−1)
i+j+1εn−i[v0, . . . , v̂j , . . . vi, wn, . . . , wi]

+
∑

i<j(−1)
i+jεn−i−1[v0, . . . , vi, wn, . . . , ŵj , . . . , wi].

Apart from thei = j terms in∂P , we have cancellation by observing thatεn−i = (−1)n−iεn−i−1. The
remaining terms giveεn[wn, . . . , w0]− [v0, . . . , vn] (check this!); this prove the chain homotopy.

Step 4.Recall that if two chain mapsf, g : C∗ → D∗ are chain homotopic, then they induce the same map
on cohomologyf∗, g∗ : H∗(D∗)→ H∗(C∗). In particular, this holds forid, ρ : C∗(X)→ C∗(X).

Given cocyclesφ ∈ Ck(X), ψ ∈ C l(X), ρ∗(φ ∪ ψ) is cohomologous toφ ∪ ψ and

ρ∗(φ ∪ ψ)(σ) = (φ ∪ ψ)(ρσ) = εk+lφ(σ[ek+l, . . . , el])ψ(σ[el , . . . , e0])

= εk+lεlεkψ(ρ(σ[e0, . . . , el]))φ(ρ(σ[el , . . . , ek+l]))

= (−1)klρ∗ψ ∪ ρ∗φ(σ).

by noting thatεk+l = (−1)klεlεk. This shows that[φ] ∪ [ψ] = (−1)kl[ψ] ∪ [φ].
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5. COMPUTATIONS

HW: Hatcher, Section 3.2: 1–8.

5.1. Preliminaries. Recall the cup product on the level of chains: Ifφ ∈ Ck(X), ψ ∈ C l(X), andσ ∈
Ck+l(X), then

(φ ∪ ψ)(σ) = φ(σ[e0, . . . , ek])ψ(σ[ek , . . . , ek+l]).

The cup product descends to cohomology and gives:

Hk(X)×H l(X)→ Hk+l(X),

Hk(X,A) ×H l(X)→ Hk+l(X,A),

Hk(X,A) ×H l(X,A)→ Hk+l(X,A).

The latter two are straightforward when we recall thatφ ∈ Ck(X,A) is φ ∈ Ck(X) such thatφ(Ck(A)) =
0.

Lemma 5.1.1. The cup product descends to a map:

Hk(X,A) ×H l(X,B)→ Hk+l(X,A ∪B),

if A,B are open subsets ofX or subcomplexes of CW complexes ofX.

Proof. Note that it is not clear whetherφ∪ψ(σ) = 0 for φ ∈ Ck(X,A), ψ ∈ C l(X,B), σ ∈ Ck+l(A∪B).
Hence we consider the replacement

Ck(X,A) × C l(X,B)→ Ck+l(X,A+B),

where elements ofCk+l(X,A +B) vanish on sums of chains inA and chains inB.
Now recall the inclusioni : Cn(A+B)→ Cn(A ∪ B). It was shown to have a chain homotopy inverse

in Math 225C. Hence, dualizing, we obtain a quasi-isomorphism i∗ : Cn(A ∪ B) → Cn(A + B). This in
turn implies that the mapCn(X,A ∪B)→ Cn(X,A +B) is a quasi-isomorphism: Apply the five lemma
to:

Hn(X,A ∪B) −−−−→ Hn(X) −−−−→ Hn(A ∪B)
y

yid

y≃

Hn(X,A +B) −−−−→ Hn(X) −−−−→ Hn(A+B).

The lemma then follows. �

We also have a natural pairing〈, 〉 : H i(X,A) ×Hi(X,A)→ R induced from

〈, 〉 : Ci(X,A) × Ci(X,A) 7→ R,

(φ, σ) 7→ 〈φ, σ〉 = φ(σ).

(Check this is well-defined!) Givenf : X → Y , there are mapsf∗ : Hi(X) → Hi(Y ) andf∗ : H i(Y ) →
H i(X) satisfying the adjoint condition:

〈φ, f∗σ〉 = 〈f
∗φ, σ〉.
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5.2. Basic calculation. Giveni+ j = n, Rn = Ri ×Rj , Ri = Ri × {0}, Rj = {0} × Rj,

H i(Rn,Rn − Rj)×Hj(Rn,Rn − Ri)
∪
−→ Hn(Rn,Rn − {0})

takes generator times generator to generator. Note thatRn − {0} = (Rn − Rj) ∪ (Rn − Ri).
Intuition: The basic calculation is the Poincaré dual of that fact that two planesRj andRi of complemen-

tary dimension intersect at a point.
Consider the projections

π1 : (R
n,Rn − Rj)→ (Ri,Ri − {0})

π2 : (R
n,Rn − Ri)→ (Rj ,Rj − {0})

that project out theRj-andRi-directions. Observe thatHi(R
i,Ri − {0}) is generated by an affine linear

simplexσi : ∆i →֒ Ri which passes through{0} in its interior. Let σ̃i be a lift of σi, i.e., π1σ̃i = σi.
Let φ ∈ H i(Ri,Ri − {0}) be a cocycle such that〈φ, σi〉 = 1; its existence is guaranteed for example
by the Universal Coefficient Theorem. Then〈π∗1φ, σ̃i〉 = 1. Similarly, there existσj andψ such that
〈π∗2ψ, σ̃j〉 = 1. Finally, it is not hard to find ann-simplexσ̃n for Hn(R

n,Rn − {0}) whose fronti face and
backj face agree with somẽσi andσ̃j . This implies that〈π∗1φ ∪ π

∗
2ψ, σ̃n〉 = 1.

5.3. Calculation of H∗(CPn;Z).

Theorem 5.3.1.H∗(CPn;Z) = Z[α]/(αn+1), and the degree ofα is 2.

Proof. We suppressZ-coefficients and writePn for CPn. Recall thatPn has a singlei-cell for i =
0, 2, 4, . . . , 2n. HenceH i(Pn) = Z for i = 0, 2, . . . , 2n and0 otherwise.

We argue by induction onn. Forn = 1, H∗(P1) = Z[α]/(α2) = 0. SupposeH∗(Pn−1) = Z[α]/(αn).
We consider the inclusioni : Pn−1 → Pn and the induced mapi∗ : H∗(Pn) → H∗(Pn−1), which is an
algebra homomorphism and is an isomorphism forH i with i ≤ 2n−2. Hence ifα is a generator forH2(Pn)
thenαn−1 generatesH2n−2(Pn). It remains to show thatαn generatesH2n(Pn).

Let Pi andPj, i+ j = n, be projective planes inPn that intersect transversely (i.e., in a point). The fact
that they intersect in a point will be translated intoαi ∪ αj generatingH2n(Pn).

We have the diagram

H i(Pn)×Hj(Pn)
∪

−−−−→ Hn(Pn)
xa

xb

H i(Pn,Pn − Pj)×Hj(Pn,Pn − Pi)
∪

−−−−→ Hn(Pn,Pn − {pt})
yc

yd

H i(Cn,Cn −Cj)×Hj(Cn,Cn − Ci)
∪

−−−−→ Hn(Cn,Cn − {0}).

This commutes by the naturality of the cup product.
It remains to show that the mapsa, b, c, d are isomorphisms.b is an isomorphism by the relative exact

sequence for the pair(Pn,Pn − {pt}). d is an isomorphism by excision (exciseZ = Pn−1). For one of the
components ofa, we consider the relative sequence for(Pn,Pn − Pj), observing thatH i(Pn − Pj) = 0
sincePn − Pj deformation retracts ontoPi−1 (HW!). c is similar. �
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6. EILENBERG-ZILBER THEOREM

This presentation follows Greenberg-Harper, “Algebraic Topology”.

6.1. Statement of theorem. Given chain complexes(C∗, ∂) and(D∗, ∂
′), their tensor product can also be

viewed as a chain complex where(C∗ ⊗D∗)n := ⊕i(Ci ⊗Dn−i) and the boundary map is

(∂ ⊗ ∂′)(x⊗ y) = ∂x⊗ y + (−1)ix⊗ ∂′y,

wherex ∈ Ci andy ∈ Dn−i.

Question: Do you need the(−1)i?

Goal: Given topological spacesX andY , relateC∗(X)⊗ C∗(Y ) andC∗(X × Y ).

There is a map going one way, called theEilenberg-Zilber map:

A : Cn(X × Y ) 7→ (C∗(X) ⊗C∗(Y ))n,

σ = (πXσ, πY σ) 7→
n∑

i=0

πXσ[e0, . . . , ei]⊗ πY σ[ei, . . . , en],

whereπX : X × Y → X andπY : X × Y → Y are projections.

HW: Verify thatA is a chain map.

We now view this more categorically: LetTop×Top be the product ofTop with itself, i.e., the objects

are pairs(X,Y ) of spaces and the morphisms are pairs of maps(X,Y )
(f,g)
−→ (X ′, Y ′). Then there exist two

functorsF,F ′ : Top×Top→ Ch,

F (X,Y ) = C∗(X × Y ), F ′(X,Y ) = C∗(X) ⊗ C∗(Y ).

HW: Check these are actually functors.

Lemma 6.1.1.A : F ⇒ F ′ is a natural transformation.

Proof. We unwind definitions: Given(X,Y )
(f,g)
−→ (X ′, Y ′), we verify the commutativity of the diagram

Cn(X × Y )
F (f,g)
−−−−→ Cn(X

′ × Y ′)
yA

yA

(C∗(X) ⊗ C∗(Y ))n
F ′(f,g)
−−−−→ (C∗(X

′)⊗ C∗(Y
′))n.

One way maps

σ = (πXσ, πY σ)
A
7→

∑

i

πXσ[e0, . . . , ei]⊗ πY σ[ei, . . . , en]

F ′(f,g)
7→

∑

i

fπXσ[e0, . . . , ei]⊗ gπY σ[ei, . . . , en].

The other way gives the same result. �

Theorem 6.1.2(Eilenberg-Zilber). There exists a natural transformationB : F ′ ⇒ F such thatAB :
F ′ ⇒ F ′ andBA : F ⇒ F are chain homotopic.
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What do we mean by “chain homotopic” natural transformations? Given functorsF,F ′ : C → Ch, two
natural transformationsA,B : G⇒ G′ arechain homotopicif there existH(X) : F (X) 7→ F ′(X), where
Fi(X) is mapped toF ′

i+1(X) such thatA(X) − B(X) = ∂H(X) −H(X)∂, and such that the following
diagram commutes:

F (X)
Ff
−−−−→ F (Y )

yH(X)

yH(Y )

F ′(X)
F ′f
−−−−→ F ′(Y ).

In particular,A : C∗(X ⊗ Y )→ (C∗(X)⊗ C∗(Y )) is a chain homotopy equivalence.

Remark6.1.3. The homotopy inverseB : C∗(X) ⊗ C∗(Y )→ C∗(X × Y ) can actually be given explicitly
using “shuffle homomorphisms”.

Corollary 6.1.4 (Künneth formula). If R is a principal ideal domain (PID), then

Hn(X × Y ) ≃ (⊕n
i=0Hi(X)⊗Hn−i(Y ))⊕ (⊕n

i=0 Tor1(Hi(X),Hn−i−1(Y ))).

The proof is very similar to the proof of the Universal Coefficient Theorem and can be found on pp.
253-256 of Greenberg-Harper.

6.2. Acyclic models. A category with models(A,M) is a categoryA with a set of objectsM, called the
set ofmodels.

If F : A → Ch is a functor, then letFi : A → R −Mod be the functor which sendsX to the degree
i part (F (X))i of F (X). (For today assume thatCh = Ch≥0, i.e., chain complexes such thatCi = 0 for
i < 0.)

Definition 6.2.1. A basis forFi is a collection{dN ∈ Fi(N) | N ∈ Ni}, whereNi ⊂ M, such that, for
anyX ∈ ob(X), Fi(X) is the freeR-module generated by

{Fi(u)(dN ) | N ∈ Ni, u ∈ Hom(N,X)}.

We sayF is free if all the Fi have bases fori ≥ 0.

Examples.The functorsF,F ′ : Top×Top→ Ch

F (X,Y ) = C∗(X × Y ), F ′(X,Y ) = C∗(X) ⊗ C∗(Y ).

from the previous subsection have modelsM = {(∆i,∆j), i, j ≥ 0} and are free.

1. ForFn, chooseNn = {(∆n,∆n)} anddi ∈ Fn(∆
n,∆n) = Cn(∆

n ×∆n) given by the diagonal map
∆n → ∆n × ∆n. GivenFn(X,Y ) = Cn(X × Y ), considerσ : ∆n → X × Y . It can be written as a
composition

∆n dn−→ ∆n ×∆n u=(πXσ,πY σ)
−→ X × Y,

so thatσ = Fn(πXσ, πY σ)(dn).

2. ForF ′
n, chooseNn = {(∆i,∆j) | i+ j = n} andδi ⊗ δj ∈ F ′

n(∆
i,∆j) = (C∗(∆

i)⊗ C∗(∆
j))n, such

thatδi = id : ∆i → ∆i andδj = id : ∆j → ∆j. Givenσ ⊗ τ ∈ F ′
n(X,Y ) = (C∗(X) ⊗ C∗(Y ))n where

σ : ∆i → X andτ : ∆j → Y , σ ⊗ τ = F ′
n(σ × τ)(δi ⊗ δj).
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An augmented chain complexis a chain complex withCi = 0 for i < −1, C−1 = R, andC0
ε
→ C−1

surjective. Recall that givenC∗(X) we can extend it to an augmented chain complex· · · → C1(X) →

C0(X)
ε
→ R→ 0 by settingε(

∑
i aiσi) =

∑
i ai. Its homology is thereduced homology ofX.

Let Ch′ ⊂ Ch≥−1 be the (full) subcategory of augmented chain complexes. We can viewF andF ′ as
functors toCh′ instead by augmentingC∗(X × Y ) andC∗(X) ⊗ C∗(Y ).

Definition 6.2.2. A functorF : A → Ch′ is acyclic if for everyH∗(F (M)) = 0 for everyM ∈ M.

Examples. F andF ′ are both acyclic.F is clear, since∆i × ∆j is contractible and hence its reduced
homologyH̃∗(∆

i ×∆j) = 0. The case ofF ′ is HW.

Theorem 6.2.3.Let (A,M) be a category with models andF,F ′ : A → Ch′ be functors such thatF is
free andF ′ is acyclic. Then there is a natural transformationΦ : F ⇒ F ′ which is unique up to chain
homotopy.

Corollary 6.2.4. If F andF ′ are both free and acyclic, thenF , F ′ are chain homotopy equivalent.

Proof of Theorem 6.2.3.We will prove the existence of the natural transformationΦ. The definition of the
chain homotopyH is similar.

For eachX ∈ ob(A) we want to defineΦ(X) : F (X)→ F ′(X). Let {dN ∈ F (N)}N∈Ni
be a basis for

Fi. ThenFi(X) is freely generated byFi(u)(dN ) asdN ranges inNi andu ranged inHom(N,X).

Step 1. Suppose we have definedΦi(N)(dN ) for all N ∈ Ni. ThenΦi(X) : Fi(X)→ F ′
i (X) is determined

by the following commutative diagram:

Fi(N)
Φi(N)
−−−−→ F ′

i (N)

Fi(u)

y
yF ′

i (u)

Fi(X)
Φi(X)
−−−−→ F ′

i (X),

i.e.,Φi(X)(Fi(u)(dN )) = F ′
i (u)(Φi(N)(dN )).

We need to verify the naturality ofΦi : Fi ⇒ F ′
i , i.e., forf : X → Y with Φi(X), Φi(Y ) that we just

defined, the diagram is commutative:

Fi(X)
Φi(X)
−−−−→ F ′

i (X)

Fi(f)

y
yF ′

i (f)

Fi(Y )
Φi(Y )
−−−−→ F ′

i (Y ).

This is HW. Note that this step only uses the freeness ofF .

Step 2.By induction oni we defineΦi(X) for all X ∈ ob(A) so thatΦi : Fi ⇒ F ′
i is a natural transforma-

tion. Suppose for allj < i we have defined (the unique)Φj(X) for all X ∈ ob(A) so thatΦj : Fj ⇒ F ′
j is

a natural transformation.
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We defineΦi(N)(dN ), N ∈ Ni, to be any element such that∂Φi(N)(dN ) = Φi−1(N)∂dN ; such an
element exists by the acyclicity ofF ′ and the fact thatΦi−1(N)∂dN is closed.

Fi(N)
∂

−−−−→ Fi−1(N)

Φi(N)

y
yΦi−1(N)

F ′
i (N)

∂
−−−−→ F ′

i−1(N).

Then by Step 1 we can defineΦi(X) for all X ∈ ob(A).
Wheni = 0, we similarly defineΦ0(N)(dN ) to be any element such thatε′Φ0(N)(dN ) = εdN :

F0(N)
ε

−−−−→ R

Φ0(N)

y
y≃

F ′
0(N)

ε′
−−−−→ R,

and extend toΦ0(X) using Step 1.

Step 3.To combine the natural transformationsΦi into Φ, we need to verify that∂Φi(X) = Φi−1(X)∂:

∂Φi(X)(Fi(u)(dN )) = ∂(F ′
i (u)Φi(N)dN ) = F ′

i−1(u)∂(Φi(N)dN ) = F ′
i−1(u)Φi−1(N)∂dN

= Φi−1(X)Fi−1(u)∂dN = Φi−1(X)∂(Fi(u)dN ).

�
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7. ORIENTATIONS

Today our topological spaces are topological manifoldsM of dimensionn, i.e., Hausdorff topological
spaces covered by open sets homeomorphic toRn.

7.1. Definitions.

Basic Calculation.Givenx ∈M ,

Hn(M,M − x) ≃ Hn(R
n,Rn − x) ≃ Hn−1(R

n − x) ≃ Hn−1(S
n−1) ≃ Z.

We writeHn(M |A) := Hn(M,M −A).

Definition 7.1.1.

(1) An orientation atx is a choice of generator ofHn(M |x).
(2) An orientation ofM is a functionx 7→ µx ∈ Hn(M |x) with local consistency: for eachx ∈ M

there exists an open ballB ∋ x andµB ∈ Hn(M |B) such thatµy = φB,yµB for all y ∈ B under
the natural mapφB,y : Hn(M |B)→ Hn(M |y).

(3) If an orientation exists forM , thenM is orientable.

Recall that ifM is smooth, thenM is orientable if the “determinant line bundle”ΛnT ∗M is trivial (take
this as the definition forM smooth), which is equivalent to the existence of a nonvanishing section (aka
volume form)M → ΛnT ∗M . This is equivalent to a smooth (with respect toM ) choice of orientation of
T ∗
xM .

Orientation double cover. Denote the units ofHn(M |x) byHn(M |x)
×. Then

M̃ =
∐

x∈M

Hn(M |x)
×

and there is a mapπ : M̃ → M which sendsHn(M |x)
× → x. We topologizeM̃ by choosing a basis

{UB,µB
} so thatπ : M̃ → M is a covering space: Given an open ballB ∋ x and a generatorµB of

Hn(M |B), letUB,µB
:= {φB,y(µB) | y ∈ B}.

Claim/HW:M̃ is orientable.

Lemma 7.1.2. If M is connected, theñM is orientable if and only if̃M has2 connected components.

Proof. If M̃ has2 components, then each sheet is homeomorphic toM , and henceM is orientable. IfM is
orientable, then it has2 orientations and each orientation defines a component. �

Analogously, we can defineR-orientations forR a commutative ring with identity in a similar manner.
Note thatHn(M |x;R) ≃ Hn(M |x)⊗R ≃ R. Then:

• anR-orientation atx is a choice of unitu ∈ Hn(M |x;R)
×,

• there is a covering spaceMR× →M with fibersHn(M |x;R)
×, and

• anR-orientation ofM is a section ofMR× →M .
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7.2. Fundamental class.

Theorem 7.2.1.LetM be a closed (= compact without boundary), connectedn-manifold.

(A) If M isR-orientable, thenHn(M ;R)→ Hn(M |x;R) is an isomorphism for allx ∈M .
(B) If M is notR-orientable, thenHn(M ;R) → Hn(M |x;R) ≃ R is an injection with image{r ∈

R | 2r = 0}.
(C) Hi(M ;R) = 0 for i > n.

A generator ofHn(M ;R) ≃ R is called afundamental classfor M with respect toR.

Proof. We’ll prove (A) and (C), leaving (B) for HW. IfM is R-orientable, then there is a sectionσ of
MR× →M .

We inductively prove that for allA ⊂M compact,

(i) there exists a unique classσA ∈ Hn(M |A,R) such thatφA,x(σA) = σ(x), and
(ii) Hi(M |A;R) = 0 for i > n.

SuppressingR, we show the following:
(1) If (i) and (ii) hold for compact setsA, B,A ∩B, then they hold forA ∪B.
(2) WriteA as a union ofA1, . . . , An, where eachAi is contained in an open ball. SinceHn(M |Ai) ≃

Hn(R
n|Ai) by excision, we reduce to the caseM ≃ Rn.

(3) If A is a closed ball inM = Rn, (i) and (ii) are immediate.
(4) Argue for an arbitrary compact setA ⊂ Rn.

(1) follows from the Mayer-Vietoris sequence

0 −−−−→ Hn(M |A ∪B)
Φ

−−−−→ Hn(M |A)⊕Hn(M |B)
Ψ

−−−−→ Hn(M |A ∪B),

whereΦ(α) = (α,−α) andΨ(α, β) = α+ β. In particularΨ(σA,−σB) = σA− σB = 0, and comes from
someσA∪B under the mapΦ. (Check consistency + uniqueness!)

(4) If A is an arbitrary compact set inRn, supposeα ∈ Hi(R
n|A) is represented by a relative cyclez.

ThenSupp(∂z) is a compact subset ofRn − A, and hence has positive finite distance toA. We can then
coverA with closed ballsB1, . . . , Bk disjoint fromSupp(∂z) and view it as an element ofHi(R

n| ∪i Bi)
which maps toα underHi(R

n| ∪i Bi) → Hi(R
n|A). If i > n, then (3) implies thatα = 0. If i = n, then

existence in (i) is clear. (Check uniqueness!) �
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8. POINCARÉ DUALITY

HW: Hatcher, Section 3.3: 1,2,5,6,16,22,26.

8.1. Cap product. Thecap productis defined as follows:

∩ : Ck(X)× C l(X)→ Ck−l(X)

(σ, φ) 7→ φ(σ[e0, . . . , el])σ[el, . . . , ek].

Lemma 8.1.1.∂(σ ∩ φ) = (−1)l(∂σ ∩ φ− σ ∩ δφ).

This is left for HW; it’s the same kind of verification as for the cup product. The lemma implies that∩
descends to:

∩ : Hk(X)×H l(X)→ Hk−l(X).

Naturality. Given a mapf : X → Y , consider the diagram

Hk(X) ×H l(X) Hk−l(X)

Hk(Y )×H l(Y ) Hk−l(Y ).

f∗

∩

f∗f∗

∩

Lemma 8.1.2. f∗σ ∩ φ = f∗(σ ∩ f
∗φ).

Proof. Follows fromφ(fσ[e0, . . . , el])fσ[el, . . . , ek] = f∗φ(σ[e0, . . . , el])fσ[el, . . . , ek]. �

8.2. Statement of Poincaŕe duality.

Theorem 8.2.1.LetM be a closedR-orientablen-manifold and[M ] anR-fundamental class. Then

[M ]∩ : Hk(M ;R)→ Hn−k(M ;R)

is an isomorphism.

The most important thing to know about Poincaré duality is that it is really alocal result.

Theorem 8.2.2.There exists a cohomology theoryH i
c(X;R) calledcompactly supported cohomologyand

a duality map
DM : Hk

c (M ;R)
∼
−→ Hn−k(M ;R).

In particular, we may takeM = Rn.

8.3. Compactly supported cohomology.Suppress the coefficient ringR. The chain complexCi
c(X) con-

sists ofφ ∈ Ci(X) such that there exists a compact setK ⊂ X for whichφ(σ) = 0 for all σ with support
onX −K. Sinceδφ also has the same property,δφ ∈ Ci+1

c (X) and(C∗
c (X), δ) is a cochain complex. Its

cohomology isH i
c(X), calledcompactly supported cohomology.

Comparison with de Rham theory.Recall from Math 225B the de Rham complex:

· · · → Ωi(M)
d
−→ Ωi+1(M)→ . . . .

In this setting we defined the compactly supportedi-forms by

Ωi
c(M) = {ω ∈ Ωi(M) | Supp(ω) is compact},
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and its cohomology isH i
c,dR(M).

Omitting “dR”, the version of Poincaré duality for de Rham theory is that

H i
c(M)×Hn−i(M)→ Hn

c (M)
∼
−→ R

(ω, η) 7→ ω ∧ η 7→
∫
M ω ∧ η

is a nondegenerate pairing, i.e., for eachω ∈ H i
c(M) there existsη ∈ Hn−i(M) such that

∫
ω ∧ η 6= 0.

Compare this to the situation in singular theory (ignoring signs):

H i
c(M)×Hn−i(M)

([M ]∩,id
−→ Hn−i(M)×Hn−i(M)

〈,〉
−→ R,

(φ,ψ) 7→ ([M ] ∩ φ,ψ) 7→ 〈[M ] ∩ φ,ψ〉 = 〈[M ], φ ∪ ψ〉.

Hence[M ]∩ corresponds to integration in de Rham theory.

We will now explain a more algebraic definition ofH i
c(X) in terms of direct limits. The initial observation

is the following: Eachφ ∈ Ci
c(X) belongs to someCi(X|K) for K ⊂ X compact. Also ifK ⊂ L there is

an inclusion of chain complexes
φK,L : Ci(X|K)→ Ci(X|L)

and a corresponding map on cohomology

φK,L : H i(X|K)→ H i(X|L).

Definition 8.3.1. A directed systemis a partially ordered set(I,≤) such that givenα, β ∈ I there existsγ
such thatα ≤ γ andβ ≤ γ.

In our case the directed systemI is the set of compact subsets ofX and≤ is given by inclusion.
A directed system(I,≤) can be viewed as a categoryI such thatob(I) = I andHom(α, β) is one

element ifα ≤ β and empty otherwise.

Definition 8.3.2. Given a functorF : I → C (so this means we have assignmentsα 7→ F (α) and morphisms
Fαβ : F (α)→ F (β)), its direct limit or colimit is an objectC in C together with morphisms{φα : F (α)→
C} such that ifα ≤ β thenφα = φβFαβ , and it satisfies the universal property: IfA is any other object
in C together with morphismsψα : F (α) → A satisfyingψα = ψβFαβ , then there is a unique morphism
f : C → A such thatψα = fφα.

Slightly confusing notation:lim→ F (α) or colim→ F (α).

Lemma 8.3.3. Colimits exist inAb or R−Mod.

Proof. This is an explicit construction: Take⊔αF (α)/ ∼, wherexα ∈ F (α) is identified withFαβ(xα) ∈
F (β). Check the universal property! �

HW: Show that taking direct limits commutes with taking homology in R−Mod. In particular, the direct
limit of exact sequences is exact.

Claim 8.3.4. lim→H i(X|L) = H i
c(X).

Proof. This is a straightforward unwinding of the definitions. An element oflim→H i(X|L) is represented
by a cocycleφ ∈ Ci(X|K) for someK and[φ] = 0 ∈ lim→H i(X|L) if and only if φ is a coboundary in
someCi(X|L) for K ⊂ L. �
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8.4. Definition of DM . We now defineDM : H i
c(M) → Hn−i(M) for anR-orientedM . For each

compact setK ⊂M , we have the “fundamental class”µK and we define

µK∩ : H i(M |K)→ Hn−i(M).

WhenK ⊂ L compact, we want to show thatµK∩ = µL ∩ ◦φ
∗
K,L, i.e., the following diagram is commuta-

tive:

H i(M |K) Hn−i(M)

H i(M |L)

φ∗

K,L

µK∩

µL∩

This follows fromµK ∩ φ = φL,K(µL)∩ φ = µL ∩ φ
∗
L,K(φ). By the universal property of direct limits, we

have a unique map

DM : H i
c(M)→ Hn−i(M).

8.5. Proof of Poincaré duality. The proof is given in several steps.

Step 1. The base caseM = Rn. Let Bj ⊂ Rn be a closed ball of radiusj about the origin. Then
H i

c(R
n) = limj→∞H i(Rn|Bj). Using excision etc., we find thatH i(Rn|Bj) ≃ R if i = n and0 otherwise;

alsoH i(Rn|Bj)
∼
−→ H i(Rn|Bj+1). HenceH i

c(R
n) ≃ R if i = n and0 otherwise. SinceHn−i(M) ≃ R

if i = n and0 otherwise, it suffices to check

µBj
∩ : Hn(Rn|Bj)

∼
−→ H0(R

n).

This is immediate from takingµBj
to be an “embedded”n-simplex which containsBj and taking the

generator ofHn(Rn|Bj) to evaluate to1 onµBj
.

Step 2.Assume the following diagram is sign-commutative: ForU , V open andM = U ∪ V ,

(8.5.1)

Hk
c (U ∩ V ) Hk

c (U)⊕Hk
c (V ) Hk

c (M) Hk+1
c (U ∩ V )

Hn−k(U ∩ V ) Hn−k(U)⊕Hn−k(V ) Hn−k(M) Hn−k−1(U ∩ V ).

DU∩V DU⊕−DV DM DU∩V

By the five lemma, ifDU ,DV ,DU∩V are isomorphisms, then so isDM .

Step 3. Suppose there is a filtrationU1 ⊂ U2 ⊂ . . . of open sets such that∪iUi = M andDUi
is an

isomorphism, then so isDM : Observe that

Hk
c (Ui) = lim

K⊂Ui

Hk(Ui|K) ≃ lim
K⊂Ui

Hk(M |K)

and hence

Hk
c (M) = lim

i→∞
Hk

c (Ui).
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Similarly we can prove thatHn−k(M) = limi→∞Hn−k(Ui) (HW). It is also easy to show (HW) the
commutativity of:

Hk
c (Ui) Hn−k(Ui)

Hk
c (Ui+1) Hn−k(Ui+1).

DUi

DUi+1

HenceDUi
isomorphism for eachi impliesDM isomorphism.

Step 4.ForM an open subset ofRn, coverM by countably many open ballsVi; their finite intersections are
convex open balls≃ Rn. Then by repeated application of Step 2, forUi := ∪j≤iVj,DUi

is an isomorphism.
Next Step 3 applied toU1, U2, . . . implies thatDM is an isomorphism. For second countableM , cover
M by countably many open ballsVi; their finite intersections are open subsets ofRn for whichD∗ is an
isomorphism. Hence the same exhaustion procedure shows that DM is an isomorphism forM second
countable. In general, need to use Zorn’s lemma....

8.6. Proof of (8.5.1). We need to verify three things:

(a) The exactness of the top row.
(b) The commutativity of the left two squares.
(c) The commutativity of the right square.

(a) follows from the exactness of

. . . Hk(M |K ∩ L) Hk(M |K)⊕Hk(M |L) Hk(M |K ∪ L) . . . ,

whereK ⊂ U andL ⊂ V compact, identificationsHk(M |K ∩L) ≃ Hk(U ∩V |K ∩L) andHk(M |K) ≃
Hk(U |K), and the fact that the direct limit of an exact sequence is exact.

(b) follows from the commutativity of

Hk(M |K ∩ L) Hk(M |K)

Hn−k(U ∩ V ) Hn−k(U).

µK∩L∩ µK∩

SinceφK,K∩LµK = µK∩L, it suffices to show thatiU∩V,U(φK,K∩LµK ∩ φ) = µK ∩ φ
∗
K,K∩L(φ), where

φ ∈ Hk(M |K ∩ L). Take a representativea of µK with support inU and a representativeα of φ with
support onU ∩ V . Then both sides give〈a, α〉. The three other squares are analogous.

(c) is the hardest part:

Hk(M |K ∪ L) Hk+1(M |K ∩ L) Hk+1(U ∩ V |K ∩ L)

Hn−k(M) Hn−k−1(U ∩ V )

µK∪L∩

r ∼

µK∩L∩

s

WriteA =M −K andB =M −L. We first unwind the definitions of the connecting homomorphisms
r, s. Forr, consider the short exact sequence:

0 C∗(M,A+B) C∗(M,A)⊕ C∗(M,B) C∗(M,A ∩B) 0.
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whereC∗(M,A + B) means cochains vanishing on chains inA and on chains inB. Starting withφ ∈
Ci(M,A ∩ B) with δφ = 0, we pick (φA,−φB) ∈ Ci(M,A) ⊕ Ci(M,B) so thatφ = φA − φB . Then
r(φ) = δφA = δφB . Similarly, starting withz ∈ Ci(M) with ∂z = 0, we pick(zU ,−zV ) ∈ Ci(U)⊕Ci(V )
such thatz = zU − zV . Thens(z) = zU = zV .

We also decomposeµK∪L = αU−L+αU∩V +αV−K (why can we do this?) with supports onU−L,U ∩
V, V −K, respectively. Draw a picture of this! Note thatαU−L + αU∩V representsµK .

We then compute

s(µK∪L ∩ φ) = s(αU−L ∩ φ+ (αU∩V + αV−K) ∩ φ)

= ∂(αU−L ∩ φ)

= ±∂αU−L ∩ φ = ±∂αU−L ∩ (φA − φB)

= ±∂αU−L ∩ φA

= ±∂αU∩V ∩ φA,

where the first line to the second follows from observing thatαU−L is supported inU andαU∩V +αV−K is
supported inV ; the third line to the fourth follows sinceφB is zero onU −L; the the fourth to fifth follows
sinceφA is zero onV −K and∂(αU−L + αU∩V ) vanishes onM −K.

We also compute

µK∩L ∩ r(φ) = µK∩L ∩ δφA = αU∩V ∩ δφA ∼ ±∂αU∩V ∩ φB ,

where∼means “cohomologous to”.

8.7. Lefschetz duality. LetM be a compactR-orientedn-manifold with boundary∂M .

Theorem 8.7.1(Lefschetz duality). The following diagram commutes:

Hk(M,∂M) Hk(M) Hk(∂M) Hk+1(M,∂M)

Hn−k(M) Hn−k(M,∂M) Hn−k−1(∂M) Hn−k−1(M),

[M ]∩ [M ]∩ [∂M ]∩ [M ]∩

and each of the vertical arrows is an isomorphism.

For a slightly more general statement, see Hatcher, Theorem3.43. We’ll explain the terms in the diagram
and indicate the proof:

(1) Fact: There is a collared neighborhood of∂M ⊂ M of the form (−ǫ, 0] × ∂M where∂M =
{0} × ∂M .

(2) We define the fundamental class[M ] ∈ Hn(M,∂M) as:

µAǫ ∈ Hn(M − ∂M |Aǫ) ≃ Hn(M,∂M),

whereAǫ =M − ((−ǫ, 0] × ∂M).
(3)Hk

c (M − ∂M) = limǫ→0H
k(M − ∂M |Aǫ) ≃ Hk(M,∂M) since the direct limit stabilizes. Hence

[M ]∩ : Hk(M,∂M)→ Hn−k(M) is reallyµAǫ∩ : Hk(M − ∂M |Aǫ)→ Hn−k(M).
(4) The first, third, and fourth vertical arrows are isomorphisms by Poincaré duality; hence the second

one is also by the five lemma.
(5) The second and third squares are consequences of∂([M ]∩φ) = ±(∂[M ]∩φ− [M ]∩ δφ). The main

thing to check is that∂[M ] = [∂M ], which is HW.
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8.8. Alexander duality. Refer to Greenberg-Harper, Section 2.7 since we omit the proof.

Theorem 8.8.1(Alexander duality). LetM be a compactR-orientedn-manifold andA ⊂ M a closed
subset. Then there is an isomorphism

DA : lim
U⊃A

Hk(U)
∼
−→ Hn−k(M,M −A).

The direct limitlimU⊃AH
k(U) is with respect to the directed system which consists of opensetsU ⊃ A

directed by reverse inclusion:V ⊂ U impliesU ≤ V .
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9. HOMOTOPY COEXACTNESS

9.1. Basic constructions. We list some basic constructions. LetX,Y be topological spaces.

1. TheconeCX isX × [0, 1]/(x, 1) ∼ (x′, 1) for all x, x′ ∈ X.

2. ThesuspensionSX is

X × [−1, 1]/(x, 1) ∼ (x′, 1), (x,−1) ∼ (x′,−1)

for all x, x′ ∈ X. For example,SSn = Sn+1.

C andS induce functorsTop → Top (these are called “endofunctors”). In the case ofS,X 7→ SX and
f : X → Y is mapped toSf : SX → SY .

3. Thejoin X ∗ Y isX × Y × [0, 1]/ ∼, (x, y, 0) ∼ (x, y′, 0), (x, y, 1) ∼ (x′, y, 1).

The following are operations in the category Top• of pointed topological spaces. Let(X,x0) and(Y, y0)
be pointed topological spaces.

4. Thereduced coneCredX = CX/(x0, t) ∼ (x0, t
′) for all t, t′ ∈ [0, 1]. The basepoint is the equivalence

class of(x0, 0).

5. The reduced suspensionΣX = SX/(x0, t) ∼ (x0, t
′) for all t, t′ ∈ [−1, 1]. The basepoint is the

equivalence class of(x0, 0). We also haveΣSn = Sn+1.

Similarly,Cred andΣ induce endofunctorsTop• → Top•.

6. Thesmash productof (X,x0) and(Y, y0) isX ∧ Y = X × Y/(X ×{y0})∪ ({x0}× Y ). The basepoint
is the equivalence class of(x0, y0) This is the replacement forX × Y in the pointed category.

9.2. Mapping cones and mapping cylinders.For more details see Spanier, Chapter 7, Section 1.
Givenf : X → Y , we can form themapping cylinderMf = Y ⊔ (X × [0, 1])/(x, 1) ∼ f(x) and the

mapping coneCf = Mf/(x, 0) ∼ (x′, 0). In Top• we can analogously form thereduced mapping cylinder
and thereduced mapping coneby collapsing{x0} × [0, 1].

Remark9.2.1. Unfortunately, people usually use the same notation for both the reduced and nonreduced
objects; we need to be careful about which category we’re in.

Recall that[X,Y ] is the homotopy class of mapsX → Y . In [(X,x0), (Y, y0)] there is a distinguished
homotopy class, denoted0, i.e., the homotopy class of maps that are nullhomotopic to the constant map to
y0.

For the moment let us work in Top• or hTop•.

Definition 9.2.2. The sequenceX
f
−→ Y

g
−→ Z is coexactif for all W the sequence

[Z,W ] [Y,W ] [X,W ]
g∗ f∗

is an exact sequence of “pointed sets”, i.e.,Im(g∗) = (f∗)−1(0).

Theorem 9.2.3.Givenf : X → Y , the sequenceX
f
−→ Y

i
−→ Cf is coexact. Herei : Y → Cf is the

obvious inclusion.
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Proof. Let us first unwind definitions: Consider[Cf ,W ]
i∗
−→ [Y,W ]

f∗

−→ [X,W ]. We want to show that
Im i∗ = (f∗)−1(0).

Note thath : Cf →W is equivalent to the following:

• h ◦ i : Y →W , and
• a nullhomotopy fromh ◦ i : X →W to the constant map which maps to the basepointw0 ∈W .

This interpretation immediately implies thatIm i∗ = (f∗)−1(0). �

Corollary 9.2.4. Givenf : X → Y , there exists a long coexact sequence:

(9.2.1) X
f
−→ Y

i
−→ Cf

j
−→ Ci

f1

−→ Cj
i1
−→ Cf1 . . .

HW: There is also a relative version: Givenf = (f0, f1) : (X,A)→ (Y,B), its mapping cone is(Cf0 , Cf1)
and we have the coexact sequence

(X,A)
f
−→ (Y,B)

i
−→ (Cf0 , Cf1).

9.3. Puppe sequence.

Theorem 9.3.1(Puppe sequence). The long coexact sequence(9.2.1)can be written as:

(9.3.1) X
f
−→ Y

i
−→ Cf

j
−→ ΣX

Σf
−→ ΣY

Σi
−→ ΣCf −→ . . . .

Proof. Starting with Equation (9.2.1), we show that (i)Ci ≃ ΣX, (ii) Cj ≃ ΣY , and (iii) f1 ≃ Σf . For
Hatcher’s picture proof see p.397.

(i) Note thatCi = Cf ∪Y CY , where we are identifying the “bases” of the two cones, and henceCi is the
union ofCX andCY glued withf : X → Y . Let r : Ci → Ci/CY = ΣX be the quotient map. Define
s : ΣX → Ci, whereΣX = X × [−1, 1]/ ∼ ands mapsX × (0, 1]/ ∼→ CX by inclusion(x, t) 7→ (x, t)
andX × [−1, 0] → Y × [−1, 0] by (x, t) 7→ (f(x), t). HW: Write down precise formulas that showr and
s are homotopy inverses.

(ii) Now Cj = Ci ∪ C(Cf ) glued alongCf . It is not hard to see thatC(Cf ) deformation retracts toCY
and we are left withCY ∪ CY glued alongY , which isΣY . Let t : Cj → ΣY be the corresponding map.

(iii) It is not hard to see thattf1s : ΣX → ΣY is equal toΣf .
�

9.4. Homological algebra version of Puppe sequence.Consider a chain mapφ : (C∗, ∂C) → (D∗, ∂D).
Just as the mapping coneCf enabled us to put any mapf : X → Y into a “coexact” sequence, there is a
way to putφ∗ into a long exact sequence in homology.

We define the chain complex(Cone(φ), d), called themapping cone off , as follows:

Cone(φ)k = Ck−1 ⊕Dk

and
d : Ck−1 ⊕Dk → Ck−2 ⊕Dk−1

mapsd(x, y) = (∂Cx, φ(x)− ∂Dy). We check that

d2(x, y) = (∂2Cx, φ∂C(x)− ∂Dφ(x) + ∂2Dy) = 0.

The mapping coneCone(φ) fits into the following short exact sequence of chain complexes:

0→ D∗ → Cone(φ)→ C∗−1 → 0.
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HW: (1) Show that its long exact sequence has the form

Hi(D∗)→ Hi(Cone(φ))→ Hi−1(C∗)
φ∗

→ Hi−1(D∗),

where the connecting homomorphism isφ∗.
(2) If f∗ : C∗(X) → D∗ is the induced map fromf : X → Y , thenCone(f∗) is quasi-isomorphic to

C∗(Cf ).
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10. HIGHER HOMOTOPY GROUPS

Today we introduce the higher homotopy groupsπn(X,x0) of a pointed topological spaces(X,x0) and
describe their basic properties.

10.1. Definitions. Let In = [0, 1] × · · · × [0, 1] be then-dimensional unit cube. Denote its boundary∂In

as the set of points inIn where at least one coordinate is0 or 1. As a set, let

πn(X,x0) = [(In, ∂In), (X,x0)].

Whenn = 0, we takeI0 to be a point and∂I0 = ∅. Henceπ0(X,x0) is the set of path components of
X.

Givenf, g : (In, ∂In)→ (X,x0), definefg : (In, ∂In)→ (X,x0) via

(s1, s2, . . . , sn) 7→

{
f(2s1, s2, . . . , sn), 0 ≤ s1 ≤ 1/2
g(2s1 − 1, s2 . . . , sn), 1/2 ≤ s1 ≤ 1

The product descends to a product onπn(X,x0) — the proof is identical to the case ofπ1(X,x0).

Remark: There is an apparent asymmetry in the definition, as the first coordinates1 is preferred. For HW
show the independence offg on the choice of coordinate; this is similar to the proof below of the fact that
πn(X) is abelian forn ≥ 2.

Thenth homotopy groupπn(X,x0) is equivalent to[(Sn, ∗), (X,x0)] (verify this for HW), by recalling
thatSn is the quotient ofDn, where∂Dn is identified to a point.

10.2. Properties of the homotopy groups.

Lemma 10.2.1.πn is a functorTop• → Grp for n ≥ 1 andAb for n ≥ 2.

Proof. Givenφ : (X,x0) → (Y, y0), the induced homomorphismφ∗ : πn(X,x0) → πn(Y, y0) is given by
f 7→ φ ◦ f . It is immediate that:

(1) id∗ : πn(X,x0)→ πn(X,x0) is the identity map.
(2) (φ ◦ ψ)∗ = φ∗ ◦ ψ∗.

We give a pictorial proof thatfg ≃ gf for n ≥ 2. For HW, make it rigorous. LetrC : In →֒ In be an
embedding with image a small squareC in the interior. First homotopf to f ′ so thatf ′(x) = x0 for x 6∈ C
andf ′(x) = fr−1

C (x) for s ∈ C. Similarly defineg′. Then we homotopf ′g′ to g′f ′ by precomposing with
an isotopy ofIn that switches the orders of the squaresC1 andC2 for f andg, respectively. �

HW: Prove thatπn(X × Y, (x0, y0)) ≃ πn(X,x0)× πn(Y, y0).

HW: Prove thatπn(X,x0) = 0 for n ≥ 1, if X is contractible, i.e.,X has the homotopy type of a point.

HW: Let π : (X̃, x̃0) → (X,x0) be a path-connected, locally path-connected covering space. Then
πn(X,x0) = πn(X̃, x̃0) for n ≥ 2.

It follows that, forn ≥ 2, πn(RPm) = πn(S
m) andπn(S1) = πn(R) = 0.

Facts: πn(Sm) = 0 if n < m, = Z if n = m, and is unknown in general forn > m. For example
π3(S

2) = Z. (See Hatcher, Section 4.1 for a partial table.)

Open question:Give a general formula forπn(Sm).
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10.3. Relative homotopy groups. We can generalizeπn to Top2
• → Grp. To defineπn(X,A, x0) of a

pair (X,A) with x0 ∈ A, view In−1 as part of∂In with sn = 0, defineJn−1 as the closure of∂In − In−1

and take homotopy classes of maps

(In, In−1, Jn−1)→ (X,A, x0).

Whenn = 0, letπ0(X,A, x0) be the quotient setπ0(X,x0)/π0(A, x0).
Thenth relative homotopy groupπn(X,A, x0) is equivalent to[(Dn, ∂Dn, ∗), (X,A, x0)].

Lemma 10.3.1.πn(X,A, x0) is a group forn ≥ 2 and an abelian group forn ≥ 3.

Note in particular thatπ1(X,A, x0) is not a group since we cannot compose: givenf : [0, 1] → X with
f(0), f(1) ∈ A andf(0) = x0, we needf(1) = x0 in order to compose....

Exact sequence for(X,A). Analogous to the relative sequence in homology, we have:

Theorem 10.3.2.There is a long exact sequence of homotopy groups

→ πn(A)→ πn(X)→ πn(X,A)→ πn−1(A)→ .

Proof. This is an application of the Puppe sequence

(S0, ∗)→ (S0, S0)→ (D1, ∂D1)→ (S1, ∗)→ (S1, S1)→ (D2, ∂D2)→ .

Just apply[·, (X,A)]. It is easy to see[(Sn, ∗), (X,A)] = πn(X) and [(Dn, ∂Dn), (X,A)] = πn(X,A).
Finally we also see that[(Dn,Dn), (X,A)] = πn(A). �

10.4. Compact-open topology and loop spaces.Given topological spacesX, Y , we can defineY X to be
the space of continuous mapsf : X → Y . It can be topologized via thecompact-opentopology, defined by
taking asubbasisconsisting of setsM(K,U) = {f : X → Y continuous|f(K) ⊂ U}, whereK ⊂ X is a
compact set andU ⊂ X is open. Hence a basis is given by finite intersections ofM(Ki, Ui).

For example, ifX = I, then two pathsf, g : I → Y are “close” if there exists a subdivision0 = t0 <
t1 < t2 < · · · < tn = 1 and open setsUi ⊂ Y so thatf andg both map[ti, ti+1] toUi.

If Y is a metric space with metricd andX is compact, then the compact-open topology onY X coincides
with the topology induced fromd(f, g) = supx∈X d(f(x), g(x)). (Check!)

Given a continuous mapφ : Z → Y X , we can defineψ : Z ×X → Y by ψ(z, x) = φ(z)(x). We have
the following:

Lemma 10.4.1.SupposeX is a locally compact Hausdorff space. Thenφ is continuous if and only ifψ is
continuous.

A topological spaceX is locally compactif ∀x ∈ X andU ∋ x open there is a compact setK such that
x ∈ V ⊂ K ⊂ U for some open setV .

Now let (X,x0) be a pointed topological space. Then thebased loop space(ΩX, x̃0) is the set of loops
f : (I, ∂I) → (X,x0), endowed with the compact-open topology. Its basepointx̃0 is the constant loop at
x0.

Corollary 10.4.2. If X is locally compact and Hausdorff, then[ΣX,Y ] ≃ [X,ΩY ]. In particular, if
X = Sn, thenπn+1(Y ) ≃ πn(ΩY ).

Proof. SinceX is locally compact and Hausdorff, there is a bijection between continuous mapsX×[0, 1] →
Y and continuous mapsX → Y [0,1]. Now observe that a mapf : ΣX → Y is equivalent to a map
f : X × [0, 1] → Y such thatX × {0, 1} and{x0} × [0, 1] map toY . It can therefore be viewed as a map
g : X → Map((I, ∂I), (X,x0)) such thatg(x0) is the constant mapI → X that maps tox0. �
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In categorical language,Ω is an endofunctor ofTop• andΣ andΩ are adjoint functors in the full subcat-
egory ofhTop• whose objects are locally compact and Hausdorff.

10.5. Proof of πn(Sm) = 0 for n < m. View a representative ofπn(Sm) as

f : (In, ∂In)→ (Rm ∪ {∞},∞).

The goal is to homotopf to f1 so that0 is not in the image off . Once this is done,g maps toRm and any
map toRm is contractible to a point.

Assuming0 ∈ Im(f), consider closed ballsB1, B2 ⊂ Rm of radius1 and 2 centered at0. Their
preimagesf−1(B1) andf−1(B2) are compact. Take a sufficiently fine cubical mesh ofIn. Let K1 be
the union of closed cubes that (nontrivially) intersectf−1(B1) and letK2 be the union of closed cubes
intersectingK1. Thenf(K1) ⊂ B2. Subdivide each cube ofK2 into simplices (for example using the
subdivision used in the definition of the prism operator). For each simplex∆n, we considerf(e0), . . . , f(en)
and defineg(

∑
aiei) =

∑
aif(ei), i.e.,g is linear on each simplex and agrees withf on each vertex. Also

define a functionφ : K2 → [0, 1] such thatφ = 0 on∂K2 andφ = 1 onK1.
We then defineft : K2 → Rm by settingft = (1 − tφ)f + tφg. On∂K2 we havef = f1 and we can

extendf1 = f to In−K2. OnK1 we haveft = g. Alsof1(K2−K1) will not pass through0. For a generic
choice of values off(vertices), g will miss 0.

10.6. Cellular approximation theorem. Recall that a CW complexX is constructed by starting with a
discrete setX0 and inductively attachingn-cells enα to the(n − 1)-skeletonXn−1 via mapsφα : ∂enα →
Xn−1 to obtain then-skeletonXn. ThenX = ∪nX

(n). For more information on the topology ofX, refer
to the Appendix of Hatcher on the topology of cell complexes.

Definition 10.6.1. A mapf : X → Y of CW complexes iscellular if f(Xn) ⊂ Y n for all n.

The above method can be used to prove the following:

Theorem 10.6.2(Cellular approximation theorem). Every mapf : X → Y of CW complexes is homotopic
to a cellular map.

Proof. Supposef : X → Y is cellular onXn−1. Considerenα. Sinceenα is compact,f(enα) intersects finitely
manym-cells withm > n. (Check this!) By the method to proveπn(Sm) = 0 for m > n, the image of
f(enα) misses a point on eachm-cell of Y and hence can be homotoped into then-skeletonY n. This works
for finite CW complexes; for HW figure out how to deal with infinite CW complexes. �

10.7. Whitehead’s theorem.

Definition 10.7.1. A mapf : X → Y is aweak homotopy equivalenceif it induces isomorphisms(f∗)n :
πn(X,x0)→ πn(Y, f(x0)) for all n ≥ 0 and all choices of basepointx0.

We have the following amazing theorem:

Theorem 10.7.2. If f : (X,x0) → (Y, y0) is a weak homotopy equivalence between connected (=path
connected) CW complexes, thenf is a homotopy equivalence.

Remark10.7.3. The theorem does not say that two pointed topological spaces(X,x0) and (Y, y0) with
isomorphic homotopy groups for alln are homotopy equivalent. You need a map from one to the other.

We’ll give a proof for finite CW complexes. HW: Explain how to extend the proof to infinite CW com-
plexes.
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Proof. Suppose thatf is an inclusion of a subcomplex. Then by the relative homotopy sequence,πn(Y,X) =
0 for all n. Let enα be ann-cell in Y with boundary inX. Thenenα can be homotoped intoX relative to
∂enα (note that this needs an argument) and the collection of these homotopies can be combined into a
deformation retraction ofY ontoX.

In the general case, first homotopf : X → Y so thatf is a cellular map. Then replacef : X → Y by
g : X →Mf , whereMf is the mapping cylinder off (which gluesX×{1} toY ) andg is the identification
of X with X × {0}. Note thatY →֒ Mf is a homotopy equivalence andg is an inclusion. It suffices to
show thatMf deformation retracts ontoX. But this is immediate from the previous paragraph becauseg is
an inclusion of a subcomplex. �

10.8. CW approximations.

Definition 10.8.1. A CW approximationof a topological spaceX is a CW complexZ together with a weak
homotopy equivalencef : Z → X.

Theorem 10.8.2.CW approximations exist for any pointed topological space(X,x0).

Proof. The point is to model the generators and relations ofπn(X,x0) using cellular attaching maps.

Step 1. Without loss of generalityπ0(X,x0) = 1. Start with one point∗ and a mapf(∗) = x0. Next
choose a generating set{fnα}α∈In for πn(X,x0). For eachfnα , take ann-cell enα that is attached to∗ via the
attaching mapφnα : ∂enα → ∗. Definef : enα → X so it agrees withfnα . Then

f : Z0 = {∗} ∪ (∪n,αe
n
α)→ X

is surjective onπn for all n.

Step 2.Next we kill off the kernel off∗ (aka the relations). Suppose we have constructed up toZn−1 and
(f∗)i : πi(Zn−1, ∗)→ πi(X,x0) is an isomorphism up toi = n− 1. Attach(n+1)-cellsen+1

β toZn−1 for

all generatorsβ of ker(f∗)n to obtainZn = Zn−1 ∪ (∪βe
n+1
β ) and extendf toZn; this is possible since all

theβ’s are nullhomotopic in(X,x0).
We claim thatπn−1(Zn−1, ∗) ≃ πn−1(Zn, ∗), since any homotopySn−1× [0, 1]→ X can be homotoped

to a map to then-skeletonXn by the cellular approximation theorem. Also(f∗)n : πn(Zn, ∗)
∼
→ πn(X,x0):

The mapπn(Zn−1, ∗)→ πn(X,x0) factors intof∗i∗, wherei is the inclusionZn−1 → Zn. Hence(f∗)n is
surjective. The kernel ofπn(Zn−1, ∗)→ πn(X,x0) is killed by the cellsen+1

β , and we have an isomorphism.

Observe that attachingen+1
β might makeπm(Zn, ∗) larger form > n, but that is ok. �

Next we discuss the uniqueness of CW approximations:

Theorem 10.8.3(Uniqueness of CW approximations). Given CW modelsf : Z → X andf ′ : Z ′ → X
withZ,Z ′,X path-connected, there is a homotopy equivalenceh : Z → Z ′.

Proof. Consider the mapping cylinderMf ′ as a replacement forX. We view the compositionZ
f
→ X

i
→

Mf ′ as a map(Z, z0) → (Mf ′ , Z ′). Sinceπn(Mf ′) ≃ πn(X) ≃ πn(Z
′) for all n, πn(Mf ′ , Z ′) = 0

for all n by the relative exact sequence. This implies that all the cells of Z can be compressed intoZ ′,
giving a homotopy ofif to h : Z → Mf ′ with image inZ ′. This implies thath : Z → Z ′ is a weak
homotopy equivalence. Finally, by Whitehead’s theorem,h is a homotopy equivalence sinceZ,Z ′ are CW
complexes. �

Proposition 10.8.4.A weak homotopy equivalencef : Y → Z induces:
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(1) bijectionsf∗ : [X,Y ]→ [X,Z] for all CW complexesX, and
(2) isomorphismsf∗ : Hn(Y )→ Hn(Z).

Proof. We’ll prove (1). See Hatcher, Prop. 4.21 for (2). The idea is similar to the uniqueness theorem.
ReplaceZ by Mf and show thatf∗ : [X,Y ] → [X,Mf ] is a bijection: Giveng : X → Mf , view it as a
map(X,x0)→ (Mf , Y ). Sinceπn(Mf , Y ) = 0 for all n, g is homotopic toh : X →Mf with image inY .
This implies the surjectivity off∗. To prove the injectivity, if we haveF : (X × I,X × ∂I) → (Mf , Y ),
the same method shows thatF can be homotoped to a mapG : (X × I,X × ∂I) → (Mf , Y ) with image
in Y . �

Postnikov towers.Given a CW complexX, there exist spacesXn with inclusion mapsX
in→ Xn such that

(in)∗ : πi(X)
∼
→ πi(Xn) for i ≤ n andπi(Xn) = 0 for i > n and theXn can be put in a sequence

· · · → X3
s3→ X2

s2→ X1

with snin = in−1. TheXn are “truncations” ofX with successively better approximations asi → ∞.
Starting withX, we can attach(n+ 2)-cells to kill πn+1, then(n+ 3)-cells to kill πn+2, etc. to obtainXn.
This gives the desiredXn with inclusion mapsin : X → Xn. It remains to definesn+1 : Xn+1 → Xn as
an extension ofin : X → Xn. SinceXn+1 is obtained fromX by attaching(n + 3)-cells and higher and
πn+1(Xn) = πn+2(Xn) = · · · = 0, the attaching map of the cells are nullhomotopic. This implies thatX
can be extended to(n + 3)-cells and higher.

Definition 10.8.5. (X,x0) is n-connectedif πi(X,x0) = 0 for all 0 ≤ i ≤ n. (X,A) is n-connectedif
πi(X,A, x0) = 0 for all 0 ≤ i ≤ n andx0 ∈ A. (Note that there is an extra condition that we need to take
all x0 ∈ A; this is to take care of the situation whereA has multiple path components.)

Also recall that a subcomplex of a CW complexA ⊂ X is a union of cells ofX such that the closure of
each cell ofA is contained inA (i.e., for each cell the image of its attaching map is contained inA).

Definition 10.8.6.An n-connected CW model for(X,A) withA a nonempty CW complex is ann-connected
CW pair(Z,A) and a mapf : Z → X such thatf |A = id andf∗ : πi(Z)→ πi(X) is an isomorphism for
i > n and injective fori = n.

Sinceπi(Z) agrees withπi(A) for i < n and withπi(X) for i > n, Z approximatesA up ton andX
aftern. There is an analogous CW approximation theorem forn-connected models, whose proof we omit.

Theorem 10.8.7.For each(X,A) withA a nonempty CW complex, there exists ann-connected CW model
f : (Z,A) → (X,A) for all n ≥ 0. We may also assume thatZ is obtained fromA by attaching cells of
dimension> n. Then-connected CW model is unique up to homotopy equivalence.
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11. EXCISION

HW: Hatcher, Section 4.1: 1,2,8,9,10,11,18,19.

11.1. Excision.

Theorem 11.1.1(Excision). LetX be a CW complex that can be written asX = A ∪B, whereA,B,C =
A ∩ B are subcomplexes andC is nonempty and connected. If(A,C) is m-connected and(B,C) is n-
connected form,n ≥ 0, thenπi(A,C) → πi(X,B) is an isomorphism fori < m + n and surjective for
i = m+ n.

Sketch of proof.A corollary of the CW approximation theorem is the followingHW:

Corollary 11.1.2. If (X,A) is ann-connected CW pair, then there is a CW pair(Z,A) homotopy equivalent
to (X,A) relative toA such that all the cells ofZ −A have dimension> n.

Hence we may assume that all the cells ofA − C have dimension> m and all the cells ofB − C have
dimension> n.

The idea of the proof can be explained in the following simplified case whereA is obtained fromC by
attaching a single(m+ 1)-cell em+1 andB is obtained fromC by attaching a single(n+ 1)-cell en+1.

To prove the surjectivity, consider a map

f : (Ii, ∂Ii, 0)→ (X,B, x0).

Pick pointsp ∈ int(em+1) andq ∈ int(en+1). By the method of proof ofπi(Sn) = 0 for i < n, we can
homotopf (while keeping the same name) so thatf restricted to neighborhoodsUp andUq of f−1(p) and
f−1(q) are piecewise linear maps from a union ofi-simplices.

This allows us to apply standardtransversality arguments. In particular,f−1(p) is piecewise linear of
dimensioni− (m+ 1) andf−1(q) is piecewise linear of dimensioni− (n+ 1); moreover we assume that
they are generic. If

Im(f−1(p)) + Im(f−1(q)) = 2i− (m+ n+ 2) < i− 1,

then the projections off−1(p) andf−1(q) to Ii−1 are disjoint. This is equivalent toi < m + n + 1 or
i ≤ m+ n.

Hence there exists a functionφ : Ii−1 → [0, 1) such thatf−1(q) lies below the graph ofφ in I = Ii−1×I,
f−1(p) lies above the graph ofφ, andφ = 0 on ∂Ii−1. We then take the homotopyft, t ∈ [0, 1], to be
a map obtained by composinggt : In

∼
→ {sn ≥ tφ(s1, . . . , sn−1)} andf ; view it as a map(Ii, ∂Ii) →

(X,X − {p}), noting that(X,B) ≃ (X,X − {p}). Thenf1 can be viewed as a map

(Ii, ∂Ii)→ (X − {q},X − {p, q}) ≃ (A,C).

To prove the injectivity, we consider the homotopy

F : (Ii, ∂Ii, 0)× [0, 1]→ (X,B, x0)

betweenf0, f1 : (Ii, ∂Ii, 0)→ (A,C, x0). The proof is similar. �

11.2. Stable homotopy groups.An immediate corollary of the excision theorem is:

Corollary 11.2.1 (Freudenthal suspension theorem). The suspension mapπi(X) → πi+1(SX) is an iso-
morphism fori < 2n− 1 and a surjection fori = 2n− 1 if X is (n− 1)-connected.
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Proof. DecomposeSX into two conesC+X andC−X. Thenπi(X) ≃ πi+1(C+X,X) by the relative
sequence,πi+1(C+X,X) → πi+1(SX,C−X) is the excision map, andπi+1(SX,C−X) ≃ πi+1(SX)
again by the relative sequence. The excision map is an isomorphism fori + 1 < 2n since(C+X,X) is n-
connected ifX is (n− 1)-connected by the relative sequence for(C+X,X). (HW: check that the sequence
of maps agrees with the suspension map.) �

This implies thatπi(X) → πi+1(SX) → πi+2(S
2X) → . . . eventually stabilize (i.e., are isomor-

phisms): ifX ism-connected, thenSX is (m + 1)-connected, andSkX is (m + k)-connected, and even-
tually i+ k < 2(n + k) − 1. The direct limit is called thestable homotopy groupπsi (X). WhenX = S0,
πsi (S

0) = πi+n(S
n) for n > i+ 1. It is also abbreviatedπsi and called thestablei-stem.
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12. HUREWICZ ISOMORPHISM THEOREM

12.1. Some calculations.

Example.πn(Sn) = Z for n ≥ 2.

Method 1.Consider the sequence of suspension maps

π1(S
1)

i1→ π2(S
2)

i2→ π3(S
3)→ . . . .

By the Freudenthal suspension theorem,i1 is surjective andi2, i3, . . . are isomorphisms. Sinceπ1(S1) = Z,
π2(S

2) is a quotient ofZ.
Now there exists a map, called theHurewicz map,

H : πn(X)→ Hn(X;Z) ≃ Z, (f : Sn → X) 7→ f∗α,

whereα is a generator ofHn(S
n;Z). (HW: show this is a homomorphism!)

WhenX = Sn, H is surjective sinceid is mapped toα. Henceπ2(S2) = Z andπn(Sn) = Z for all
n ≥ 2.

Method 2. Given f ∈ πn(S
n, x0) for n ≥ 2, we can homotopf so thatf restricted to a neighborhood

Up of f−1(p) is a piecewise linear map from a union ofn-simplices. Hence by the usual transversality
argument we may assume thatf−1(p) is finite and intersects eachn-simplex∆ in its interior. By a further
homotopy and subdivision of the simplices,f on the complement of theint(∆)’s map tox0 andf |int(∆)

is a homeomorphism ontoSn − {x0}; in other words,f is homotopic to the sum of standarddeg = ±1
homeomorphisms. The mapH implies thatπn(Sn) = Z.

The following two examples can be proved using Method 2.

Example. Forn ≥ 2, πn(∨αSn
α) is free abelian with basis which consists of homotopy classes of inclusions

Sn
α →֒ ∨αS

n
α.

Example. For n ≥ 2, πn+1(X,∨αS
n
α), whereX is obtained from∨αSn

α by attaching cellsen+1
β via

φβ : ∂en+1
β → ∨αS

n
α, is free abelian with basis in bijection with{en+1

β }.

12.2. Change of basepoints for higher homotopy groups.We now discuss the change-of-basepoint map
βγ : πn(X,x1) → πn(X,x0), n ≥ 2, whereγ is a path fromx1 to x0. Viewing a representative of
πn(X,x1) asf : (Dn, ∂Dn) → (X,x1), we defineγf : (Dn, ∂Dn) → (X,x0) such thatγf(x) = f(2x)
if |x| ≤ 1

2 andγ(2|x| − 1) if 1
2 ≤ |x| ≤ 1. Thenβγ([f ]) = [γf ].

Lemma 12.2.1.βγ is a group homomorphism and has inverseβγ−1 .

The first assertion is not obvious and is left as HW.
Henceπ1(X,x0) acts onπn(X,x0), i.e.,πn(X,x0) is a module over the group ringZ[π1(X,x0)].

Example. Considerπn(S1 ∨ Sn) for n ≥ 2. The universal cover̃M of M = S1 ∨ Sn is a lineR with Sn’s
attached at all integers, and is homotopy equivalent to∨k∈ZSn

k . Henceπn(S1 ∨ Sn) is the freeZ-module
with basis{Sn

k }k∈Z. On the other hand,π1(S1 ∨ Sn) ≃ π1(S
1) ≃ Z, and its group ring isZ[t, t−1]. One

can see thatπn(S1 ∨ Sn) is the freeZ[t, t−1]-moduleZ[t, t−1].
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12.3. The Hurewicz theorem.

Theorem 12.3.1. If X is (n − 1)-connected withn ≥ 2, then the reduced homology groups̃Hi(X) = 0

for i < n andH̃n(X) ≃ πn(X). If (X,A) is (n − 1)-connected withn ≥ 2 andA simply connected and
nonempty, thenHi(X,A) = 0 for i < n andHn(X,A) ≃ πn(X,A).

Proof. We will only prove the first statement. In view of Proposition10.8.4, we may assumeX is a CW
complex by taking a CW approximation. Also by Corollary 11.1.2 we may assume thatX has a single
0-cell and no otheri-cells with i < n. HenceH̃i(X) = 0 for i < n. We may further assume thatX
has noi-cells with i ≥ n + 1 since such cells do not affect bothπn(X) andHn(X); this means that
X = (∨αS

n
α) ∪ (∪βe

n+1
β ). We have a commutative diagram where the top and bottom rows are exact:

πn+1(X,∨αS
n
α) πn(∨αS

n
α) πn(X) 0

Hn+1(X,∨αS
n
α) Hn(∨αS

n
α) Hn(X) 0.

∂

∂

By the calculations in Section 12.1, the first two vertical arrows are isomorphisms. Hence the theorem
follows from the five lemma. �

We’ll state without proof a slightly more general version ofthe Hurewicz theorem: Letπ′n(X,A, x0) be
the quotient ofπn(X,A, x0) obtained by identifying[γf ] = [f ] whereγ ∈ π1(A, x0). Then the homomor-
phism

h : πn(X,A, x0)→ Hn(X,A)

descends toh′ : π′n(X,A, x0)→ Hn(X,A).

Theorem 12.3.2(Hurewicz, general version). If (X,A) is (n − 1)-connected withn ≥ 2, X,A are path-
connected, andA 6= ∅, thenh′ : π′n(X,A, x0) → Hn(X,A) is an isomorphism andHi(X,A) = 0 for
i < n.
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13. FIBRATIONS

13.1. Definitions.

Definition 13.1.1. A mapp : E → B satisfies thelifting property with respect to the pair(Z,A) if for any
commutative diagram

A E

Z B,

f

i p

g

there exists a map̃g : Z → E such thatpg̃ = g andg̃i = f .

Definition 13.1.2. A surjective mapp : E → B is afibration (resp.Serre fibration) if it satisfies the lifting
property with respect to(A× I,A× {0}) for all topological spaces (resp. CW complexes)A.

Given a fibrationp : E → B, if B has a basepointb0, thenp−1(b0) is thefiberF at b0. Pickingx0 ∈ F ,

we often denote the fibration by(F, x0)
i
→ (E, x0)

p
→ (B, b0).

Lemma 13.1.3.A fiber bundle is a Serre fibration.

A mapE
p
→ B is afiber bundlewith fiberF if there is an open coverU of B andφU : p−1(U)

∼
→ U ×F

for all U ∈ U such thatp = πUφU . HereπU , πF : U × F → U are the projections toU andF .

Proof. We may reduce to the case whereA = In andZ = In × I since we can do homotopy lifting in
stages using the CW structure. We may also subdivideIn so thatf : Z → B has image inside someU .
Given a lift g̃ : In × {0} → p−1(U) = U × F , we just need to extendπF g̃ from In × {0} to all of In × I;
this is straightforward. �

13.2. Fibration sequence.

Theorem 13.2.1.If p : E → B is a Serre fibration, thenp∗ : πn(E,F, x0)→ πn(B, b0) is an isomorphism
for all n ≥ 1. Hence the relative homotopy sequence for(E,F, x0) becomes the fibration sequence

· · · → πn(F, x0)→ πn(E, x0)→ πn(B, b0)→ πn−1(F, x0)→ . . .

Proof. We first show thatp∗ is surjective: Letf : (In, ∂In) → (B, b0) be a representative ofπn(B, b0).
View it as a mapf : (In, Jn−1) → (B, b0). We want to lift it to a mapf̃ : (In, Jn−1) → (E, x0).
The constant mapJn−1 → {x0} is a lift of f |Jn−1. Then since(In, Jn−1) and (In, In−1 × {0}) are
homotopy equivalent,f can be lifted tof̃ on (In, Jn−1). We finally observe that̃f |In−1×{1} maps toF

sincef |In−1×{1} is the constant map tob0. This gives usf̃ : (In, ∂In, Jn−1)→ (E,F, x0).

The injectivity of p∗ is similar: Givenf̃0, f̃1 : (In, ∂In, Jn−1) → (E,F, x0) and a homotopyft :

(In, ∂In)→ (B, b0) from f0 = p∗f̃0 to f1 = p∗f̃1, the homotopy can be viewed asf : (In+1, Jn−1×I)→
(B, b0). f is lifted to f̃ on (In × {0, 1}) ∪ (Jn−1 × I) = Jn sinceJn−1 × I is mapped tox0. Again, since
(In+1, Jn−1 × I) and(In+1, Jn) are homotopy equivalent, we can liftf to f̃ taking f̃0 to f̃1. �



44 KO HONDA

13.3. Examples.

Example. TheHopf fibrationS1 → S3 → S2 is given as follows: Given the unit sphereS3 ⊂ C2, S1 acts
freely onS3 via (eiθ, (z1, z2)) 7→ (eiθz1, e

iθz2). The quotient isCP1 = S2. It is not hard to see the quotient
map is a fiber bundleS3 → S2 with fiberS1. We now consider the fibration sequence:

πn(S
1)→ πn(S

3)→ πn(S
2)→ πn−1(S

1)→ πn−1(S
3).

Sinceπn(S1) = 0 for n > 1 andZ for n = 1, for n ≥ 3 πn(S
3) ≃ πn(S

2) andπ2(S2) ≃ π1(S
1). In

particular,π3(S2) ≃ Z, generated by the Hopf fibration.
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14. HOMOTOPY AND COHOMOLOGY

14.1. Eilenberg-MacLane spaces.An Eilenberg-MacLane spaceK(G,n) with G a group andn > 0 is a
connected CW complex such thatπi(K(G,n)) = G if i = n and1 if i 6= n.

Theorem 14.1.1.AK(G,n) exists (ifn > 1 we assumeG is an abelian group) and any twoK(G,n)’s are
homotopy equivalent.

A K(G,n) can be constructed as in the CW approximation theorem using apresentation forG: Let
{fα}α∈I be the generators ofG. Then starting with the wedge∨α∈ISn

α, we attachen+1
β for the relations.

We can then kill offπi for i > n by attaching(n + 2)-cells and higher. Let us call thisX. In order to
prove the homotopy equivalence of any twoK(G,n)’s, it suffices to show that there is a weak homotopy
equivalence fromX to any otherK(G,n). This follows from the uniqueness of CW models up to homotopy
equivalence. (Check the details for HW.)

Note thatHn(K(G,n);Z) ≃ πn(K(G,n)) ≃ G by the Hurewicz theorem. By taking a wedge of
K(G,n)’s we can construct a CW complex with arbitrary homotopy groups.

14.2. Spectra.

Definition 14.2.1. An Ω-spectrumX is a sequence of based CW complexes{Xn}n∈Z together with weak
homotopy equivalences (the “structure maps”)αn = αX

n : Xn → ΩXn+1.

Recall thatΩXn is the based loop space ofXn; by a theorem of Milnor, the loop space of a CW complex
has the homotopy type of a CW complex. A map ofΩ-spectraf : X → Y is a collection of based maps
fn : Xn → Yn such thatαY

n fn = fnα
X
n . Denote the category ofΩ-spectra byS. It has a zero object given

by a sequence∗ of 1-pointed spaces.

Remark14.2.2. There are variants of this definition, depending on what theXn are and what restriction
to put on the mapsαn, and moreover the definitions are not all the same! The definition in Weibel is that
for a spectrumwe takeXn to be based topological spaces andαn to be based homeomorphisms and for a
prespectrumwe takeαn to just be based maps.

Example. TheEilenberg-MacLane spectrumis anΩ-spectrum withXn = K(G,n). Recall the adjunction

[Si+1,K(G,n)] = [ΣSi,K(G,n)] = [Si,ΩK(G,n)].

This implies thatΩK(G,n) is aK(G,n − 1). Let αn−1 : K(G,n − 1) → ΩK(G,n) be a homotopy
equivalence.

Example. The suspension spectrumΣ∞X of a spaceX is given byXn = ΣnX andαn : ΣnX →
ΩΣn+1X which corresponds toǫn = id : Σ(Σn)X → Σn+1X under the adjunction

[ΣnX,ΩΣn+1X] = [Σ(ΣnX),Σn+1X].

Hereαn is not a weak homotopy equivalence (and henceΣ∞X is a prespectrum). Refer to Hatcher, Section
4.J for more information on the topology ofΩΣX.

14.3. From Ω-spectra to cohomology theories.

Theorem 14.3.1.If K is anΩ-spectrum, then the (contravariant) functorsX 7→ hn(X) := [X,Kn], n ∈ Z,
give a reduced cohomology theory on the categoryCW• of pointed connected CW complexes.
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Proof.

Step 0.The functoriality is clear: Givenφ : X → Y , we haveφ∗ : [Y,Kn]→ [X,Kn] given byf 7→ fφ.

Step 1.We first give a group structure on[X,Kn]. This is a consequence of

[X,Kn] = [X,ΩKn+1] = [ΣX,Kn+1],

where the second equality is the adjointness ofΣ andΩ. The key is that there is a mapτ : ΣX → ΣX∨ΣX
and that the sumf + g of f, g : ΣX → Kn+1 is given by(f ∨ g)τ .

Similarly, the abelian group structure on[X,Kn] follows from [X,Kn] = [Σ2X,Kn+2].

Step 2. Verify the reduced cohomology axioms: There are natural coboundary mapsδ : hn(A) →
hn+1(X/A) such that

(1) (Homotopy axiom) Iff ≃ g : X → Y , thenf∗ = g∗ : hn(Y )→ hn(X).
(2) (Relative sequence) There is a long exact sequence

→ hn(X/A)→ hn(X)→ hn(A)→ hn+1(X/A)→ .

(3) (Wedge axiom) IfX = ∨αXα, thenhn(X)→ Παh
n(Xα) is an isomorphism.

Here “natural” means givenf : (X,A)→ (Y,B) the following diagram commutes:

hn(A) hn(X/A)

hn(B) hn(Y/B).

(1) and (3) are clear. For (2), recall the Puppe sequence for(X,A):

A
i
→ X → Ci → ΣA→ ΣX → ΣCi → . . . ,

whereCi ≃ X/A. Apply [·,Kn] to obtain:

[A,Kn]← [X,Kn]← [X/A,Kn]← [ΣA,Kn]← [ΣX,Kn]← [ΣX/A,Kn],

where[ΣA,Kn] = [A,ΩKn] = [A,Kn−1], [ΣX,Kn] = [X,Kn−1], [ΣX/A,Kn] = [X/A,Kn−1]. This
then becomes:

hn(A)← hn(X)← hn(X/A)← hn−1(A)← hn−1(X)← hn−1(X/A).
�

Observe thathn(X) ≃ hn+1(ΣX). This can be proved by using the relative sequence or by checking
[X,Kn] ≃ [ΣX,Kn+1].

Corollary 14.3.2. For the Eilenberg-MacLane spectrumKn = K(G,n), X 7→ [X,K(G,n)] agrees with
the (usual) reduced cohomologỹHn(X;G) withG-coefficients.

Theorem 14.3.1 implies thatX 7→ [X,K(G,n)] gives a reduced cohomology theory. Note that the
Hurewicz map

[Sn,K(G, i)] → H̃ i(Sn;G)

is an isomorphism for alli. To prove the corollary it remains to find natural isomorphisms

T : [X,K(G,n)]→ H̃n(X;G)
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for all CW complexesX; we omit the proof and just remark that the isomorphisms can be constructed
cell-by-cell.

14.4. Brown representability. Theorem 14.3.1 has the following amazing converse:

Theorem 14.4.1(Brown representability theorem). Every reduced cohomology theory onCW• has the
formhn(X) = [X,Kn] for someΩ-spectrumK = {Kn}n∈Z.

We will not give full details of the proof (cf. Hatcher, Section 4.E). A functorF : C → Set is repre-
sentableif there existsK and a natural transformationη : Hom(X,K) → F (X) which is a bijection for
eachX. (So, strictly speaking, we want to viewhn as a functor from the homotopy categoryhCW•.)

If we knowhn(Si) for all i, then we can try to constructKn by the requirementπi(Kn) = hn(Si). One
case where this works is ifhn is reduced singular cohomology withG-coefficients. ThenKn must be a
K(G,n). This implies Corollary 14.3.2.

Theorem 14.4.1 follows from the following slightly more general theorem, together with a step relating
theKn’s (which will not be explained here).

Theorem 14.4.2.LetF : CW• → Set• be a contravariant functor such that:

(1) (Homotopy axiom) Iff, g : X → Y are homotopic, thenFf = Fg. (Equivalently viewF as a
functor from the homotopy categoryhCW•.)

(2) (Sheaf axiom) IfX ∈ CW• andX = A ∪ B, whereA,B,A ∩ B ∈ CW•, then ifa ∈ F (A) and
b ∈ F (B) that restrict to the same element inF (A ∩ B), there existsx ∈ F (X) that restricts toa
andb.

(3) (Wedge axiom) IfX = ∨αXα, thenF (X) = ΠαF (Xα).

Then there existsK ∈ CW• andu ∈ F (K) such that

Tu : [X,K]→ F (X), Tu(f) = Ff(u)

is a bijection for allX. (Note thatTu is a natural transformation.)

Remark14.4.3. Axiom (3) implies thatF (pt) is a one-element set. (HW: Verify this usingX ∧ {∗} = X.)

Remark14.4.4. Axioms (1)–(3) forF = hn together with the existence of natural isomorphismshn(X) ≃
hn+1(ΣX) for all X ∈ CW• is equivalent to the reduced cohomology axioms. (Proof omitted here.)

Example. If T is a pointed connected topological space, then apply Theorem 14.4.2 to the functor[·, T ].
Then there existsC ∈ CW• such that[X,C] = [X,T ] for all X ∈ CW•. In other words, the Brown
representability theorem implies the CW approximation theorem.

14.5. Proof of Theorem 14.4.2.

Step 1.We constructK inductively cell-by-cell as usual so thatthe theorem holds for all spheresX = Sn

with n ≥ 1. Recall that if we knowF (Sn) for all n > 0, then we can try to constructK by the requirement
πn(K) = F (Sn) (just like forK(G, i)). The complication in the proof comes from keeping track of the
elementu ∈ K.

Start withK0 = pt. Let u0 be the unique element ofF (K0), recalling Remark 14.4.3. Arguing by
induction, assume that there existKn andun ∈ F (Kn) such that

Tun : πi(Kn)→ F (Si), f 7→ Ff(un),

is surjective fori ≤ n and has trivial kernel fori < n.
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We will constructKn+1 ⊃ Kn andun+1 that restricts toun: Denote the representatives of the kernel of
Tun : πn(Kn) → F (Sn) by fα : Sn

α → Kn and setf = ∨αfα. LetMf andCf be the mapping cylinder
and mapping cone off . We then set

Kn+1 = Cf ∨ (∨βS
n+1
β ),

whereβ ranges overF (Sn+1).

Fact/HW: Axioms (1)–(3) in Theorem 14.4.2 imply the exactness of

F (X/A)→ F (X)→ F (A)

for each inclusionA →֒ X.

Apply the fact toF (Cf ) → F (Kn) = F (Mf ) → F (∨αS
n
α). Viewing un ∈ F (Mf ), it is mapped

to 0 ∈ F (∨αS
n
α), and hence comes fromw ∈ F (Cf ). We then defineun+1 ∈ F (Kn+1) to restrict to

un ∈ F (Kn) andβ ∈ F (Sn+1
β ); this exists by (3) and the fact thatun andβ restrict to the same point. For

HW, verify thatTun+1
is surjective fori ≤ n+ 1 and has trivial kernel fori < n+ 1.

We then setK = ∪nKn. For technical reasons of definingu, we use themapping telescopeof K0 →֒
K1 →֒ . . . given by

T = ∪i(Ki × [i, i+ 1]) ⊂ K × [0,∞),

with the appropriate quotienting in the pointed category. The mapping telescopeT is homotopy equivalent
toK. Cut upT = A ∪B whereA (resp.B) is the union of theKi × [i, i + 1] for i even (resp. odd). Since
A andB are wedges, we can define∨i evenui and∨i oddui onA andB. They can be glued intou using (2).

Step 2.Show that the theorem holds for anyX ∈ CW•.
Surjectivity ofTu: we show that given anyx ∈ F (X) there exists a mapf : X → K such thatFf(u) =

x. LetZ = X ∨K andz = x ∨ u ∈ F (X ∨K). By the methods of Step 1, there exists(Z, z) →֒ (K ′, u′)
where(K ′, u′) also satisfies the conditions of the theorem for spheres. Here (K ′, u′) ⊃ (K,u) and is a
weak homotopy equivalence. HenceK ′ deformation retracts ontoK and we obtain a mapX → K ′ with
the desired property.

The injectivity ofTu is analogous and is omitted.

Example. LetG be a topological group and letF : CW• → Set• be the functor such thatF (X) is the set
of isomorphism classes of principalG-bundlesP → X. ThenF is represented byK = BG, theclassifying
space ofG. While BG admits an explicit construction, the Brown representability theorem proves the
existence ofBG.

Example. (Complex topologicalK-theory) LetVect(X) be the group of isomorphism classes of complex
vector finite rank complex vector bundles overX. Vect(X) is a monoid under direct sum⊕, and the
Grothendieck groupK0(X) is thegroup completionof the monoidVect(X). [The group completionof a
monoidM isM ×M/ ∼, where(m1,m2) ∼ (m′

1,m
′
2) if there existsm ∈M such thatm1 +m′

2 +m =

m′
1+m2+m. Think of (m1,m2) asm1−m2.] There is a reduced version ofK0(X), denoted byK̃0(X).

The functorK̃0 is represented byBU × Z, whereBU = limn→∞BU(n).
Bott periodicity: ApplyΩ iteratively toBU × Z. It’s not hard to see thatΩ(BU × Z) ≃ U , where≃

denotes weak homotopy equivalence. Bott periodicity states thatΩU ≃ BU ×Z and henceΩ2(BU ×Z) ≃
BU×Z. This implies that theΩk(BU×Z) are2-periodic. TheΩ-spectrumKn = U for n odd andBU×Z

for n even represents the “higher”K-groupsK̃n.
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This would be a good starting point for the study of vector bundles andK-theory, but alas we are out of
time....
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