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1. Introduction

In this set of notes, we discuss two important kinds of structures on symplectic manifolds: Liouville
structures and Weinstein structures. These structures arise when considering the relationship between
contact manifolds as boundaries of symplectic manifolds, and as level sets of symplectic manifolds.
An exhaustive reference for much of this material is [1].

2. Definitions and Examples

Definition 2.1. A Liouville form on a symplectic manifold (W,ω) is a 1-form λ such that ω = dλ.
The vector field X such that iXω = λ is the Liouville vector field of λ.

Observe that if X is a Liouville vector field for a Liouville form λ, Cartan’s formula gives

LXω = iXdω + diXω = dλ = ω.

The equation LXω = ω implies that the flow φt of X satisfies φ∗tω = etω. In words, the symplectic
form expands as one flows along X. A simple Stokes’ theorem argument then shows that there are
no closed exact symplectic manifolds:

0 <

∫
W

ωn =

∫
W

d(λ ∧ ωn−1) =

∫
∂W

λ ∧ ωn−1

hence ∂W 6= ∅. In particular, this shows that no closed symplectic manifold admits a globally defined
Liouville vector field, though such vector fields always exist locally.

Definition 2.2. A Liouville domain is a compact1 symplectic manifold (W,ω,X) with boundary,
together with a globally defined Liouville vector field X which points transversally out of the boundary.

Positive transversality at the boundary is a natural condition to consider, as this implies that ∂W
is a contact manifold with contact form α := λ |∂W . Indeed, note that

λ ∧ (dλ)n−1 = iXdλ ∧ (dλ)n−1 =
1

n
iX(dλ)n.

Since (dλ)n is a volume form on W and X t ∂W , iX(dλ)n restricts to a volume form on ∂W , hence α
is contact. This means that a Liouville domain is an exact symplectic filling of its (contact) boundary.

Next, we introduce even more structure.

Definition 2.3. A Weinstein domain (W,ω,X, f) is a Liouville domain (W,ω,X) equipped with
a Morse function f : W → R such that f is locally constant on ∂W and such that X is gradient-like
for f , i.e.,

X(f) ≥ δ(|X|2 + |df |2)

for some choice of Riemannian metric on W and some δ > 0.

1One can also define (open) Liouville manifolds and also Liouville cobordisms, but for now we will focus on Liouville
domains. Read Section 4 for some comments on Liouville cobordisms.
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Observe that if X is gradient-like for f , then Cauchy-Schawrz gives.

δ|X|2 ≤ δ(|X|2 + |df |2) ≤ |X(f)| ≤ |df ||X| ⇒ δ|X| ≤ |df |.
On the other hand,

δ|df |2 ≤ δ(|X|2 + |df |2) ≤ |X(f)| ≤ |df ||X| ⇒ |df | ≤ 1

δ
|X|.

Thus,

δ|X| ≤ |df | ≤ 1

δ
|X|.

In particular, the zeroes of X occur exactly at critical points of f , and X(f) > 0 away from critical
points. This justifies the terminology. Furthermore, note that if ∇f is the gradient vector field of
f : M → R for some choice of Riemannian metric, then

(∇f)(f) = df(∇f) = |∇f |2 =
1

2
(|∇f |2 + |df |2)

so that gradient vector fields are indeed gradient-like.
Another way to think about the gradient-like condition in Definition 2.3 is as follows: the fact that

X is gradient-like for f implies that the Liouville form λ restricts to a contact form on each regular
level-set of f . Thus, a Weinstein domain is a symplectic manifold which more or less decomposes into
layers of contact manifolds.

Next, we consider some examples.

Example 2.4. Here is the simplest example of a Weinstein domain. Consider the closed unit disc
W = {x2 + y2 ≤ 1} ⊆ R2 together with the standard symplectic form ω = dx ∧ dy. Let λ =
1
2 (x dy − y dx). Then dλ = ω, hence λ is a Liouville form. An easy computation verifies that the

radial vector field X = 1
2 (x ∂x + y ∂y) satisfies iXω = λ:

i 1
2 (x ∂x+y ∂y)

(dx ∧ dy) =
1

2
x dy − 1

2
y dx = λ.

The Liouville vector field X is outwardly transverse to ∂W = S1, so W is a Liouville domain.
Let f : W → R be given by f(x, y) = 1

4 (x2 + y2). Then f is Morse and constant on ∂W . Choose

the standard Riemannian metric on R2. Then X = ∇f , hence X is gradient-like for f and thus W is
a Weinstein domain.

This example extends in the obvious way to the closed unit ball in
(
R2n,

∑n
j=1 dxj ∧ dyj

)
.

Example 2.5. One interesting way of finding Liouville domains is to consider positive regions of
convex hypersurfaces.2

Indeed, let Σ2n ⊆ (M2n+1, ξ) be a closed, oriented convex hypersurface in a contact manifold. Then
Σ has a neighborhood contactomorphic to

(
R(t) × Σ, ker(u dt+ β)

)
, where u : Σ→ R and β ∈ Ω1(Σ)

do not depend on t. The contact condition α ∧ (dα)n > 0 on Σ implies that the form

θ = (dβ)n−1 ∧ (u dβ + nβ ∧ du)

is a volume form on Σ. Recall (see Chapter 2 of [2]) that the characteristic foliation of Σ is directed
by the vector field Y satisfying

iY θ = β ∧ (dβ)n−1.

Next, let R+ = {u > 0} be the positive region of the convex hypersurface. On R+, we can write the

contact form as dt + β′ with β′ = β
u . The contact condition implies that (dβ′)n > 0 on Σ, hence β′

is a Liouville form on R+. Let X be the Liouville vector field with respect to β′. One can show that
X = nuY .

Finally, recall that the characteristic foliation on a convex hypersurface is transverse to the dividing
set. Since the dividing set is {u = 0} and since X = nuY , if we consider Rε+ = {u ≥ ε > 0} for some
small ε, the Liouville vector field X will be outwardly transverse to ∂Rε+.

2For details on this example and convex hypersurfaces in general, see [11].
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It is natural to wonder if there are examples of Liouville domains that are not Weinstein domains.
Such things exist, but they are relatively nontrivial to construct. In order to do so, we’ll use the fact
that Weinstein domains have a significant restriction on their topology, in terms of handle decompo-
sitions.

Proposition 2.6. Let (W 2n, ω,X, f) be a Weinstein domain. The index of each critical point of f
does not exceed n.

Proof. Let φt be the flow of X. As previously remarked, since LXω = ω, the flow satisfies φ∗tω = etω.
Let p be a critical point of f . Let

Λp =
{
q ∈W : lim

t→∞
φt(q) = p

}
be the stable manifold of p. For any q ∈ Λp,

ωq = e−tφ∗tωq.

Since φt(q)→ p as t→∞, sending t→∞ in the above equation gives ωq = 0 · ωp = 0. So ω vanishes
on Λp, hence Λp is an isotropic submanifold of W . It is a standard fact from symplectic linear algebra
that an isotropic subspace of a symplectic vector space has dimension at most half the dimension of
the full vector space; thus, dim Λp ≤ n. Since X is (upward) gradient-like for f , this implies that the
index of f at p is ≤ n. �

Corollary 2.7. For n ≥ 2, the boundary of a 2n-dimensional Weinstein domain is connected.

Proof. By the previous proposition, every 2n-dimensional Weinstein domain admits a handle decom-
position involving k-handles for k ≤ n. Observe that a 2n-manifold has disconnected boundary only
if it contains a (2n − 1)-handle, since the belt sphere ∂D` of a handle Dk × D` is disconnected if
and only if ` = 1. If n ≥ 2, a Weinstein domain has no (2n − 1)-handles, and hence has connected
boundary. �

With this fact, one can find Liouville domains which do not admit Weinstein structures by con-
structing a Liouville domain with disconnected boundary. The first example was given by McDuff
[3], and was further generalized in [5], [6], and [8]. Such examples are still relatively rare. Note the
importance of outward tranversality of the Liouville vector field at the boundary: it is much easier to
find compact manifolds with disconnected boundary where the Liouville vector field flows in from one
boundary component and out the other. For example, take the standard unit ball from Example 2.4
and remove a smaller open ball centered at the origin.

Example 2.8 ([5], [6], [7]). Here is an example of a Liouville domain with disconnected boundary,
hence an example of a Liouville domain which does not admit a Weinstein structure. The geometric
picture behind this example rests on the existence of a so called Anosov flow on a 3-manifold, which
lets one construct and combine two oppositely oriented contact structures to get the desired Liouville
structure, see [5]. What follows is a particular instance of this, with full computations included for
completeness.

We will build a symplectic manifold of the form [0, 1]×M3 in a few steps.

Step 1: Constructing M3.
First, let A ∈ SL2(Z) = {A ∈ M2(Z) : detA = 1} with trA > 2. Concretely, one may consider

( 2 1
1 1 ). Because detA = 1, A−1 is an integer matrix, thus A descends to a diffeomorphism of the torus
T 2 = R2/Z2. Consequently, the mapping torus

M := T 2 × [0, 1]
/
∼ where (( xy ) , 1) ∼ (A ( xy ) , 0)

is a smooth, closed 3-manifold.

Step 2: Constructing two 1-forms on M3.
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The matrix A has two positive real eigenvalues, since (trA)2 − 4 > 0. Since detA = 1, the
eigenvalues are eν , e−ν for some ν > 0. Let v and w be corresponding eigenvectors, normalized so
that dx ∧ dy(v, w) = 1, where (x, y) are standard coordinates on R2.

Define two 1-forms on M as follows:

α = e−νz iv(dx ∧ dy)− eνz iw(dx ∧ dy) and β = e−νz iv(dx ∧ dy) + eνz iw(dx ∧ dy).

where z denotes the coordinate in the [0, 1] direction of M . We first need to verify that α and β are
indeed 1-forms on M ; that is, that they are well-defined with respect to ∼. Consider a vector of the
form c1v + c2w at the point (x, y, 1). Then

e−ν dx ∧ dy(v, c1v + c2w) = c2e
−ν .

On the other hand, since (x, y, 1) ∼ (A(x, y), 0), the fact that

e−ν·0 dx ∧ dy(v,A(c1v + c2w)) = dx ∧ dy(v, c1e
νv + c2e

−νw) = c2e
−ν

shows that the form e−νz iv(dx ∧ dy) is well-defined on M . A similar computation shows that
eνz iw(dx ∧ dy) is well-defined on M , hence α and β are both well-defined on M .

Observe that α and β satisfy the following properties.

Lemma 2.9. With α and β as above,

(i) α ∧ β = 2 dx ∧ dy
(ii) dα = −ν dz ∧ β

(iii) dβ = −ν dz ∧ α
Proof.

(i) This follows from

iv(dx ∧ dy) ∧ iw(dx ∧ dy) = ((ivdx) dy − (ivdy) dx) ∧ ((iwdx) dy − (iwdy) dx)

= (ivdx · iwdy − iwdx · ivdy) dx ∧ dy
= dx ∧ dy

since dx ∧ dy(v, w) = 1.
(ii) Compute:

dα = −νe−νz dz ∧ iv(dx ∧ dy)− νeνz dz ∧ iw(dx ∧ dy) = −ν dz ∧ β.

(iii) Similar to (ii).

�

Step 3: Using the two 1-forms to define a Liouville form on W = [0, 1]×M3.
Next, consider the 4-manifold W = [0, 1]×M . Let ω = d(sα+ (1− s)β), where s denotes the [0, 1]

coordinate. We claim that ω is an exact symplectic form on W . Indeed, using the lemma from the
previous step, we compute

ω2 = [d(sα+ (1− s)β)]2

= [ds ∧ (α− β)− ν dz ∧ (sβ + (1− s)α)]
2

= −2ν ds ∧ (α− β) ∧ dz ∧ (sβ + (1− s)α)

= 2ν ds ∧ dz ∧ (2s dx ∧ dy + 2(1− s) dx ∧ dy)

= 2ν ds ∧ dz ∧ dx ∧ dy
> 0.

Step 4: Showing the Liouville vector field is transverse to ∂W .
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Let X = (2s− 1) ∂s − 1
ν ∂z. We claim that X is the Liouville vector field for ω. Indeed,

iXω = iX [ds ∧ (α− β)− ν dz ∧ (sβ + (1− s)α)]

= (2s− 1)(α− β) + (sβ + (1− s)α)

= sα+ (1− s)β.

Finally, X is clearly outwardly transverse to ∂W because of the (2s− 1) ∂s component. Thus, W is a
Lioville domain with disconnected boundary, hence a Liouville domain which is not Weinstein.

3. Weinstein Handles

In this section, we discuss one way of building new Weinstein domains from old ones by attaching
handles of a certain type. This construction is originally from [4].

Consider R2n with the standard symplectic form ω =
∑n
j=1 dxi ∧ dyi. For each k ∈ {0, 1, . . . , n},

define

Xk =

n−k∑
j=1

(
1

2
xj ∂xj

+
1

2
yj ∂yj

)
+

n∑
j=n−k+1

(
2xj ∂xj

− yj ∂yj
)
.

The vector field Xk has k ”hyperbolic”-type components in the (xj , yj)-directions for j ∈ {n−k+1, n}.
One can check that Xk is a Liouville vector field:

iXk
ω =

n−k∑
j=1

(
1

2
xj dyj −

1

2
yj dxj

)
+

n∑
j=n−k+1

(2xj dyj + yj dxj)

and so

diXk
ω = d

n−k∑
j=1

(
1

2
xj dyj −

1

2
yj dxj

)
+

n∑
j=n−k+1

(2xj dyj + yj dxj)


=

n∑
j=1

dxj ∧ dyj = ω.

Also observe that Xk is the gradient of the (Morse) function

fk =

n−k∑
j=1

(
1

4
x2j +

1

4
y2j dxj

)
+

n∑
j=n−k+1

(
x2j −

1

2
y2j

)
hence Xk is gradient-like for fk.

Consider the closed unit k-disc in the (yn−k+1, . . . , yn)-region. This disc is isotropic with respect
to ω. For ε > 0, we consider the following tubular neighborhood of this disc:

Hε
k :=


n∑
j=1

x2j +

n−k∑
j=1

y2j ≤ ε

 ∩


n∑
j=n−k+1

y2j ≤ 1

 .

Then Hε
k is diffeomorphic to Dk × D2n−k, hence we view Hε

k as a k-handle. Finally, observe that the
Liouville vector field Xk is transverse to ∂Hε

k :

2

 n∑
j=1

xj dxj +

n−k∑
j=1

yj dyj

 (Xk) =

n−k∑
j=1

(x2j + y2j ) + 4

n∑
j=n−k+1

x2j = ε+ 3

n∑
j=n−k+1

x2j ≥ ε > 0.

and  n∑
j=n−k+1

yj dyj

 (Xk) = −
n∑

j=n−k+1

y2j = −1 < 0.

In particular, Xk flows in one boundary component and out the other, see Figure 1.
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Figure 1. The standard (critical) 4-dimensional 2-handle, i.e., the case n = 2 and
k = 2, courtesy of [9]. The same schematic picture applies to handles of all index.

Definition 3.1. We call Hε
k the standard Weinstein k-handle, where there is an implicit depen-

dence on n. A Weinstein handle is critical if k = n, and subcritical otherwise.

We would like to attach a Weinstein handle to a Liouville domain in a way such that the Liouville
vector fields glue together nicely to give a new Liouville domain. The key to making this work is to
use standard neighborhood theorems of isotropic submanifolds. Recall that an isotropic submanifold
of a contact manifold is one in which the tangent spaces lie in the contact structure at all points.

Lemma 3.2. The attaching sphere S = Sk−1 = ∂Dk×{0} of Hε
k = Dk×D2n−k is an isotropic sphere

in the contact manifold ∂−H
ε
k, where by ∂−H

ε
k we mean the part of the boundary of Hε

k for which the
Liouville vector field flows inward.

Proof. The contact form on this part of the boundary is

α = iXk
ω
∣∣∣
∂−Hε

k

=

n−k∑
j=1

(
1

2
xj dyj −

1

2
yj dxj

)
+

n∑
j=n−k+1

(2xj dyj + yj dxj)

∣∣∣∣∣
∂−Hε

k

.

The attaching sphere S is given by the equations
∑n
j=n−k+1 y

2
j = 1 and x1 = · · ·xn = y1 = · · · yn−k =

0. So

α |S=

n∑
j=n−k+1

yj dxj .

Since dxj = 0 along S, it follows that α |S= 0 and hence S is isotropic. �

In order to carefully describe how to attach Weinstein handles along isotropic spheres, one needs to
further discuss conformal symplectic normal bundles of isotropic manifolds in contact manifolds. The
key here is that the attaching sphere S in Hε

k is an isotropic sphere with trivial conformal symplectic
normal bundle, and hence must be attached a long an isotropic sphere in the boundary of the Liouville
domain which also has trivial conformal symplectic normal bundle. Moreover, a choice of trivialization
of this conformal symplectic normal bundle gives rise to a choice of framing. With this data, we get
the following.
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Theorem 3.3 ([4], [10]). Let W be a Liouville domain of dimension 2n, and let Sk−1 ⊆ ∂W be
an embedded isotropic sphere with trivial conformal symplectic normal bundle. The manifold W ′

obtained by attaching an index k Weinstein handle along Sk−1 admits the structure of a Liouville
domain. Moreover, if W is a Weinstein domain, then W ′ also admits the structure of a Weinstein
domain.

For a discussion on conformal symplectic normal bundles and the the proof of the above theorem,
see Chapter 6 of [2], or [4].

4. Legendrian Surgery

One can also interpret the attachment of Weinstein handles in the context of performing surgery
on a contact manifold. First, we need to introduce a slight generalization of Liouville and Weinstein
domains.

Definition 4.1. A Liouville cobordism is a compact symplectic manifold (W,ω = dλ,X) with
boundary ∂W = ∂−W t ∂+W , together with a globally defined Liouville vector field X which is out-
wardly transverse to ∂+W and inwardly transverse to ∂−W . One can define Weinstein cobordisms
in the same way.

Example 4.2. A Liouville domain is a Liouville cobordism with ∂−W = ∅.

Example 4.3. Let (M, ξ = kerα) be a contact manifold and let (W = [−1, 1]t ×M,d(etα)) be its
symplectization. Note that

i∂td(etα) = i∂t(e
t dt ∧ α+ et dα) = etα

and so the Liouville vector field is ∂t, which is inwardly transverse to {−1} × M and outwardly
transverse to {1} ×M .

Next, we focus our attention on critical Weinstein handles, i.e., Weinstein handles with index
k = n. For a critical handle, the attaching sphere S is an isotropic submanifold of the boundary of
maximal dimension, hence Legendrian. It turns out that the conformal symplectic normal bundle
of a Legendrian submanifold has rank 0, hence is canonically trivialized, and thus S comes with a
canonical framing.

Suppose (M2n+1, ξ) is a contact manifold and Sn ⊂M is an embedded Legendrian sphere. By the
above, there is a canonical framing and hence one can perform Legendrian surgery, that is, elementary
surgery along this sphere. This surgery corresponds to attaching an n-handle to the cylindrical
cobordism W := [−1, 1] ×M along ∂+W := {1} ×M , producing a new cobordism W ′ such that
∂−W

′ = M and ∂+W
′ is the surgered manifold. Since [−1, 1]t × M carries an exact symplectic

structure given by ω = d(etα) and Liouville vector field ∂t, W is a Liouville (and in fact, Weinstein)
cobordism. The following theorem then essentially follows from Theorem 3.3.

Theorem 4.4 ([4]). Let Sn ⊂ (M, ξ) be an embedded Legendrian sphere in a contact manifold M . Let
M ′ be the manifold obtained by elementary surgery along Sn. Then the cobordism W from M to M ′

obtained by attaching a critical Weinstein handle to [−1, 1]×M along Sn ⊂ {1} ×M is a Weinstein
cobordism. In particular, M ′ is a contact manifold and the contact structure on M ′ coincides with ξ
outside the neighborhood of the surgery.
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