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1. Symplectic fillings

‚ Recall that, under certain conditions, a symplectic manifold with boundary endows its boundary
with a contact structure. In such a case, we say that the symplectic manifold fills the contact manifold,
and today we want to discuss a classification result for symplectic fillings.

‚ Fix a co-oriented contact manifold pM, ξq and suppose pW,ωq is a symplectic manifold with BW “M
as oriented manifolds. We say that pW,ωq is

– a weak symplectic filling of pM, ξq if ω|ξ ą 0;
– a strong symplectic filling of pM, ξq if there is a 1-form λ onW such that ω “ dλ on some neigh-
borhood of BW and ξ “ kerpλ|BW q;

– an exact filling of pM, ξq if there is a 1-form λ onW such that ω “ dλ on all ofW and ξ “ kerpλ|BW q.
We say that pM, ξq is weakly symplectically fillable, strongly symplectically fillable, or exactly fillable if it
admits a weak symplectic, strong symplectic, or exact fillling, respectively.

‚ We showed earlier in the quarter that fillable contact manifolds must be tight ([Eli90],[Gro85]).
Certainly every exact filling is a strong filling and every strong filling is a weak filling, so we have
inclusions of contact manifolds

texactly fillableu Ď tstrongly fillableu Ď tweakly fillableu Ď ttightu.

Less obvious is the fact that each of these inclusions is strict. The first example of a weakly-but-not-
strongly fillable contact manifold was produced by Eliashberg in [Eli96], and Ghiggini constructed
an infinite family of strongly-but-not-exactly fillable contact manifolds in [Ghi05]. In [EH02], Etnyre
and Honda gave examples of tight contact manifolds admitting no symplectic fillings.

‚ The best classification results would identify the symplectic fillings of a contact manifold up to
symplectomorphism, but this is a lot to ask. We lower the bar a bit with the following notions of
equivalence:
(1) We will say that symplectic fillings pW,ωq and pW 1, ω1q are symplectically deformation equivalent

if there exists a diffeomorphism ϕ : W Ñ W 1 and a smooth family ωt, t P r0, 1s, of symplectic
forms onW so that
(a) ω0 “ ω and ω1 “ ϕ˚ω1;
(b) for each t P r0, 1s, pW,ωtq is a symplectic filling.

(2) Given a weak filling pW,ωq of a contact manifold, we can obtain another filling by blowing up
pW,ωq at a point. As with other notions of blowup, symplectic blowup consists of replacing a
point with a projective space. We’ll avoid the details of this construction today and just point out
that a blowup ofW is diffeomorphic toW#CP2. Today we’ll classify some symplectic fillings
up to blowup.

We say that a symplectic 4-manifold pW,ωq is minimal if it contains no smoothly embedded 2-spheres
with homological self-intersection number ´1. More concisely, pW,ωq cannot be obtained by blowing
up any other symplectic manifold.

‚ The first big classification result is then:

Theorem 1.1 (Gromov, [Gro85]; Eliashberg [Eli90]). Up to symplectic deformation equivalence and blowup,
pB4, ωstdq is the unique weak symplectic filling of pS3, ξstdq.

‚ Various other classification results exist in dimension three, many of them obtained by means similar
to those used in the proof of Theorem 1.1. For instance, the fillings of S1 ˆ S2 with its standard
structure were classified by Eliashberg ([Eli90]) and McDuff ([McD90]), and more general lens spaces
had their fillings classified by McDuff ([McD90]) and Lisca ([Lis08]).
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‚ Our goal today is to discuss a more recent result which repackages the main ideas in the above
classifications into a single, ready-to-use tool. In particular, we’ll derive Theorem 1.1 as a corollary of
this newer technology. The following result is due to Wendl:

Theorem 3.1 (Wendl, [Wen10]). Suppose pW,ωq is a symplectic filling of a contact 3-manifold pM, ξq,
and that ξ is supported by a planar open book π : MzB Ñ S1. Then pW,ωq admits a symplectic
Lefschetz fibration over D such that the induced open book at the boundary is isotopic to π : MzB Ñ
S1. Moreover, the Lefschetz fibration is allowable if and only if pW,ωq is minimal.

‚ This theorem allows us to transform the problem of classifying minimal symplectic fillings into
the problem of classifying allowable Lefschetz fibrations inducing a particular monodromy at the
boundary. The latter is in some cases a more tractable problem.

‚ Before unpacking this newer classification theorem, we should contrast the situation in dimension
three with that in higher dimensions, where far less is known. Here the classic result is the Eliashberg-
Floer-McDuff theorem:

Theorem 1.2 (Eliashberg-Floer-McDuff, [McD91]). If pW,ωq is a strong symplectic filling of pS2n´1, ξstdq
and rωs vanishes on π2pW q Ă H2pW ;Rq, thenW is diffeomorphic to B2n.

‚ The original proof of this theorem is very similar in spirit to the classification of fillings of pS3, ξstdq,
but notice that the classification in higher dimensions is up to diffeomorphism. In particular, when
our fillings have dimension greater than four, we lose the benefit of positivity of intersections, and
geometric classifications are harder to come by. A discussion of these two results and their proofs
can be found in [Wen18, Chapter 9].

‚ We now turn to some background material on open book decompositions and Lefschetz fibrations.

2. Open book decompositions, contact structures, and Lefschetz fibrations

LetM be a closed, oriented 3-manifold.

2.1. Open book decompositions.
‚ An open book decomposition ofM is a fibration π : MzB Ñ S1, where

(1) B ĂM is an oriented link, which we call the binding of the open book decomposition;
(2) for each t P S1, the fiber π´1ptq is the interior of a compact surface Σt ĂM with BΣt “ B. Each

fiber is a page of the open book decomposition.

‚ Example. Consider S3 “ R3 Y t8u, with cylindrical coordinates pr, θ, zq. We may let B “ tr “
0u Y t8u, and define π : S3zB Ñ S1 by pr, θ, zq ÞÑ θ. This example of an open book decomposition is
indicative of the name: each fiber of π indeed looks like a page, with the z-axis as our binding. See
Figure 1a.

Another open book decomposition of S3 has binding given by the Hopf link. To see this decompo-
sition, write

S3 “ tpr1e
iθ1 , r2e

iθ2 |r2
1 ` r

2
2u Ă C2.

We then let B “ tr1 “ 0u Y tr2 “ 0u be the Hopf link and define

πpr1e
iθ1 , r2e

iθ2q “ θ1 ` θ2.

Each page π´1ptq is then an annulus. Indeed, we have

π´1ptq “ tpr1e
iθ1 , r2e

ipt´θ1qq|r2
1 ` r

2
2 “ 1u » tpr1, θ1q|r1 P p0, 1q, θ1 P S

1u.

Figure 1b attempts to depict a page of this open book decomposition in R3. Notice that all of S3 is
swept out as the page rotates around the binding.

‚ In practice, we’re often more interested in the abstract open book associated to an open book decom-
position. An abstract open book consists of a page Σ and a monodromy ϕ. Here Σ is an oriented
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(a) Disk page. (b) Annulus page.

Figure 1. Open book decompositions of S3.

compact surface with boundary and ϕ : Σ Ñ Σ is a diffeomorphism which restricts to the identity in
a neighborhood of the boundary BΣ. We may construct a 3-manifold from this data according to

MpΣ,ϕq “ Σˆ r0, 1s{ „,

where
(1) px, tq „ px, 0q for all x P BΣ and t P r0, 1s;
(2) pϕpxq, 1q „ px, 0q for all x P Σ.
A bindingBφ is given for this manifold by the image of BΣ, with the fibration π : MφzBφ Ñ S1 “ R{Z
given by projection onto the r0, 1s-coordinate.

‚ Conversely, an open book decomposition can be used to determine an abstract open book. Let Σ
be the closure of the fiber π´1p0q. The monodromy ϕ : Σ Ñ Σ is given as follows: given a point
x P π´1p0q, let γ̃x : r0, 1s Ñ MzB be a path lifting the identity map γ : S1 Ñ S1. That is, π ˝ γ̃x “ γ.
Then we define ϕpxq “ γ̃xp1q P π

´1p0q.

‚ Today we’ll use abstract open books and open book decompositions more or less interchangeably
(calling both open books), but there are slight differences. See, for instance, [Etn06, Remark 2.6].

‚ Example. The first open book decomposition forS3 given above has pageΣ “ D2 andmonodromy the
identity map. We observed above that the second open book decomposition has annulus page. One
can check that the monodromy for this open book is a positive Dehn twist about a boundary-parallel
arc.

‚ Today we’re particularly interested in planar open book decompositions. These are open book
decompositions whose page Σ has interior diffeomorphic to a sphere with finitely many punctures.
Thankfully, we have an existence result, even for this restricted class of decompositions:

Theorem 2.1 (Alexander1). Every closed, oriented 3-manifold admits an open book decomposition with
planar pages.

‚ What do open book decompositions have to do with contact structures? An open book can support a
contact structure in the following sense: We say that a contact structure ξ onM is supported by an
open book decomposition π : MzB Ñ S1 if there is a contact 1-form α onM such that
(1) ξ is isotopic to kerα;

1I haven’t actually verified the history here. Alexander showed in [Ale20] that all 3-manifolds admit open book decompositions, and
the proof of this fact in [Rol03, Chapter 10] produces an OBD with planar pages, but I don’t know who first showed that the pages could
always be made planar.
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(2) dα|Σt ą 0 for each page Σt of the open book;
(3) α|B ą 0 on the binding B.
How should we think of this relationship? Perhaps the most helpful intuition comes from Reeb vector
fields. The latter two conditions in the above definition are equivalent to the statement that the Reeb
vector field Rα is tangent to B and transverse to the pages Σt (with appropriate orientation). Recall
that Rα is also transverse to kerα.

‚ Example. Both of the open book decompositions defined above for S3 support the standard contact
structure. Notice that in the second open book we could have instead defined

πpr1e
iθ1 , r2e

iθ2q “ θ1 ´ θ2.

Again we will have annulus pages, but the orientations will be reversed, and the resulting open book
decomposition does not support ξstd.

‚ Here are some important results we won’t have time to prove today:
Theorem 2.2 (Thurston-Winkelnkemper, [TW75]). Every open book decomposition of a closed, oriented
3-manifold supports a contact structure.
Theorem 2.3 (Giroux, [Gir91]). Every contact structure on a closed, oriented 3-manifold is supported by an
open book.

‚ In fact, the work of Giroux reaches even further: he showed that there is a bijective correspondence
between the open book decompositions of a 3-manifold (up to stabilization) and the contact structures
on that manifold. In particular, if contact structures ξ and ξ1 are supported by a common open book
decomposition, then ξ and ξ1 are isotopic.

‚ There’s an important caveat to Giroux’s result: while every contact structure is supported by some
open book decomposition, not all contact structures are supported by planar open books (see [Etn04]).
We call pM, ξq a planar contact manifold if ξ is supported by a planar open book2.

‚ Note. Thurston-Winkelnkemper’s result gives another (very short) proof that every closed, oriented
3-manifold admits a contact structure.

2.2. Lefschetz fibrations.
‚ Our interest today is in characterizing the symplectic 4-manifolds pW,ωq which have our contact
manifold pM, ξq for their boundary. If a 4-manifold with boundary W admits the structure of a
bordered Lefschetz fibration (as defined in [Wen17]), this structure will naturally induce an open book
decomposition on BW .

‚ Definition. LetW be a compact, oriented 4-manifold with boundary and corners, and write
BW “ BhW Y BvW,

decomposing the boundary into its horizontal and vertical parts. Each of these parts is a smooth
manifold with boundary. A bordered Lefschetz fibration ofW over the unit disk D Ă C is a smooth map

π : W Ñ D
such that
(1) π has finitelymany critical pointsW crit :“ Critpπq Ă intpW q and critical valuesDcrit :“ πpW critq Ă

intpDq;
(2) near each critical point p P W crit there are complex coordinates pz1, z2q compatible with the

orientation ofW such that
πpz1, z2q “ z2

1 ` z
2
2

on a neighborhood of p;
(3) each fiber π´1pzq has non-empty boundary;

2Etnyre and Ozbagci [EO08] have defined the support genus of a contact manifold to be the minimal possible genus for a page of an
open book supporting ξ. Planar contact manifolds are then those with support genus zero.
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Figure 2. A bordered Lefschetz fibration over D with one singular fiber. The boundary BW
inherits an open book decomposition whose page is an annulus.

(4) BvW “ π´1pBDq, and π|BvW : BvW Ñ BD is a smooth fibration;
(5) BhW “

Ť

zPD Bpπ
´1pzqq, and π|BhW : BhW Ñ D is a smooth fibration.

Notice that π may be restricted to a smooth fiber bundle over DzDcrit. The fibers of this bundle are
called regular fibers, while for each z P Dcrit we have a singular fiber π´1pzq ĂW .

‚ Consider a loop γ : S1 Ñ D which avoids the critical values Dcrit. Then F :“ π´1pγp0qq is a regular
fiber, and we may define a monodromy map ϕγ : F Ñ F which is trivial near BF . This is obtained
as before: for each point p P F , let γ̃p : r0, 1s Ñ W be a path which lifts γ and has γ̃pp0q “ p. Then
ϕγppq “ γ̃pp1q P F . In particular, since all critical points of π are interior, we have a monodromy map
along BD Ă D.

‚ Some observations are now in order. First, each fiber π´1pzq is a smooth surface with boundary, so
BhW is a disjoint union of k S1-bundles over D, for some k ě 1. Since bundles over D are trivial, we
may write

BhW “

k
ğ

i“1

pS1 ˆ Dq

and let B “ Bpπ´1p0qq Ă BhW . Then B is a k-component link, and BhW is a tubular neighborhood of
B in BW . After rounding the corners of BW we obtain a smooth manifoldM , and a fibration

π : MzB Ñ S1

is determined by π|BvW : BvW Ñ BD. That is, the Lefschetz fibration onW determines an open book
decomposition ofM . The page of this open book is given by a regular fiber of the Lefschetz fibration,
and its monodromy is the monodromy along BD.

‚ Example. Consider the unit 4-ball
B4 “ tpz1, z2q||z1|

2 ` |z2|
2 ď 1u Ă C2

and the map π : B4 Ñ D, given by
πpz1, z2q “ z1z2.
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This map has a single critical point at p0, 0q P C2, so we investigate the fiber π´1p0q. We see that

π´1p0q “ tp0, z2q||z2|
2 ď 1u Y tpz1, 0q||z1|

2 ď 1u,

so the singular fiber is a cone in B4 with vertex at p0, 0q, and the boundary of this cone is a Hopf link
in BB4 “ S3. Away from this singular fiber we see that

π´1preiθq “ tpr1e
iθ1 , r2e

iθ2q|r “ r1r2, θ “ θ1 ` θ2u,

for any 0 ă r ă 1 and any θ. So the regular fibers of π are annuli whose boundaries are also Hopf
links in S3, and in particular the regular fibers over BD are the pages of the open book we constructed
above for S3.

‚ One reason it is helpful to relate open bookdecompositions to Lefschetz fibrations is thatmonodromies
of Lefschetz fibrations are relatively well understood. Specifically, fix a point z0 P BD, and let F be
the fiber at this point. We can describe the monodromy ϕ : F Ñ F as a composition of Dehn twists
along particular circles in F . First choose a smooth path

γz : r0, 1s Ñ D

for each critical value z P Dcrit. These paths should be chosen so that γzp0q “ z0, γzp1q “ z, and so
that distinct paths intersect only at z0. It can be shown that for each critical point p P W crit, there
is a smoothly embedded circle Cp Ă F , unique up to isotopy, which collapses to p under parallel
transport along γπppq. This circle is called the vanishing cycle of p, and we will call our bordered
Lefschetz fibration allowable if none of the vanishing cycles is homologically trivial. The collection of
vanishing cycles generate the monodromy:

Theorem 2.4. If π : W Ñ D is a bordered Lefschetz fibration, then the monodromy ϕ : F Ñ F of the induced
open book at the boundary is a composition of positive Dehn twists along the vanishing cycles Cp Ă F .

‚ For example, in the Lefschetz fibration B4 Ñ D considered above, the vanishing cycle C0 is a
boundary-parallel circle in the annulus fiber. This can be seen in Figure 2, where a boundary-parallel
curve in a regular fiber is pinched down to the critical point in the singular fiber. The monodromy of
our open book is a single positive Dehn twist along this circle.

‚ As with open books and contact structures, we have a notion of compatibility between bordered
Lefschetz fibrations and symplectic structures. A Lefschetz fibration π : W Ñ D supports a symplectic
structure ω onW if
(1) each fiber of π|W zW crit : W zW critD is a symplectic submanifold3;
(2) there is an almost complex structure J onW which preserves the fiber directions and is tamed

by ω nearW crit;
(3) there is a 1-form λ so that dλ “ ω near BW , λ|BhW and λ|BvW are both contact forms, and the

Reeb field on BhW is positively tangent to the fibers of π.

‚ Say π : W Ñ D is a bordered Lefschetz fibration supporting the symplectic structure ω onW . Then
we have two ways of obtaining a contact structure on (a smoothed version of) BW : either via the
induced open book decomposition, followed by the Thurston-Winkelnkemper construction, or by
letting ξ “ kerλ, where λ is a 1-form witnessing the fact that π supports ω. The following result says
that these are the same.

Theorem 2.5 ([Wen17, Theorem 5.5], [LVHMW18, Theorem 1.24]). Let π : W Ñ D be a bordered
Lefschetz fibration supporting the symplectic form ω onW . Then BW can be smoothed so that pW,ωq becomes
a symplectic filling of the contact structure supported by the induced open book at the boundary, and this
smoothing is canonical up to symplectic deformation.

‚ This allows us to give the last definition we’ll need before stating Wendl’s result. Let pW,ωq be a
symplectic filling of a contact 3-manifold pM, ξq. A symplectic Lefschetz fibration over D for pW,ωq

3Notice that this includes the singular fibers of π, with the critical points removed.
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consists of a bordered Lefschetz fibration

π : W Ñ D

and a symplectic form ω such that
(1) the form ω is supported by π;
(2) the filling pW,ωq obtained by smoothing the corners of BW is symplectomorphic to pW,ωq.
Wendl showed in [Wen10] that the isotopy class of pW,ωq is determined by the deformation class
of the symplectic structure ω. Namely, if pW,ωq and pW 1, ω1q are deformation equivalent and admit
symplectic Lefschetz fibrations over D, then these Lefschetz fibrations are isotopic.

3. Wendl’s result

‚ At last we repeat

Theorem 3.1 (Wendl, [Wen10]). Suppose pW,ωq is a symplectic filling of a contact 3-manifold pM, ξq, and
that ξ is supported by a planar open book π : MzB Ñ S1. Then pW,ωq admits a symplectic Lefschetz fibration
over D such that the induced open book at the boundary is isotopic to π : MzB Ñ S1. Moreover, the Lefschetz
fibration is allowable if and only if pW,ωq is minimal.

‚ Let’s see how Theorem 3.1 implies Theorem 1.1. Since Theorem 1.1 classifies fillings up to blowup,
we may take pW,ωq to be a minimal filling of pS3, ξstdq. We let π : MzB Ñ S1 be the open book
decomposition of S3 induced by the Lefschetz fibration on B4 as above. Namely, this open book
as annular pages, Hopf link binding, and the monodromy is given by a single positive Dehn twist
along a boundary-parallel circle. According to Theorem 3.1, pW,ωq admits an allowable symplectic
Lefschetz fibration over D inducing this open book on BW “ S3. In particular, this symplectic
Lefschetz fibration has an annulus for its regular fiber, and exactly one singular fiber (corresponding
to the single Dehn twist). This is the same symplectic Lefschetz fibration carried by pB4, ωstdq, and
thus Theorem 2.5 tells us that pW,ωq is deformation equivalent to pB4, ξstdq.

‚ This same proof will apply to any contact manifold supported by an open book with annular pages
and monodromy equal to some non-negative power of a positive Dehn twist. The number of singular
fibers will match the number of positive Dehn twists. Namely, Theorem 3.1 implies that pS1ˆS2, ξstdq
and pLpk, k ´ 1q, ξstdq, k ě 2, have unique fillings up to deformation equivalence and blowup.

‚ A proof sketch for Theorem 3.1 can be found in [Wen17, Section 5.3]
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