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Abstract: The eigenfrequencies associated to a damped wave equation are known to
belong to a band parallel to the real axis. Under the assumption of periodicity of the
geodesic flow we study the asymptotic distribution of the eigenfrequencies in the band.
We show that the set of eigenfrequencies exhibits a cluster structure determined by
the Morse index of the closed geodesics and the damping coefficient averaged along the
geodesic flow. The asymptotics for the multiplicities of the clusters are also obtained.

1 Introduction and Statement of Results

The purpose of this paper is to study the asymptotic distribution of the eigenfrequencies
associated to a damped wave equation on Zoll manifolds, i.e. manifolds all of whose
geodesics are closed. In particular we shall show that the eigenfrequencies form clusters
determined by the Morse index of the closed geodesics and the damping coefficient
averaged along the geodesic flow. In order to describe the results more precisely, we
must recall some standard notation and assumptions.

Let M be a smooth compact connected Riemannian manifold of dimension n ≥ 2,
and let ∆ be the corresponding Laplacian. In control theory, one is interested in the
long time behaviour of the solutions to the Cauchy problem for the wave equation with
a damping term,

{

(∂2
t − ∆ + 2a(x)∂t) u = 0, (t, x) ∈ R ×M,

u|t=0 = u0 ∈ H1(M), ∂tu|t=0 = u1 ∈ L2(M).
(1.1)

Here a is a bounded real-valued function on M , and we shall assume that a ∈ C∞(M).
Associated with the evolution problem (1.11) is the propagator U(t) = eitA acting in

1



the Hilbert space H1 × L2, where the infinitesimal generator A is the operator

A =

(

0 1
−∆ 2ia(x)

)

: H1 × L2 → H1 × L2,

with the domain D(A) = H2 ×H1. Here Hs = Hs(M) is the standard Sobolev space
on M .

In the case when a ≥ 0, which corresponds to actual damping, the energy of the
solution u(x, t) to (1.11) is nonincreasing when t → ∞, and relations between the
rate of decay of the energy and the spectrum of A were studied by many people—see
Lebeau [11] and references given there.

In this paper we shall only be interested in asymptotic properties of the spectrum
of A, and since the inclusion map D(A) → H1 × L2 is compact, it is true that the
spectrum is discrete. We are thus interested in the spectral problem

(A− τ)

(

u0

u1

)

= 0. (1.2)

The eigenvalues of A will also be called the eigenfrequencies. It follows immediately
from (1.22) that τ ∈ C is an eigenfrequency precisely when there exists a non-vanishing
smooth function u such that

(

−∆ − τ 2 + 2iτa(x)
)

u(x) = 0. (1.3)

The real-valuedness of a implies that the set of eigenvalues is symmetric with respect to
the reflection in the imaginary axis. When studying large eigenvalues we may therefore
restrict the attention to the region Re τ ≥ 0.

The multiplicity m(τ0) ∈ {1, 2 . . .} of an eigenvalue τ0 is defined as the rank of the
spectral projection

Πτ0 =
1

2πi

∫

γ

(τ −A)−1 dτ,

where γ is a sufficiently small circle centered at τ0. We refer to [12] for several equivalent
definitions of the multiplicity.

It follows easily from (1.32) that when τ is an eigenvalue, we have that

inf a ≤ Im τ ≤ sup a, Re τ 6= 0,

2 min (inf a, 0) ≤ Im τ ≤ 2 max (sup a, 0) , Re τ = 0.

The spectrum is thus confined to a strip parallel to the real axis, and we are interested
in the asymptotic distribution of the eigenvalues inside the strip. For general compact
manifolds this problem has been studied by Sjöstrand [12], and, to a large extent, our
purpose here is to show how the methods of [12] apply to the case of Zoll manifolds.
Concerning the background and motivation for the study of Zoll manifolds, we refer
to [1] and [7]. In particular, the paper [7] describes a construction of Zoll metrics
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on the two-dimensional sphere S2, i.e. Riemannian metrics such that all geodesics are
closed with the same period. Let us remark that although very special, Zoll metrics on
S2 provide the largest known class of metrics on surfaces with completely integrable
geodesic flows.

When p(x, ξ) = ξ2 is the principal symbol of −∆ defined on T ∗M , we consider the
corresponding Hamilton vector field Hp and recall that the Hamilton flow exp (tHp) :
p−1(1) → p−1(1) can be identified with the geodesic flow on the sphere bundle of M .
The following periodicity assumption for the flow will be assumed to hold throughout
the paper,

exp (πHp)(x, ξ) = (x, ξ), for all (x, ξ) ∈ p−1(1). (1.4)

Introduce now

〈a〉(x, ξ) =
1

π

∫ π

0

a (exp (tHp)(x, ξ)) dt, on p−1(1),

We notice that 〈a〉(x, ξ) is a smooth function on p−1(1) such that 〈a〉(x,−ξ) = 〈a〉(x, ξ).
The main result of the paper is the following theorem.

Theorem 1.1 Under the assumption (1.43) we have

1. There exists a constant C > 0 such that all eigenfrequencies τ with Re τ > 0,
except for finitely many values, are contained in the union of the rectangles

Ik =

[

k +
α

4
− C

k
, k +

α

4
+
C

k

]

+ i[−O(1),O(1)], k = 1, 2, . . . , (1.5)

where α ∈ N is the common Maslov index of the closed Hp-orbits in p−1(1).
Moreover, if τ is an eigenvalue with Re τ ∼ k, then we have

inf
p−1(1)

〈a〉 − O
(

1

k

)

≤ Im τ ≤ sup
p−1(1)

〈a〉 + O
(

1

k

)

, k → ∞. (1.6)

2. Assume that exp (tHp) : p−1(1) → p−1(1) has no fixed points when t ∈ (0, π).
Then the number of eigenvalues τ ∈ Ik is equal to

2

(2π)n

∫

p−1(1)

L0(dρ)
(

k +
α

4

)n−1

+ O
(

kn−3
)

, (1.7)

when k → ∞. Here L0 is the Liouville measure on p−1(1).

Remark. Theorem 1.1 is a well-known and in general optimal result in the self-adjoint
case, a = 0, where it is due to Colin de Verdière, Guillemin, and Weinstein—see §29.2
of [10] for an exposition of the spectral theory of the Laplacian on Zoll manifolds, and
also [14].
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The plan of the paper is as follows. In Section 2 we reformulate our problem in the
semiclassical language, following [12], which is essential for our methods. The proof of
Theorem 1.1 is then carried out in Section 3. The main idea is to subject the operator
in question to a similarity transformation in such a way that, after the conjugation,
the operator will tend to be normal, at least approximately. We may think of this as
an implementation of the averaging method in this context—see [13], [4]. Notice that
due to the periodicity of the flow, the full averaging will be achieved in finite time. The
first step in the proof is therefore a functional reduction to the case when the Hamilton
flow of the principal symbol is periodic with the same period in the relevant part of the
phase space. It follows then, by essentially standard arguments, that the wave group
is also periodic, after the energy has been localized. We are then able to implement
the averaging method alluded to above.

Acknowledgements. I should like to thank Johannes Sjöstrand for the suggestion to
look into the case of Zoll manifolds and for numerous very helpful discussions. I am
also very grateful to Galina Perelman and Maciej Zworski for their generous advice.
This work was mainly done when I was affiliated to the École Polytechnique, and I
should like to thank the Centre de Mathématiques there for the generous hospitality.
The writing of this paper was completed in Berkeley with the support of the Swedish
Foundation for International Cooperation in Research and Higher Education (STINT).
This support is also gratefully acknowledged.

2 Preliminaries

Following [12], we begin by reformulating the problem in a semiclassical setting.
When M is a compact connected Riemannian manifold of dimension n ≥ 2 and
a ∈ C∞(M,R), we consider the eigenvalue problem

(

−∆ − τ 2 + 2iτa(x)
)

v = 0, v 6= 0. (2.1)

We recall that the eigenvalues to the problem (2.14) are contained in a strip parallel
to the real axis. We are only interested in eigenvalues τ with large absolute value, and
by the reflection symmetry we may assume that Re τ ≫ 1.

We write τ =
√
z/h, where 0 < h ≪ 1, and z belongs to the fixed domain Ω :=

(α, β) + i(−γ, γ), for some 0 < α < 1 < β < ∞ and γ > 0. We are then led to the
problem

(P − z) v = 0, (2.2)

where

P = P + ihB(z),

with P = −h2∆ and B(z) = 2a(x)
√
z. We notice that P is essentially self-adjoint

on C∞(M), with the domain of the closure being H2(M), and B(z) is bounded and
self-adjoint for real positive z.
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In what follows we shall make use of some calculus of h-pseudodifferential operators
(h − ΨDO from now on), and we digress here to recall some relevant notation. Let
Sm(T ∗M) be the space of functions a(x, ξ, h) on T ∗M × (0, h0], h0 > 0, which are
smooth in (x, ξ) and such that

∂αx ∂
β
ξ a(x, ξ, h) = Oα,β(1) (1 + |ξ|)m−|β| , (x, ξ) ∈ T ∗M, h ∈ (0, h0]. (2.3)

When a depends on some additional parameters, we require the symbolic estimates
(2.35) to hold uniformly with respect to these parameters. The formula for the classical
h-quantization,

a(x, hDx, h)u(x) =
1

(2πh)n

∫ ∫

ei
〈x−y,ξ〉

h a(x, ξ, h)u(y) dy dξ,

then defines a class of h− ΨDO on M , which will be denoted by Em(M). Associated
to this class is a symbol map, σ, and a short exact sequence,

0 → hEm−1(M) → Em(M) → Sm(T ∗M)/hSm−1(T ∗M) → 0.

For h-dependent symbols, we write a ∈ Smcl if there exists a0 ∈ Sm, independent of
h, such that a − a0 ∈ hSm−1, and we say that a0 is the principal symbol of a and of
the corresponding h− ΨDO. When A ∈ Em is an h− ΨDO with the principal symbol
a0 ∈ Sm, we write A = Oph(a0) and say that A is classical, A ∈ Emcl .

We shall finally recall the notion of the essential support, SE(A), of an operator
A ∈ Em(M). When ρ ∈ T ∗M , we say that ρ 6∈ SE (A), if the full symbol of A, for some
choice of local coordinates near the projection of ρ, is of class S−∞,m := ∩khkSm near
ρ. It follows from the definition that SE (A) is a closed subset of T ∗M , SE (AB) ⊂
SE(A) ∩ SE (B), and SE(A) = ∅ ⇒ h−kA ∈ Em for any k.

3 Proof of Theorem 1.1

Let M be a Zoll manifold and consider the eigenvalue problem (2.24). The assumption
(1.43) together with the homogeneity of p(x, ξ) implies that

exp (THp)(x, ξ) = (x, ξ), for all (x, ξ) ∈ p−1(E), E > 0, (3.1)

with
T = T (E) = π/

√
E. (3.2)

Notice also that, for E > 0, p−1(E) is connected, since M is and the dimension of M
is ≥ 2.

We shall first perform a functional reduction to the case when the period T is
constant in the energy band in question, see [8]. We can find a smooth real-valued
function f(λ) such that f(λ) =

√
λ when λ ∈ [α−ε, β+ε], for some ε > 0 small enough,
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f is increasing on [0,∞) and f is equal to a constant plus a C∞
0 function. It follows then

from the semiclassical functional calculus (see [5], [2]), that Q := f(P ) is a self-adjoint
h − ΨDO of the class E0

cl(M), with the principal symbol q(x, ξ) = f(p(x, ξ)). We also
have that the set {(x, ξ) ∈ T ∗M ; p(x, ξ) ∈ (α − ε, β + ε)} = {(x, ξ) ∈ T ∗M ; q(x, ξ) ∈
(f(α− ε), f(β + ε))} has compact closure, and q(x, ξ) = p1/2(x, ξ) on this set.

Since Hq = f ′(p)Hp, it follows from (3.25) that exp (tHq) is 2π-periodic for (x, ξ) in a
neighbourhood of q−1([α1/2, β1/2]). Decreasing ε > 0 if necessary, we may assume that

exp (2πHq)(x, ξ) = (x, ξ), (x, ξ) ∈ q−1(E), E ∈ [α1/2 − ε, β1/2 + ε]. (3.3)

In what follows we shall write E1 = α1/2 and E2 = β1/2.
Let now 0 ≤ ψ ∈ C∞

0 ((E1 − ε, E2 + ε)) be such that ψ = 1 in a neighbourhood of
[E1, E2], and consider the semiclassical Fourier integral operator

Uψ(t) = e−itQ/hψ(Q), t ∈ R.

We are interested here in Uψ(2π), and since exp (2πHq)(x, ξ) = (x, ξ) for all (x, ξ) ∈
supp(ψ(q(x, ξ))), we know that this is an h− ΨDO with the principal symbol

ψ(q(x, ξ))exp (−πiα/2),

where α ∈ Z is the Maslov index of the trajectory {exp (tHq)(x, ξ), t ∈ [0, 2π]} in
q−1((E1 − ε, E2 + ε)). (See Chapter 15 of [5] for this essentially well-known fact.)
Furthermore, arguing as in [5] (see also [8]), we find that there exists a self-adjoint
operator W ∈ E0 which commutes with Q and such that

e−2πi/h(Q−hσ−h2W)ψ1(Q) = ψ1(Q). (3.4)

Here we write σ = α/4, and 0 ≤ ψ1 ∈ C∞
0 ((E1 − ε, E2 + ε)) is such that ψ1 = 1 in a

neighbourhood of [E1, E2], and the support of ψ1 is contained in the interior of the set
where ψ = 1. If we put

Q1 = Q− h2W, (3.5)

we may rewrite (3.46) as

e−2πi/h(Q1−hσ)ψ1(Q) = ψ1(Q). (3.6)

Let now v = v(h) be a nontrivial solution of (2.24) for some z ∈ Ω, such that
|| v || = || v ||L2 = 1. In the following we shall only use that the operator B(z) ∈ E0

cl

depends analytically on z ∈ Ω, and it is self-adjoint for z real positive.
We have that the operator in (2.24) is elliptic away from p−1([α, β]), and it follows

therefore that
(

P −Q2
)

v = O(h∞), in L2,

uniformly with respect to z and v. Also, considering 0 = Im ((P − z)v, v) we see that

Im z = O(h). (3.7)
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We shall therefore write (2.24) in the following form,
(

Q2 + ihB(Re z) + F + h2R(z) − z
)

v = 0, (3.8)

where we put F = P −Q2 and R(z) ∈ E0. Furthermore, modifying R = R(z) slightly,
we may replace Q by Q1 in (3.87).

We would like to localize the real part of z in (3.87), and the main idea for doing that
is to conjugate the operator in (3.87) by an h−ΨDO, bounded and invertible on L2(M),
so that, after the conjugation, the operator Q2

1 + ihB(Re z) becomes approximately
normal, after the localization in energy. On the principal symbol level this will amount
to replacing the principal symbol of B = B(Re z) by its average along the closed
trajectories of q(x, ξ). The construction of the conjugating operator will be similar to
the construction in the non-semiclassical setting in [13], see also [10].

Set

B̂ = B̂(Re z) =
1

2π

∫ 2π

0

e−itQ1/hB(Re z)eitQ1/h dt.

The operator B̂ is a self-adjoint h− ΨDO of order 0. Since

−i
h
e−itQ1/h[Q1, B]eitQ1/h =

d

dt
e−itQ1/hBeitQ1/h,

it follows that

[Q1, B̂] =
−h
2πi

(

e−2πiQ1/hBe2πiQ1/h −B
)

,

and in view of (3.66) we get that

ψ1(Q)[Q1, B̂]ψ1(Q) = 0. (3.9)

Here we have also used that Q1 commutes with ψ1(Q).

Proposition 3.1 There exists an elliptic self-adjoint operator U ∈ E0
cl(M) (depending

also on Re z), and an operator V = V (Re z) ∈ E−1(M) with

SE (V ) ∩ p−1([α, β]) = ∅,
such that

U−1(Q2
1 + ihB(Re z))U = Q2

1 + ihB̂(Re z) + hV + h2R0(z),

where R0(z) ∈ E0.

Proof: We introduce the operator B(t) = B(t,Re z) = e−itQ1/hBeitQ1/h and write

i(B̂ − B) =
i

2π

∫ 2π

0

(
∫ t

0

d

ds
B(s) ds

)

dt (3.10)

=
i

2π

∫ 2π

0

(
∫ t

0

1

ih
[Q1, B(s)] ds

)

dt

=
1

2πh

∫ 2π

0

(
∫ t

0

[Q1, B(s)] ds

)

dt =
1

h
[Q1, S],
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where

S = S(Re z) =
1

2π

∫ 2π

0

(
∫ t

0

B(s) ds

)

dt ∈ E0
cl(M)

is a self-adjoint operator.
Since the operator Q1 is elliptic near p−1([α, β]), we can construct a microlocal

parametrix T ∈ E0 for Q1, so that

SE (TQ1 − I) ∩ p−1([α, β]) = ∅, and SE (Q1T − I) ∩ p−1([α, β]) = ∅. (3.11)

We can also take T to be self-adjoint in view of the self-adjointness of Q1. We then
compute

[Q2
1, TS] = [Q2

1, T ]S + T [Q2
1, S] = [Q2

1, T ]S + TQ1[Q1, S] + T [Q1, S]Q1

= [Q2
1, T ]S + 2TQ1[Q1, S] + T [[Q1, S], Q1]

= [Q2
1, T ]S + 2[Q1, S] + 2[Q1, S](TQ1 − I) + h2R1,

where R1 = R1(z) ∈ E−2(M). Since

[Q2
1, T ] = 2Q1[Q1, T ] + h2R2,

with R2 ∈ E−2, it follows that

[Q2
1, TS] = 2[Q1, S] + 2[Q1, S](TQ1 − I) + 2Q1S[Q1, T ] + h2R3(z), (3.12)

where R3 ∈ E−2(M). A similar computation now shows that

[Q2
1, ST ] = 2[Q1, S]+2[Q1, S](Q1T−I)+2Q1S[Q1, T ]+h2R4(z), R4 ∈ E−2(M). (3.13)

Put now

G =
1

4
(ST + TS) .

Then G ∈ E0
cl(M) is a self-adjoint operator, and from (3.128) and (3.138) we get

[Q2
1, G] = [Q1, S] +

1

2
[Q1, S](TQ1 − I) +

1

2
[Q1, S](Q1T − I) +Q1S[Q1, T ] + h2R5(z),

(3.14)
with R5 ∈ E−2. In view of (3.118) we conclude that

[Q2
1, G] = [Q1, S] + hV + h2R5(z), (3.15)

where V ∈ E−1 is such that

SE (V ) ∩ p−1([α, β]) = ∅.

We now set U = eG ∈ E0
cl, and conjugate the operator in (3.87) by means of U . We

have
U−1Q2

1U = Q2
1 + U−1[Q2

1, U ] = Q2
1 − ihY, (3.16)
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where Y ∈ E−1
cl has the principal symbol

e−gHq2(e
g) = Hq2g,

where g ∈ S0 is the principal symbol of G. It follows that

U−1Q2
1U = Q2

1 − ihOph(Hq2g) = Q2
1 + [Q2

1, G] + h2R6(z),

with R6 ∈ E−2(M). Using (3.158) and (3.107) we then get

U−1(Q2
1 + ihB)U = Q2

1 + ihB + [Q2
1, G] + h2R7(z) (3.17)

= Q2
1 + ihB + [Q1, S] + hV + h2R8(z)

= Q2
1 + ihB̂ + hV + h2R8(z),

This completes the proof. �

If v is a nontrivial solution of (2.24) such that || v || = 1, we have

(

U−1
(

Q2
1 + ihB(Re z) + F + h2R

)

U − z
)

U−1v = 0, (3.18)

and it follows from Proposition 3.1 that
(

Q2
1 + ihB̂ + hV + F1 + h2R9(z) − z

)

u = 0, (3.19)

where F1 is the conjugate of F by means of U , and u = U−1v. In particular we have
that the principal symbol of F1 is p− q2 and

SE (F1) ∩ p−1([α, β]) = ∅.

We see therefore that

||F1u || = O(h∞)|| u ||, || V u || = O(h∞)|| u ||.

Using this in (3.199) we get

||
(

Q2
1 + ihB̂(Re z) − z

)

u ||2 ≤ O(h4)|| u ||2. (3.20)

On the other hand, if C and D are bounded self-adjoint operators, we have that

|| (C + iD)u ||2 = ||Cu ||2 + ||Du ||2 + i([C,D]u, u), (3.21)

and applying this to the left-hand side of (3.209) we obtain

|| (Q2
1 − Re z)u ||2 + ih([Q2

1, B̂]u, u) ≤ O(h4)|| u ||2. (3.22)

Now (3.97) implies that

ψ1(Q)[Q2
1, B̂]ψ1(Q) = 0, (3.23)

9



and using (3.239) together with the fact that ||ψ1(Q)u−u || ≤ O(h∞)|| u || we see that

ih([Q2
1, B̂]u, u) = O(h∞)|| u ||2 + ih([Q2

1, B̂]ψ1(Q)u, ψ1(Q)u) = O(h∞)|| u ||2.

From (3.229) we get
|| (Q2

1 − Re z)u || ≤ O(h2)|| u ||,
and by the spectral theorem we conclude that

dist (Re z, Spec (Q1)
2) = O(h2), (3.24)

where Spec (Q2
1) denotes the spectrum of Q2

1.
On the other hand it follows from (3.66) that

Spec (Q1) ∩ [E1, E2] ⊂ {h(σ + k); k ∈ Z}, (3.25)

for all sufficiently small h. Combining (3.2410) together with (3.2510) we get the
following semiclassical version of the localization result (1.53):

Theorem 3.2 There exist C0 > 0, h0 > 0 such that

Spec (P) ∩ Ω ⊂ ∪kIk(h), k = 1, 2, . . . , k ∼ 1

h
, (3.26)

for all h ∈ (0, h0],with

Ik(h) =

[

h2
(

k +
α

4

)2

− C0h
2, h2

(

k +
α

4

)2

+ C0h
2

]

+ i[−O(h),O(h)].

To derive (1.53) from Theorem 3.2, it suffices to apply the semiclassical reduction of
Section 2. The relation between the eigenvalues z of P and the original eigenfrequencies
τ is given by z = (hτ)2, Im τ = O(1), Re τ ∼ h−1, so that

Re z = (hRe τ)2 + O(h2), Im z = 2h(Re τ)h(Im τ). (3.27)

Now (1.53) follows immediately from (3.2610).

Remark. It follows from (3.2510) that the spectrum of P in [E1, E2] consists of clusters
of width O(h2) separated by a distance of the order of h. It is precisely due to the form
of the perturbation, ihB(z), where B(z) is, up to an error of order O(h), a self-adjoint
operator, that the cluster structure of the spectrum of P persists.

Remark. In Theorem 3.2 we have obtained the result giving the optimal width of the
clusters, O(h2). It may be interesting to remark that a slightly weaker result giving
the width O(h3/2) can be obtained by a direct application of the methods of Section 2
of [12]. For the sake of completeness, and also, for future reference, we shall now briefly
outline the argument. Arguing as in Section 2 of [12], we find that after a conjugation

10



of P + ihB(Re z) by a suitable bounded invertible h − ΨDO (which also depends on
Re z), very similar to the operator U in Proposition 3.1, we can replace the principal
symbol of B, b = b(Re z), by its average along the closed Hp-orbits in p−1(Re z). After
the conjugation the operator becomes

P + ihB̂ + h2R(z),

where B̂ ∈ E1 has the principal symbol b̂ = b̂(Re z) = 〈b〉T on p−1(Re z), and R(z) ∈ E1.
Here

〈b〉T (x, ξ) =
1

T

∫ T

0

b(exp (tHp)(x, ξ)) dt, (x, ξ) ∈ p−1(Re z),

and T = T (Re z) is the common period of the closed Hp-orbits in p−1(Re z). Therefore,

Hpb̂ = 0 on p−1(Re z), and we then have

Hpb̂ = k(p− Re z), k ∈ S0.

If K is an h− ΨDO with the principal symbol k, it follows that

i

h
[P, B̂] −K(P − Re z) ∈ hE1(M). (3.28)

Now if z is an eigenvalue of P we have

(P + ihB̂ + h2R(z) − z)u = 0, (3.29)

for some u ∈ L2(M), || u || = 1. We know that Im z = O(h), and a standard observation
based on the ellipticity of the operator in (3.2911) for large ξ shows that ||Au || ≤ O(1)
when A ∈ E2. In particular, B̂u = O(1) in L2, and it follows that

(P − Re z)u = O(h) in L2. (3.30)

An application of (3.2811) then shows

|| [P, B̂]u || ≤ O(h2)|| u ||,

and applying (3.219) to (3.2911) we get that

|| (P − Re z)u || ≤ O(h3/2)|| u ||,

so that dist (Spec (P ),Re z) = O(h3/2). To conclude, we only have to use the fact that
under the assumption (1.43), it is true that

Spec (P ) ∩ [α, β] ⊂ ∪k[h2(k + α/4)2 −O(h2), h2(k + α/4)2 + O(h2)], k ∈ Z,

in view of (3.46).
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We now come to the proof of the estimate for the imaginary parts (1.63). This
comes almost directly from [12], and we shall therefore only indicate how to extract it
from there. In doing so we shall continue to work with (3.2911).

Choose a real-valued b̃ = b̃Re z ∈ S0 such that b̃(x, ξ) = b̂(x, ξ,Re z) on p−1(Re z),
and

sup b̃ = sup
p−1(Re z)

b̂(Re z), (3.31)

and
inf b̃ = inf

p−1(Re z)
b̂(Re z). (3.32)

We have
b̂(Re z) = b̃+ k̃(p− Re z),

with k̃ ∈ S−1. Let now B̃ be a self-adjoint h − ΨDO with principal symbol b̃, and K̃
an h− ΨDO with principal symbol k̃. Then we have that

0 = Im ((P + ihB̂ + h2R(z) − z)u, u) = h(B̂u, u) − Im z|| u ||2 (3.33)

+ O(h2)|| u ||2 = h(B̃u, u) + h(K̃(P − Re z)u, u) − Im z|| u ||2
+ O(h2)|| u ||2 = h(B̃u, u) − Im z|| u ||2 + O(h2)|| u ||2.

Here we have also used (3.3011). An application of the semiclassical version of the
sharp G̊arding inequality (see [5]), shows that

(inf b̃−O(h))|| u ||2 ≤ (B̃u, u) ≤ (sup b̃+ O(h))|| u ||2,

and combining (3.3112) and (3.3212) with (3.3312) we conclude that

h inf
p−1(Re z)

〈b〉T −O(h2) ≤ Im z ≤ h sup
p−1(Re z)

〈b〉T + O(h2). (3.34)

In order to derive (1.63) we recall that the period T in (3.3412) is given by T =
T (Re z) = π/

√
Re z and that b(x, ξ,Re z) = 2a(x)

√
z. These observations, combined

with (3.3412), (3.2710), and the homogeneity properties of theHp-flow imply that when
τ is an eigenfrequency such that h ∼ (Re τ)−1, we have

(hRe τ) inf
p−1(1)

〈a〉 − O(h) ≤ (hRe τ)Im τ ≤ (hRe τ) sup
p−1(1)

〈a〉 + O(h),

and this completes the proof of (1.63).

When proving (1.73) we set

Pt = P + ihtB(z), t ∈ [0, 1].

It follows by inspection that the proof of (3.2610) applies to Pt with all constants
uniform in t. We can therefore find a closed rectangular-shaped curve γk(h) with
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dist (z, Spec (Pt)) ≥ h/C0, z ∈ γk(h), t ∈ [0, 1], with C0 > 0 sufficiently large, and
such that Spec (Pt) ∩ int(γk(h)) = Spec (Pt) ∩ Ik(h). Here the rectangles Ik(h) have
been defined in Theorem 3.2 and int(γk(h)) denotes the interior of γk(h). When f is
an analytic function in a neighbourhood of the closure of the interior of γk(h), then
according to Section 5 of [12] we have that

∑

λ∈Spec(Pt)∩int(γk(h))

f(λ) = tr

(

1

2πi

∫

γk(h)

f(z)(1 − ∂zPt)(z − Pt)−1 dz

)

. (3.35)

Here the right-hand side depends continuously on t, and taking f = 1 we get that

# (Spec (P) ∩ int(γk(h))) = # (Spec (P ) ∩ int(γk(h))) .

The latter number is given by the expression (1.73) in view of the results of [13] and [3],
see also [8].

Remark. We refer to [10] and [3] for a proof of the fact that there exists a polynomial R
such that the multiplicity of the k-th cluster Ik in Theorem 1.1 is equal to R(k+α/4),
for k sufficiently large.

Remark. The analysis of the present paper makes it possible to prove that we have a
sufficiently good control over the resolvent of P along all of the contour γk(h), see [9].
We hope to return to this observation and analyze the trace integrals (3.3513) for more
general functions f , in order to describe the distribution of the eigenfrequencies in the
clusters more precisely.
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