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Continuity properties of the scattering transform associated to the Schrödinger
operator on the real line are studied. Stability estimates of Lipschitz type are derived
for the scattering and inverse scattering transforms. © 2001 Academic Press

1. INTRODUCTION

The purpose of this paper is to analyze some of the mapping properties
of the scattering transform associated to the Schrödinger operator Hpu =
−u′′ + pu on the real line. Here p belongs to the space �+ of real-valued
measurable potentials such that∫ ∞

a
�1 + �x���p�x��dx < ∞�

for any a > −∞. We establish Lipschitz type estimates for the scattering
and inverse scattering trasforms on bounded sets in �+.

The scattering transform S appears naturally in connection with the
Marchenko equation. Also, it is precisely this transform that linearizes
the Korteweg–de Vries (KdV) flow. Several authors (see [4, 11, 13])
have observed that p and S�p� have similar behavior at +∞. Moreover,
S�p� − p is continuous and has better bounds at +∞ than p. When p
is also well behaved at −∞, there is a simple relation between S�p� and
the scattering matrix of p, given essentially by the Fourier transformation.
In [17] the range of S on �+ was characterized and it was proved that S
maps �+ homeomorphically onto S��+�. In the context of half-line scat-
tering, a similar observation was made in [19]. Here we shall sharpen these
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results by establishing the Lipschitz continuity of the scattering and inverse
scattering transformations. (See [8, 9] for stability analyses of the Cauchy
problem for the KdV equation by means of scattering transforms.) It
should also be mentioned that stability estimates for potentials directly in
terms of their scattering data have been studied in [14, 12] (see also [2, 6]).

The plan of the paper is as follows. In Section 2, after recalling the inter-
twining operators and the scattering transform, we state our main result
in Theorem 2.1. The Lipschitz continuity of the forward transform is then
established in Section 3, and that of the inverse transform in Section 4.
Throughout the paper we make use of the operator theoretical approach
to inverse scattering developed in [17]. This approach has recently been
used by the author (see [6, 7]) when studying error estimates in inverse
scattering and the distribution of resonances in one dimension. Some of
the results obtained in these papers will be useful here as well.

2. THE SCATTERING TRANSFORM AND STATEMENT OF
THE RESULTS

First, we shall briefly describe the main notation used in the paper. The
space �+ of real-valued measurable functions p such that

	p	z =
∫ ∞

z
�1 + �x���p�x��dx < ∞� z ∈ R� (2.1)

was already introduced in Section 1. This is a Fréchet space under the
seminorms in (2.1). We shall also use the Banach space L of real-valued
measurable functions p on �0�∞� such that 	p	0 < ∞, and let Lc denote
its complexification. For p ∈ L, write 	p	0 = 	p	.

We shall now recall the intertwining operators and the scattering trans-
form, as presented in [17]. Consider the Schrödinger operator

Hpu = −u′′ + pu�

where p ∈ �+. Associated to p is the operator A = I + R with

HpA = AH0� (2.2)

and y ≥ x in the support of the distribution kernel of A. The function
R�x� y� is continuous up to the boundary in the set where y > x and

	R�x� ·�	L1 =
∫
�R�x� y��dy < ∞� (2.3)

for any x. Moreover, 	R�x� ·�	L1 → 0 as x → +∞. (Much more precise
estimates of R are given later.) Apart from functions that are continuous
on the whole of R2,

R�x� y� ≡ R0�x� y��
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where

R0�x� y� =
(

1
2

)
θ+�y − x�

∫ ∞

�x+y�/2
p�t�dt� (2.4)

and

θ+�t� = 1 when t ≥ 0 and 0 otherwise.

This is the leading term in R, and R satisfies the equation

R = R0 + LpR� (2.5)

where Lp is given by

LpR�x� y� =
∫ ∫

E�x− x′� y − y ′�p�x′�R�x′� y ′�dx′ dy ′� (2.6)

E�x� y� = 1
2

when x < 0� � y� < �x� and 0 otherwise� (2.7)

The solution of (2.5) is obtained by iteration,

R =
∞∑
k=0

Lk
pR0� (2.8)

It follows in view of (2.4) and (2.8) that the function R�x� ·�, for any x,
depends only on the restriction of p to the interval �x�∞�. Also note that
the foregoing construction of R is valid for complex-valued potentials p
satisfying (2.1).

To introduce the scattering transform, the kernel of the Marchenko equa-
tion Q�x� y� = Q�x� y� p� is also needed. When p ∈ �+, this is a continuous
function on R2 that satisfies Q�x� y� = Q�y� x� and solves the equation

R�x� y� +Q�x� y� +
∫ ∞

x
R�x� t�Q�t� y�dt = 0� y > x� (2.9)

Note that the part of Q�x� x� that is linear in p is equal to

− R0�x� x+ 0� = −R�x� x+ 0� = −1
2

∫ ∞

x
p�y�dy� (2.10)

Let Q denote also the operator with integral kernel Q�x� y�. It is clear from
the context which interpretation is chosen at every formula.

For future reference, we shall now state the operator formulation of the
Marchenko equation (2.9) as given in [17],

A�I +Q�Aτ = I� (2.11)
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Here Aτ is the transpose of A�Aτ�x� y� = A�y� x�. [We remark here that
the operator calculus developed in Section 3 of [17] makes it meaningful
to study products as in (2.11).]

It is then well known that we have the following representation for the
kernel Q,

Q�x� y� = −1
2

∫ ∞

�x+y�/2
q�s�ds� (2.12)

with q ∈ �+ (see [13, 15, 11, 17]). This gives the map S � p → q from �+

to �+ obtained by solving (2.11) for Q. We shall say that S is the scatter-
ing transform. According to Theorem 4.9 of [17], S is a homeomorphism
between �+ and its range. Note that in view of (2.10), S may be thought
as a nonlinear perturbation of the identity on �+. We refer to Sections 2
and 7 of [17], where it is shown that the KdV equations of all orders are
linearized when passing from p to q.

We remark that when p is complex valued, the kernel Q obtained by solv-
ing (2.11) is a function of x+ y, and the representation (2.12) is true. This
follows from the proof of Theorem 4.7 in [17]. In what follows, however,
we are concerned mainly with real-valued potentials.

It follows from (2.9), (2.10), and (2.12) [see also (3.23)] that the restric-
tion of q to any interval �z�∞� depends only on the restriction of p to
this set, and, conversely, the restriction of q to �z�∞� determines p on this
interval. Restricting to the positive half-axis, S thus may be regarded as an
injective mapping on L. (See also Remarks 5 and 7.)

Theorem 2.1. Let p1 and p2 ∈ �+ be two potentials such that

	pj	 ≤ M� j = 1� 2�

for some M > 0. Then the following holds:

1. There exists a constant C1 depending only on M such that

	S�p1� − S�p2�	 ≤ C1	p1 − p2	�

2. The estimate

	p1 − p2	 ≤ C2	S�p1� − S�p2�	

is true. Here C2 = C2�M� depends only on M .

Remark 1. In the proofs we shall obtain explicit bounds for the size of
the Lipschitz constants in terms of the bounded sets in question.
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Remark 2. It follows easily from (2.8), (2.9), and (2.12) that the mapping
S � �+ → �+ commutes with the action of the translation group τhp�x� =
p�x+ h�� h ∈ R, so that τhS = Sτh. It follows therefore from Theorem 2.1
that when � is a bounded set in �+ we have

	S�p2� − S�p1�	z ≤ C	p2 − p1�z� p1� p2 ∈ ��

for any z, where C depends only on z and �. Similarly, it is true that

	p2 − p1	z ≤ C�z���	S�p2� − S�p1�	z� p1� p2 ∈ ��

for any z ∈ R.

3. ESTIMATES FOR THE FORWARD TRANSFORM

In this section we shall prove the first part of Theorem 2.1. In our analysis
we make use of the nonincreasing functions

f �x� =
∫ ∞

x
�p�t��dt� g�x� =

∫ ∞

x
f �t�dt� (3.1)

associated with a potential p ∈ �+. Then the estimate

�R�x� y�� ≤ 1
2
f

(
x+ y

2

)
exp

(
g�x� − g

(
x+ y

2

))
� y > x� (3.2)

is true, (see [13]).
When considering two potentials p1 and p2 ∈ �+, set δp = p2 − p1 and

fj�x� =
∫ ∞

x
�pj�x��dx� gj�x� =

∫ ∞

x
fj�x�dx� j = 1� 2� (3.3)

Our starting point is the following result. Although giving only L∞�x�∞�
bounds on the difference of the intertwining kernels, it will be sufficient for
our purposes.

Lemma 3.1. Suppose that p1� p2 ∈ �+, and let I + Rj� j = 1� 2, be the
corresponding intertwining operators. Then the estimate

�δR�x� y�� ≤ 1
2

exp
(
g1�x� + g2�x�

−g2

(
x+ y

2

)) ∫ ∞

x
�δp�t��dt� y > x� (3.4)

holds. Here δR = R2 − R1.
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Proof. From the proof of Lemma 3.1.1 in [13], recall that if a func-
tion Hj�u� v�� j = 1� 2, is defined by Hj�u� v� = Rj�u − v� u + v�, then Hj

satisfies

Hj�u� v� =
1
2

∫ ∞

u
pj�t�dt +

∫ ∞

u

(∫ v

0
pj�α− β�Hj�α�β�dβ

)
dα�

v > 0� (3.5)

Writing δH = H2 −H1, we get

δH�u� v� = 1
2

∫ ∞

u
δp�t�dt +

∫ ∞

u

(∫ v

0
p2�α− β�δH�α�β�dβ

)
dα

+
∫ ∞

u

(∫ v

0
δp�α− β�H1�α�β�dβ

)
dα� v > 0� (3.6)

Consider

ρ�u� v� =
∫ ∞

u

(∫ v

0
δp�α− β�H1�α�β�dβ

)
dα�

Bound (3.2) means that

�Hj�u� v� ≤
1
2
fj�u� exp�gj�u− v� − gj�u���

and, therefore,

�ρ�u� v�� ≤ 1
2

∫ ∞

u
f1�α�

(∫ v

0
�δp�α− β�� exp�g1�α− β� − g1�α��dβ

)
dα

≤ 1
2

∫ ∞

u
f1�α� exp�g1�α− v� − g1�α��

(∫ v

0
�δp�α− β��dβ

)
dα

≤ 1
2

∫ ∞

u
f1�α− v� exp�g1�α− v� − g1�α��

(∫ ∞

α−v
�δp�s��ds

)
dα

≤ 1
2

(∫ ∞

u−v
f1�t� exp�g1�t��dt

) ∫ ∞

u−v
�δp�s��ds

= 1
2

(
exp�g1�u− v�� − 1

) ∫ ∞

u−v
�δp�s��ds�

Setting

h�u� v� = 1
2

∫ ∞

u
δp�t�dt + ρ�u� v��

it follows that

�h�u� v�� ≤ 1
2

∫ ∞

u
�δp�t��dt + 1

2
�exp�g1�u− v�� − 1�

∫ ∞

u−v
�δp�t��dt

≤ 1
2

exp �g1�u− v��
∫ ∞

u−v
�δp�t��dt�
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Solving (3.6) by iteration as in [13], Lemma 3.1.1, yields

�δH�u� v�� ≤ 1
2

exp�g1�u− v��
(∫ ∞

u−v
�δp�t��dt

)
exp �g2�u− v� − g2�u���

This completes the proof.

Remark 3. It follows from the proof of Lemma 3.1 that the following
sharper bound is valid:

�R2�x�y�−R1�x�y��≤
1
2

(∫ ∞

�x+y�/2
�δp�t��dt+�exp�g1�x��−1�

∫ ∞

x
�δp�t��dt

)

×exp
(
g2�x�−g2

(
x+y

2

))
� y>x�

We also remark that an L1 estimate on δR�x� ·� can be obtained from the
bound

�δR�x� y�� ≤ 1
2

(∫ ∞

�x+y�/2
�δp�t��dt + eg1�x�f1

(
x+ y

2

) ∫ ∞

x
�t − x��δp�t��dt

)

× exp
(
g2�x� − g2

(
x+ y

2

))
�

which follows from a small modification of the proof of Lemma 3.1. Setting
p1 = 0 in these bounds, (3.2) is recovered.

In addition to basic estimate (3.2) and Lemma 3.1, similar bounds are
required for B = A−1, the second intertwining operator. These bounds will
be needed to estimate the kernel Q in (2.11) in terms of the potential. It
follows from the results in Section 3 of [17] that y ≥ x in the support of B,
and B = I + T with T continuous in this set. Moreover, T = ∑∞

k=1�−1�kRk.
(See [17] for the definition and properties of the relevant Fréchet algebra
of distribution kernels containing R and T .)

Proposition 3.2. The estimate

�T �x� y�� ≤ 1
2
f

(
x+ y

2

)
exp

(
g

(
x+ y

2

)
− g�y�

)
� y > x (3.7)

is true. Moreover, if p1 and p2 ∈ �+, and Tj correspond to pj� j = 1� 2, then

�T2�x� y� − T1�x� y�� ≤
1
2

(∫ ∞

�x+y�/2
�δp�s��ds

)

× exp
(
g1

(
x+ y

2

)
+ g2

(
x+ y

2

))
� (3.8)
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Proof. We shall make use of the intertwining relation (2.2). Approxi-
mating the potential p ∈ �+ by test functions and making use of some
arguments of Section 4 in [17], clearly B satisfies BHp = H0B, and the
corresponding equation for the function T is then

T �x� y� = T0�x� y� −
∫ ∫

E�x− x′� y − y ′�p�y ′�T �x′� y ′�dx′dy ′� (3.9)

where

T0�x� y� = −
(

1
2

)
θ+�y − x�

∫ ∞

�x+y�/2
p�t�dt�

and E�x� y� has been defined in (2.7). It follows, as in the proof
of Lemma 3.1.1 of [13], that if a function G�u� v� is defined by
G�u� v� = T �u− v� u+ v�, then G obeys

G�u�v�=−
∫ ∞

u
p�t�dt−

∫ ∞

u

(∫ v

0
p�α+β�G�α�β�dβ

)
dα� v>0� (3.10)

Equation (3.10) is solved by iteration, and we have

T �x� y� =
∞∑
n=1

Tn�x� y�� (3.11)

where Tn is homogeneous of degree n in p. Working with (3.10), a simple
inductive argument demonstrates that the estimate

�Tn�x� y�� ≤
1
2
f

(
x+ y

2

)�g��x+ y�/2� − g�y��n−1

�n− 1�! � y ≥ x (3.12)

holds, and this gives (3.7). Note also that

T �x� x+ 0� = −1
2

∫ ∞

x
p�t�dt� (3.13)

When proving (3.8), we argue in the same way as in the proof of
Lemma 3.1, using (3.10) instead of (3.5), and this completes the proof.

Remark 4. Note that the bound (3.7) on the kernel T is better than the
bound (3.2) on R, which reflects the convexity of the function g. Note also
that estimate (3.8) gives both L1 and L∞ bounds on T2�x� ·� − T1�x� ·�.
Remark 5. Recall the complex Banach space Lc introduced in Section 2.

It follows from the proof of Proposition 3.2 (see also Theorem 4.1 in [17])
that the map p → T �x� y� = T �x� y� p� is analytic from Lc to the Banach
space N . Here, following [17], we first introduce the space V of complex-
valued functions Q in ��x� y��x ≥ 0� y ≥ 0�, tending to 0 as x + y → ∞,
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that are continuous up to the boundary in the sets ±�y − x� > 0 and such
that if

Q∗�z�w� = sup
x≥z� y≥z� �x+y�/2≥w

�Q�x� y��� (3.14)

then

	Q	 = sup
x≥0� y≥0

�Q�x� y�� + 2
∫ ∞

0
Q∗�0� w�dw < ∞� (3.15)

This is a complex Banach space with the norm just defined, and we then
let N be the closed subspace comprising all Q ∈ V such that y ≥ x in
their support. Because T �x� y� p� is given as the power series (3.11), where
Tn is a homogeneous polynomial of degree n in p ∈ Lc with values in N ,
the analyticity of p → T follows from (3.12), which shows that the series
converges in N , and the convergence is uniform on bounded sets in Lc . We
have the same result for the map p → R�x� y� = R�x� y� p�.

From (2.5) and (2.6), recall that

R�x� y� − R0�x� y� =
1
2

∫ ∞

x
p�x′�

(∫ y+x′−x

y+x−x′
R�x′� y ′�dy ′

)
dx′� (3.16)

It is then easy to see that the function R−R0 is of class C1 up to the bound-
ary in the set where y > x. Set R�1� 0��x� y� = �∂xR��x� y� and R�0� 1��x� y� =
�∂yR��x� y� when y > x and = 0 when x > y. The function

U�x� y� = R�1� 0��x� y� − R�0� 1��x� y� (3.17)

restricted to the set y > x extends continuously to the closure of this set.
Moreover, a simple computation using (3.16) or, alternatively, (3.5) shows
that

U�x� y� = −
∫ ∞

x
p�x′�R�x′� y − x+ x′�dx′� (3.18)

and using (3.2), we obtain

�U�x� y�� ≤ 1
2
f �x�f

(
x+ y

2

)
exp

(
g�x� − g

(
x+ y

2

))
� y > x� (3.19)

The following related bound is needed to establish the Lipschitz continuity.

Lemma 3.3. If Uj correspond to pj ∈ �+� j = 1� 2, then

�U2�x� y� −U1�x� y�� ≤
1
2

∫ ∞

x
�δp�t��dt

(
f1

(
x+ y

2

)
exp�g1�x��

+ exp�g1�x� + g2�x��f2�x�
)
�
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Proof. From (3.18),

U2�x�y�−U1�x�y�=−
∫ ∞

x
p2�x′�(R2�x′�y−x+x′�−R1�x′�y−x+x′�)dx′

−
∫ ∞

x

(
p2�x′�−p1�x′�)R1�x′�y−x+x′�dx′�

and the result then follows in view of (3.2) and Lemma 3.1.

We now come to estimate the difference of the kernels Q2 − Q1 cor-
responding to pj ∈ �+� j = 1� 2. The following proposition is the start-
ing point. We remark that a different proof of estimate (3.20) is given in
Chapter 3 of [13]. However, because the argument here is short, and in
what follows the identity (3.24) is needed, we present the proof.

Proposition 3.4. The estimate

�Qj�x� x�� ≤
1
2
fj�x� exp�gj�x�� cosh gj�x�� j = 1� 2 (3.20)

is true.

Proof. Recall from (2.11) that

Aj�I +Qj�Aτ
j = I� j = 1� 2� (3.21)

Writing A−1
j = I + Tj , we have

Qj = A−1
j

(
A−1

j

)τ − I = �I + Tj��I + Tτ
j � − I = Tj + Tτ

j + TjT
τ
j � (3.22)

Both sides here are continuous up to the boundary in the sets ±�y − x� > 0,
and because Tτ

j is supported in the set where x ≥ y, (3.22) gives

Qj�x� x+ 0� = Qj�x� x� = Tj�x� x+ 0� + (
TjT

τ
j

)�x� x�� (3.23)

Here we have written
(
TjT

τ
j

)�x� x + 0� = (
TjT

τ
j

)�x� x�, because this func-
tion is continuous in R2. This gives

Qj�x� x� = Tj�x� x+ 0� +
∫ ∞

x
T 2
j �x� z�dz� (3.24)

and using (3.7) and (3.13), we obtain

�Qj�x� x�� ≤
1
2
fj�x� +

1
4

∫ ∞

x
fj

(
x+ z

2

)

× exp
(

2
(
gj

(
x+ z

2

)
− gj�z�

))
fj

(
x+ z

2

)
dz

≤ 1
2
fj�x� +

1
4
fj�x�

∫ ∞

x
fj

(
x+ z

2

)
exp

(
2gj

(
x+ z

2

))
dz
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= 1
2
fj�x� +

1
4
fj�x��exp

(
2gj�x�

)− 1�

= 1
2
fj�x�

(
1
2

exp�2gj�x�� +
1
2

)

= 1
2
fj�x� exp�gj�x�� cosh gj�x��

The proof is complete.

Remark 6. Note that the map T → T + Tτ + TTτ is analytic from N
to V . Here we have used the Banach spaces introduced in Remark 5.
Because V � Q�x� y� → Q�x� x + 0� ∈ L1�0�∞� is continuous, we con-
clude in view of that remark and Proposition 3.4 that the mapping p →
Q�x� x� = Q�x� x�p� is analytic from Lc to L1�0�∞�.

Lemma 3.5.

��Q2 −Q1��x� x�� ≤
1
2

∫ ∞

x
�δp�t��dt�1 + exp

(
g1�x� + g2�x��

× �sinh g1�x� + sinh g2�x����
Proof. In view of (3.13) and (3.24),

Q2�x� x� −Q1�x� x� =
∫ ∞

x
�T2�x� y� − T1�x� y���T1�x� y� + T2�x� y��dy

−1
2

∫ ∞

x
δp�t�dt�

A straightforward estimate using (3.7) and (3.8) then gives the result.

We now come to prove the first part of Theorem 2.1. In doing so, we need
the following representation for q = S�p� (see, e.g., Chapter 4 in [11]):

q�x� − p�x� = 4R�x� x+ 0�Q�x� x� − 2
∫
U�x� y�Q�x� y�dy� (3.25)

Here the function U has been introduced in (3.17). Note that (3.25) shows
that q− p is an absolutely continuous function vanishing at +∞.

When proving (3.25), we observe that it follows from (2.11) that x ≥ y
in the support of (the kernel of) the operator �I +R��I +Q�, and because
this is a continuous function up to the boundary in the sets ±�y − x� > 0,
we have

R�x� x+ 0� +Q�x� x� + �RQ��x� x� = 0�

Here we may also notice that �RQ��x� y� is continuous in R2. Writing
�RQ��x� x� = ∫∞

2x R�x� y − x�Q�0� y�dy, we obtain

∂x�RQ��x� x� = −2R�x� x+ 0�Q�x� x� +
∫
U�x� y�Q�x� y�dy�
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and because

−∂x�R�x� x+ 0� +Q�x� x�� = p�x� − q�x�
2

�

the representation (3.25) follows.
If qj = S�pj� correspond to pj ∈ �+� j = 1� 2, then we have, in view of

(3.25),

h2�x� − h1�x� = I1 + I2 + I3 + I4� (3.26)

where we have written hj�x� = qj�x� − pj�x�, j = 1� 2, and Ij are given by

I1 = 4�R2�x� x+ 0� − R1�x� x+ 0��Q2�x� x��
I2 = 4R1�x� x+ 0��Q2�x� x� −Q1�x� x���
I3 = −2

∫
�U2�x� y� −U1�x� y��Q2�x� y�dy�

and
I4 = −2

∫
U1�x� y��Q2�x� y� −Q1�x� y��dy�

with Rj�Qj� and Uj corresponding to pj� j = 1� 2.
Now it follows from Proposition 3.4 and Lemma 3.5 that

�I1� ≤ exp�g2�x�� cosh g2�x�f2�x�
∫ ∞

x
�δp�t��dt (3.27)

and

�I2� ≤ �1 + exp�g1�x� + g2�x���sinh g1�x� + sinh g2�x���f1�x�
×

∫ ∞

x
�δp�t��dt� (3.28)

Using Lemma 3.3 and Proposition 3.4, we further obtain

�I3� ≤ exp�g1�x� + g2�x�� sinh g2�x�
(∫ ∞

x
�δp�t��dt

)
f1�x�

+ exp �g1�x� + 2g2�x�� sinh g2�x�
(∫ ∞

x
�δp�t��dt

)
f2�x�� (3.29)

and, finally, combining (3.19) with Lemma 3.5, we arrive at

�I4� ≤ �1 + exp�g1�x� + g2�x���sinh g1�x� + sinh g2�x���

× exp�g1�x��f1�x�
(∫ ∞

x
�δp�t��dt

)
� (3.30)

Because gj�x� ≤ gj�0� ≤ 	pj	� j = 1� 2, when x ≥ 0, combining (3.26)
with (3.27)–(3.30) yields

�h2�x� − h1�x�� ≤ C

(∫ ∞

x
�δp�t��dt

)
�f1�x� + f2�x��� x > 0�
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It follows from (3.27)–(3.30) that C = 2eM�3e2M sinhM + 2 coshM� can be
taken when M is such that 	pj	 ≤ M� j = 1� 2.

Because �1 + x�fj�x� ≤ 	pj	� x ≥ 0, and
∫ ∞

0

(∫ ∞

x
�δp�t��dt

)
dx =

∫ ∞

0
t�δp�t��dt ≤ 	p2 − p1	�

recalling the definition of hj , we finally obtain

	q2 − q1	 ≤ C	p2 − p1	�
when 	pj	 ≤ M� j = 1� 2, and C depends only on M . This completes the
proof of the first part of Theorem 2.1.

Remark 7. We shall finish this section by making some remarks concern-
ing analyticity properties of S. When doing this, we shall use the notation
and the spaces introduced in Remark 5. Consider first the map S1 � Lc →
Lc given by

S1�p��x� =
(∫ ∞

x
p�t�dt

)
Q�x� x�p�� (3.31)

When pj ∈ Lc� j = 0� 1� 	p1	 ≤ 1 and λ ∈ C�Q�x� x�p0 + λp1� is entirely
analytic in λ with values in L1�0�∞�. Therefore,

Q�x� x�p0 + λp1� =
∞∑
j=0

Qj�x� x�p0� p1�λj�

where Cauchy’s inequalities together with (3.20) give that

	Qj	L1�0�∞� ≤
1
Rj

e	p0	+R sinh�	p0	 + R�� R > 0�

It follows that with convergence in Lc , we have

S1�p0 + λp1��x� =
∞∑
j=0

Sj�x�p0� p1�λj�

where Sj ∈ Lc equals �∫∞
x p0�t�dt�Qj + �∫∞

x p1�t�dt�Qj−1, j ≥ 0, with
Q−1 = 0. Because S1 is locally bounded, analyticity of S1 as a map from
Lc to Lc follows (see [18]).

It further follows from (3.18) that we have the estimate

U∗�z�w� ≤
(∫ ∞

z
�p�z′��dz′

)
R∗�z�w��

and because z
∫∞
z �p�z′��dz′ ≤ 	p	� z ≥ 0, we also get that 	V 	 ≤ 	p	 	R	,

where V �x� y� = �1 + x�U�x� y�. Using this bound together with the fact
that R�x� y� p� depends analytically on p, we obtain that the map Lc � p →
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V �x� y� = V �x� y� p� ∈ N is continuously differentiable, and hence analytic.
Because the analyticity of p → Q�x� y� p� has already been observed in
Remark 6, it follows that the map

p →
∫
U�x� y� p�Q�x� y� p�dy

is analytic from Lc to Lc . From (3.25), we conclude that q = S�p� ∈ L
depends analytically on p ∈ L.

4. ESTIMATES FOR THE INVERSE TRANSFORM

In this section we shall continue to work with potentials in the space �+.
Recall the notation

	p	 =
∫ ∞

0
�1 + x��p�x��dx�

When p1, p2 ∈ �+ are such that 	pj	 ≤ M , we derive Lipschitz estimates
for p2 − p1 in terms of S�p2� − S�p1�, thereby completing the proof of
Theorem 2.1. When doing this, we shall use the notation C for various
positive constants that depend only on M .

Our starting point is the following representation for the potential:

p�x� − q�x� = 2R2�x� x+ 0� +
∫ ∞

x
R�x� y�q

(
x+ y

2

)
dy� (4.1)

Here the intertwining operator A = I+R corresponding to p and q = S�p�
is related by the Marchenko equation

I +Q = A−1�Aτ�−1� (4.2)

and Q is defined by q as in (2.12). It follows from Section 4 in [17] that each
side in (4.1) is a continuous function of p ∈ �+ with values in �+. When
proving (4.1), it therefore may be assumed that p ∈ �+

∞ = �p ∈ �+�p�j� ∈
�+� j = 1� 2 � � ��, so that in particular p ∈ C∞�R�, and all derivatives tend
to 0 at ∞. It follows from the results of [17] that these regularity conditions
imply the same regularity of q. From Section 4 of [17], we also know that
the kernel of A�I +Q� is a smooth function up to the boundary in the sets
±�y − x� > 0, and because x ≥ y in its support, we have

�∂α��I + R��I +Q����x� x+ 0� = 0� (4.3)

for any multi-index α = �αx� αy�. When α = �0� 1�,

�∂α�RQ���x� x+ 0� = 1
4

∫ ∞

x
R�x� y�q

(
x+ y

4

)
dy�
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Now a computation using (2.5) and (3.16) gives

�∂αR��x� y� = −1
4
p

(
x+ y

2

)
+ 1

2

∫ ∞

x
p�x′�R�x′� y − x+ x′�dx′

− 1
2

∫ ∞

x
p�x′�R�x′� x+ y − x′�dx′� y > x�

so that

�∂αR��x� x+ 0� = −1
4
p�x� + 1

2

∫ ∞

x
p�x′�R�x′� x′ + 0�dx′

= −1
4
p�x� + 1

8

(∫ ∞

x
p�y�dy

)2

�

Here in the last step we have used that

R�x� x+ 0� = 1
2

∫ ∞

x
p�y�dy�

In view of (4.3), the representation (4.1) now follows. Note that a represen-
tation similar to (4.1) can be found in [3], where it is related to the trace
formula of inverse scattering.

We now consider two potentials p1 and p2 ∈ �+ and let the triple
Rj�Qj� qj correspond to pj� j = 1� 2. We also write ρj = pj − qj and

Pj�x� =
∫ ∞

x
pj�t�dt = 2Rj�x� x+ 0�� j = 1� 2�

Using (4.1), we get

ρ2�x� − ρ1�x� = I1 + I2� (4.4)

where Ij = Ij�x�� j = 1� 2, is given by

I1 = 1
2
�P2�x� − P1�x���P2�x� + P1�x��

and

I2 =
∫ ∞

x
�R2�x� t� − R1�x� t��q2

(
x+ t

2

)
dt

+
∫ ∞

x
R1�x� t�

(
q2

(
x+ t

2

)
− q1

(
x+ t

2

))
dt�

Because �1 + x��Pj�x�� ≤ 	pj	� x ≥ 0� j = 1� 2, we get that

	I1	 ≤ C	P2 − P1	L1�0�∞��

The required bound on 	I1	 in terms of 	q2 − q1	 then becomes the con-
tents of the following lemma.
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Lemma 4.1. The estimate

	P2 − P1	L1�0�∞� ≤ C	q2 − q1	 (4.5)

is true.

Proof. We shall make use of the following identity proved in Proposi-
tion 4.1 of [6]:

1
2
�P1�x� − P2�x�� = �A1�Q2 −Q1�Aτ

2��x� x�� (4.6)

where Aj = I + Rj , j = 1� 2. We then have

1
2
�P1�x�−P2�x��=�Q2−Q1��x�x�+

∫
R1�x�y��Q2�x�y�−Q1�x�y��dy

+
∫
R2�x�y��Q2�x�y�−Q1�x�y��dy

+
∫
R1�x�y�

{∫
R2�x�z��Q2�y�z�−Q1�y�z��dz

}
dy� (4.7)

Because

�Q2�x� y� −Q1�x� y�� ≤
1
2

∫ ∞

�x+y�/2
�δq�t��dt�

where δq = q2 − q1, using (3.2), we get∣∣∣
∫
Rj�x� y��Q2�x� y� −Q1�x� y��dy

∣∣∣ ≤ 1
2
	Rj�x� ·�	L1

∫ ∞

x
�δq�t��dt

≤ 1
2
�exp�gj�x�� − 1�

∫ ∞

x
�δq�t��dt� j = 1� 2�

Estimating the last integral on the right side of (4.7), we see that∣∣∣
∫
R1�x� y�

{∫
R2�x� z��Q2�y� z� −Q1�y� z��dz

}
dy

∣∣∣
≤ 1

2
	R1�x� ·�	L1	R2�x� ·�	L1

∫ ∞

x
�δq�t��dt

≤ 1
2
�exp�g1�x�� − 1��exp�g2�x�� − 1�

∫ ∞

x
�δq�t��dt

≤ �e	p2	 − 1��e	p1	 − 1�
∫ ∞

x
�δq�t��dt� x ≥ 0�

From (4.7), we obtain

�P2�x� − P1�x�� ≤ C
∫ ∞

x
�δq�t��dt� x ≥ 0�

and this completes the proof.
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We now come to estimate I2, the second term in (4.4). When doing this,
when x ∈ R, we consider the operators

Qx
j f �y� =

∫ ∞

x
Qj�y� t�f �t�dt� y > x� f ∈ C0�x�∞�� j = 1� 2 (4.8)

on �x�∞�. These are then Hilbert–Schmidt operators on L2�x�∞�, and
from [17] recall that the fact that qj is in the range of S means precisely
that I +Qx

j has a positive lower bound on L2�x�∞� for any x� j = 1� 2. The
operators I +Qx

j are thus invertible on L2�x�∞�, and it is also well known
(see [11, 17]) that I + Qx

j is then an isomorphism on L1�x�∞�� j = 1� 2.
When deriving bounds on R2�x� y� − R1�x� y�, the norm of

(
I +Qx

2

)−1 on
L1�x�∞� must be controlled. To this end, we introduce the operators

(
Rx

j f
)�y� = ∫ ∞

y
Rj�y� t�f �t�dt� y > x�

and
(�Rτ

j �xf
)�y� = ∫ y

x
Rj�t� y�f �t�dt� y > x�

on Lp�x�∞�� p = 1� 2. Then we have (see [13] and [14]) that
(
I +Qx

j

)−1 = �I + �Rτ
j �x��I + Rx

j �� j = 1� 2 (4.9)

in these spaces. A straightforward estimate using (3.2) shows that

	I + Rx
j 	L1

x→L1
x
≤ 1 + gj�x� exp�gj�x�� ≤ e2gj�x�� j = 1� 2�

where L1
x = L1�x�∞�. The same estimate is valid for the operator I +(

Rτ
j

)x, and in view of (4.9), we get

	(I +Qx
j

)−1	L1
x→L1

x
≤ exp�4gj�x��� (4.10)

Setting Sj�x�y� = −Qj�x� y� and Rj�x�y� = Rj�x� y�� y > x� j = 1� 2, from
(2.9) we obtain

R2�x−R1�x=
(
I+Qx

2

)−1
S2�x−

(
I+Qx

1

)−1
S1�x

=(
I+Qx

2

)−1(
S2�x−S1�x

)+((
I+Qx

2

)−1−(
I+Qx

1

)−1)
S1�x

=(
I+Qx

2

)−1(
S2�x−S1�x

)+(
I+Qx

2

)−1(
Qx

1 −Qx
2

)(
I+Qx

1

)−1
S1�x

=(
I+Qx

2

)−1[
S2�x−S1�x+

(
Qx

1 −Qx
2

)
R1�x

]
� (4.11)

Because

�Q2�x� y� −Q1�x� y�� ≤
1
2

∫ ∞

�x+y�/2
�δq�t��dt�
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it follows that the absolute value of the expression in the square brackets
in (4.11) does not exceed

1
2

∫ ∞

�x+y�/2
�δq�s��ds + 1

2

∫ ∞

x
�R1�x� t��

(∫ ∞

�y+t�/2
�δq�s��ds

)
dt

≤ 1
2

∫ ∞

�x+y�/2
�δq�s��ds(1 + 	R1�x� ·�	L1

) ≤ 1
2
eg1�x�

∫ ∞

�x+y�/2
�δq�s��ds�

where in the last step we had that

	Rj�x� ·�	L1 ≤ exp�gj�x�� − 1�

which follows from (3.2). Combining this with (4.10) and (4.11), we get the
L1 bound

	R2� x − R1� x	L1
x
≤ exp�4g2�x�� exp�g1�x��

∫ ∞

x
�t − x��δq�t��dt� (4.12)

Now we have

R2�x� y� − R1�x� y�
= Q1�x� y� −Q2�x� y�
+

∫ ∞

x
�Q1 −Q2��y� y ′�R1�x� y ′�dy ′

+
∫ ∞

x
Q2�y� y ′��R1�x� y ′� − R2�x� y ′��dy ′� y > x� (4.13)

and using (4.12), we obtain

�R2�x� y� − R1�x� y�� ≤ �Q2�x� y� −Q1�x� y��
+

∫ ∞

x
�Q2�y� y ′� −Q1�y� y ′���R1�x� y ′��dy ′

+
∫ ∞

x
�Q2�y� y ′���R2�x� y ′� − R1�x� y ′��dy ′

≤ 1
2

∫ ∞

�x+y�/2
�δq�t��dt�1 + 	R1�x� ·�	L1�

+ 1
2

(∫ ∞

�x+y�/2
�q2�t��dt

)
	R2�x − R1�x	L1

x

≤ 1
2

exp�4g2�x� + g1�x��
(∫ ∞

�x+y�/2
�q2�s��ds

)

×
∫ ∞

x
�t − x��δq�t��dt

+ 1
2

exp�g1�x��
∫ ∞

�x+y�/2
�δq�t��dt� (4.14)
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Write

I2 = I2�1 + I2�2�

where
I2� 1 =

∫ ∞

x
�R2�x� t� − R1�x� t��q2

(
x+ t

2

)
dt

and
I2� 2 =

∫ ∞

x
R1�x� t�

(
q2

(
x+ t

2

)
− q1

(
x+ t

2

))
dt�

Bound (4.14) then gives

�I2� 1� ≤ exp�g1�x��
(∫ ∞

x
�δq�t��dt

) ∫ ∞

x
�q2�t��dt

+ exp�4g2�x� + g1�x��
(∫ ∞

x
�q2�s��ds

)2 ∫ ∞

x
�t − x��δq�t��dt�

and we immediately get

	I2�1	 ≤ C
(	q2	 + 	q2	2)	q2 − q1	� (4.15)

It follows now from [13] that 	q2	 ≤ C
(	p2	 + 	p2	2

)
. Therefore, to com-

plete the proof of Theorem 2.1, it remains to estimate 	I2� 2	. When doing
this, note that in view of (3.2), the estimate

�I2� 2� ≤ exp�g1�x��f1�x�
∫ ∞

x
�δq�t��dt

is true, which gives that 	I2� 2	 ≤ C	q2 − q1	. Combining this with (4.4),
Lemma 4.1, and (4.15) completes the proof of Theorem 2.1.

Remark 8. We shall finally give a representation formula for the scat-
tering transform of a potential p ∈ �+ that vanishes near +∞. It will
then be convenient to change the notation somewhat, so that we consider
p ∈ L1

loc��0�∞�� and take the zero extension of p to the negative half-axis.
Then p̌�x� = p�−x� ∈ �+ vanishes for x > 0, and associated with p we
introduce the scattering transform from the left, S−,

S−�p��x� = S�p̌��−x��
We also introduce the kernels R− and T− so that R−�x� y� p� =
R�−x�−y� p̌� and I + T− = �I + R−�−1. It is then true that S−�p�
vanishes on the interval �−∞� 0�, and the restriction of p to any interval
of the form �0� a�� a > 0, determines and is determined by the restriction
of S−�p� to this set. We claim that

S−�p��x� = −4
∂

∂y

∣∣∣∣
y=0

T−�2x� y�� x > 0� (4.16)



242 michael hitrik

When proving (4.16), recall the Marchenko equation from the left,

�I + R−��I +Q−��I + �R−�τ� = I�

where

Q−�x� y� = −1
2

∫ �x+y�/2

−∞
S−�p��t�dt� (4.17)

Arguing as in the proof of Proposition 3.4, we get

Q−�x� y� = T−�x� y� +
∫ y

−∞
T−�x� y ′�T−�y� y ′�dy ′� x > y� (4.18)

Here also note that �y� ≤ x in the support of T−�x� y� in view of the support
properties of p, so that in particular T �y� y − 0� = 0, y ≤ 0. Then by (4.17)
and (4.18), we get (4.16).

Representation (4.16) is analogous to the expression for the A-amplitude
associated with p appears in Section 9 of [5]. We recall here that the
A-amplitude has been introduced in [20] as a basic ingredient of an
approach to the inverse spectral theory for half-line Schrödinger oper-
ators. In [20], A was related to the Weyl m-function by means of a
Fourier–Laplace transformation. To recall the expression for A given
in [5], set

K−�x� y� = R−�x� y� − R−�x�−y�� 0 ≤ y ≤ x�

and define the kernel L− so that I + L− = �I +K−�−1. It is then true that

A�α� = −2
∂

∂y

∣∣∣∣
y=0

L−�2α� y� (4.19)

(see [5]). It follows from (2.5), (4.16), and (4.19) that the leading terms in
S−�p� and A agree and are both equal to p. (Alternatively, this also follows
from (3.25) and the series expansion for A given in Lemma 2.2 of [20]).
We also have that S−�p� − A is (absolutely) continuous, and bounds on
this function can now be derived using the results of [20] and this paper.
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