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Abstract: For the class of super-exponentially decaying potentials on the real line
sharp upper bounds on the counting function of the poles in discs are derived and
the density of the poles in strips is estimated. In the case of nonnegative potentials,
explicit estimates for the width of a pole-free strip are obtained.

1 Introduction

The purpose of this paper is to establish some estimates on the scattering poles for
the class of exponentially and super-exponentially decaying potentials on the real line.
In particular, we derive sharp upper bounds on the counting function for the poles of
super-exponentially decaying potentials and estimate the density of the poles in strips.
In the case of nonnegative potentials we give explicit estimates for the size of a pole-
free strip. These results are obtained using the representation of the scattering matrix,
given by Melin [14]. Notice that this representation has also been used by Zworski [17]
in his study of the distribution of scattering poles in the case of compactly supported
potentials.

We also present an alternative approach to the study of the location of the poles,
obtained by rewriting the Schrödinger equation as a system of Riccati equations.

The existence of pole-free regions and estimates of their size is one of the main
problems in the theory of resonances. This problem has been investigated extensively
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in the semi-classical setting and in the framework of the Lax-Phillips theory. Also,
the problem of estimating the number of scattering poles in various subdomains of
the complex plane has been much studied in the recent years. The survey paper [18]
contains an overview of this work as well as an extensive bibliography.

The results of this paper are concerned with the class of (super-)exponentially
decaying potentials, and when deriving bounds on the scattering poles, we shall always
indicate explicitly their dependence on the potential.

The organization of the paper is as follows. In the beginning of Section 2 we
recall the intertwining operators and the representation of the scattering matrix, as
given in [14]. We also discuss some continuity properties of the scattering matrix as
a function of the potential. The basic estimates for the study of scattering poles are
then derived in Theorem 2.4 and Theorem 2.5, and the density of the poles for super-
exponentially decaying potentials in discs is estimated. In the beginning of Section 3 we
estimate the size of a pole-free strip for compactly supported nonnegative potentials,
and afterwards this estimate is generalized to super-exponentially decaying potentials.
Next we address the problem of estimating the density of poles in arbitrary strips. The
obtained higher value of the density in this case compared with the case of discs reflects
bounds on the location of the poles. Such bounds are finally derived using the Riccati
equation approach.

2 The scattering matrix and global upper bounds

2.1 The scattering data

We begin by recalling some important results of scattering theory on the line. Our
basic reference here is the paper [14].

Consider the Schrödinger equation

Hpu = −u′′ + pu = k2u, k ∈ R, (2.1)

where p is a real-valued measurable potential such that∫ ∞
−∞

(1 + |x|) |p(x)| dx < +∞. (2.2)

There exist two functions f(x, k) and g(x, k), such that f and g solve (2.1), and

f(x, k) = eixk + o(1), x→ +∞,

g(x, k) = e−ixk + o(1), x→ −∞.
We shall say that f and g are the Jost functions. For k ∈ R \ {0}, f(x, k) and
f(x, k) = f(x,−k) are solutions of the same equation (2.1), but with different boundary
conditions at +∞, so they are linearly independent. Therefore, we can write

ikg(x, k) = a(k)f(x,−k) + b(k)f(x, k), (2.3)
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where a(k) and b(k) are uniquely determined. One finds that a(k) = a(−k), b(k) =
b(−k), and that

k2 + |b(k)|2 = |a(k)|2. (2.4)

A combination of (2.3) with its complex conjugate then shows that

ikf(x, k) = a(k)g(x,−k) + b(−k)g(x, k). (2.5)

We shall now introduce the elements of the scattering matrix of p when 0 6= k ∈ R.
When doing it we notice that, since a(k) 6= 0 by (2.4), it follows that the functions f
and g form a basis of solutions of (2.1). Moreover, they extend to analytic functions
of k in the upper half-plane, continuous in the closure of that set. Their complex
conjugates f(x, k) = f(x,−k) and g(x, k) = g(x,−k) have natural analytic extensions
to the lower half-plane instead. The equations (2.3) and (2.5) may now be rewritten
in the form

f(x,−k) =
ik

a(k)
g(x, k)− b(k)

a(k)
f(x, k), (2.6)

g(x,−k) = −b(−k)

a(k)
g(x, k) +

ik

a(k)
f(x, k),

where we have expressed the solutions of (2.1) with analytic extensions to C− as linear
combinations of those with analytic extensions to C+. Since f(x, k) was normalized
by boundary conditions at +∞, we shall call r(k) = b(k)/a(k) the right reflection
coefficient. For similar reasons, b(−k)/a(k) is called the left reflection coefficient, and
the function t(k) = ik/a(k) is the transmission coefficient. We notice that the matrix
appearing in (2.6) is unitary. This is the scattering matrix, after the off-diagonal
elements have been multiplied by −1.

The assertions about analyticity in k ∈ C+ of the functions f and g are consequences
of their integral representations in terms of the intertwining operators between Hp and
H0, which we proceed to discuss following [14]. Associated to p, there are two operators
A+ = I + R+ and A− = I + R−, with HpA± = A±H0, such that ±(y − x) ≥ 0 in the
support of A±. (Here and in what follows we identify operators with their distribution
kernels.) The functions R± are continuous up to the boundary in the sets ±(y−x) > 0,
and

||R±(x, ·) ||L1 =

∫
|R±(x, y)| dy <∞, (2.7)

for any x. Moreover, ||R±(x, ·) ||L1 → 0 as x → ±∞. It follows then that f(x,−k)
(resp. g(x, k)) is the Fourier transform of A+(x, y) (resp. A−(x, y)) with respect to the
second variable, so that

f(x, k) = eixk +

∫ ∞
x

R+(x, y)eiyk dy,
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and

g(x, k) = e−ixk +

∫ x

−∞
R−(x, y)e−iyk dy, (2.8)

where k ∈ R.
Apart from functions that are continuous on the whole of R2, we have

R±(x, y) ≡ R±,0(x, y),

where

R+,0(x, y) =

(
1

2

)
θ+(y − x)

∫ ∞
(x+y)/2

p(t) dt,

and

R−,0(x, y) =

(
1

2

)
θ+(x− y)

∫ (x+y)/2

−∞
p(t) dt, (2.9)

θ+(t) = 1 when t ≥ 0 and 0 otherwise.

These are the leading terms in R±, and one has that the R± satisfy the equations

R± = R±,0 + Lp,±R±, (2.10)

where Lp = Lp,− is given by

LpT (x, y) =

∫∫
E(x− x′, y − y′)p(x′)T (x′, y′) dx′ dy′,

E(x, y) =
1

2
when x > 0, |y| < |x| and 0 otherwise.

There is a similar expression for Lp,+(x, y). In what follows we shall write R−,0(x, y) =
R0(x, y), R−(x, y) = R(x, y), when no confusion seems possible.

In order to describe the growth properties of R(x, y), and, in particular, to sharpen
(2.7), we introduce the nondecreasing functions

u(x) =

∫ x

−∞
|p(t)| dt, v(x) =

∫ x

−∞
u(t) dt.

The solution R of (2.10) is obtained by inverting the operator I − Lp;

R =
∞∑
k=0

LkpR0. (2.11)

The following estimate

∣∣LkpR0(x, y)
∣∣ ≤ 1

2
u

(
x+ y

2

)
(v(x)− v ((x+ y)/2))k

k!
, x ≥ y, (2.12)
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is true, see [13]. Therefore,

|R(x, y)| ≤ 1

2
u

(
x+ y

2

)
exp

(
v(x)− v

(
x+ y

2

))
, x ≥ y, (2.13)

and we have

||R(x, ·) ||L1 =

∫ x

−∞
|R(x, y)| dy ≤ ev(x) − 1.

Another important result ([14], Lemma 4.2) is that

p(x)R(x, y) ∈ L1(R2). (2.14)

Notice also that if x ≥ a in the support of p, then it is immediate from (2.13) that

2a− x ≤ y ≤ x in the support of R(x, y). (2.15)

We introduce now the following representations for the functions a and b, given by
Melin [14]: There exist temperate real-valued distributions X and Y such that

a(k) = X̂(k) and b(k) = Ŷ (k), (2.16)

where X and Y are given by the following explicit formulas

X(y) = δ′(y)−
(

1

2

)(∫ +∞

−∞
p(z)dz

)
δ(y)−

(
1

2

)∫ +∞

−∞
p(z)R(z, z + y) dz, (2.17)

Y (y) =

(
1

4

)
p
(y

2

)
+

(
1

2

)∫ +∞

−∞
p(z)R(z, y − z) dz. (2.18)

Here the Fourier transform is normalized as in [8]. We remark that the expressions for
X and Y in [14] were given in terms of the kernel R+(x, y), but using the identities
R+(x, y, p̌) = R(−x,−y, p), Xp̌ = Xp and Yp̌ = Y̌p, which appear in [14], formula (5.14),
it is easy to see that the representations (2.17) and (2.18) are valid.

For future reference we rewrite now (2.3) in the form

ikg(x, k) = X̂(k)f(x,−k) + Ŷ (k)f(x, k). (2.19)

A combination of (2.15) with (2.17) and (2.18) shows that

chsupp(Y ) ⊂ chsupp(p(·/2)) (2.20)

and
chsupp(X) ⊂ [−2d, 0], (2.21)

if d is the diameter of the support of p. Furthermore,

X(y)− δ′(y) +

(
1

2

)(∫ +∞

−∞
p(z)dz

)
δ(y) ∈ L1 ∩ L∞, (2.22)



6

and

Y (y)−
(

1

4

)
p
(y

2

)
∈ L1 ∩ L∞. (2.23)

It follows that X̂ extends to an analytic function in Im k > 0, continuous up to the
boundary. We also know that X̂(k) has finitely many zeros in Im k > 0, all of them
simple and situated on the imaginary axis. Furthermore, iβ is a zero precisely when
−β2 is an eigenvalue of Hp.

2.2 Dependence on the potential

We shall now give some symmetry properties of the distributions X and Y with respect
to the one-parameter groups δλp(x) = λ2p(λx), λ > 0 and τhp(x) = p(x+h), h ∈ R. It
follows from (2.9) and (2.11) that Rδλp(x, y) = λRp(λx, λy). Therefore, the mappings

p→ Xp and p→ Yp

commute with the action of the dilatation group. In other words,

Xδλp = δλXp, Yδλp = δλYp. (2.24)

For the translation group we have instead,

Xτhp = Xp, Yτhp = τ2hYp. (2.25)

Later we shall also need some continuity properties of the mappings

p→ Xp and p→ Yp,

which we proceed to discuss. When doing this, we let q ≥ 0 be a measurable function
such that ∫ ∞

−∞
(1 + |x|) |q(x)| dx <∞,

and set

Bq = {p ∈ L1(R); |p| ≤ q}.

Definition 2.1 We say that a mapping T : Bq → W , where W is a Banach space,
is weakly sequentially continuous, if for any sequence pj in Bq converging to p ∈ Bq

weakly in the space of measures on R it is true that T (pj) converges to T (p) in W .

Theorem 2.2 The mapping p→ Xp− δ′ is weakly sequentially continuous from Bq to
the Banach space of bounded measures on R.
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Proof: Assume that pj ∈ Bq converges to p ∈ Bq weakly in the space of measures. It
follows then that pj is also convergent in the weak topology of L1(R), i.e.

〈u, pj〉 =

∫
u(x)pj(x) dx→ 〈u, p〉 =

∫
u(x)p(x) dx,

for every u ∈ L∞(R). In fact, we may find a sequence uν ∈ C0 tending to u almost
everywhere and boundedly. Since

sup
j
|〈pj − p, uν − u〉| ≤ 2〈q, |uν − u|〉 → 0 as ν →∞,

the assertion follows from the fact that 〈pj, uν〉 → 〈p, uν〉 for every ν. It follows in
particular that

Pj(x) =

∫ x

−∞
pj(y) dy

converges pointwise to P (x) =
∫ x
−∞ p(y) dy. Since it is equicontinuous and since |pj| ≤

q, the convergence must be uniform on R.
Let us consider now R∞ = Rp and Rj = Rpj . Let Rj,ν be the contribution to Rj

which is homogeneous of degree ν ≥ 1 in pj, see (2.11). Allowing j to be∞ and writing
p = p∞, we have then

Rj,ν+1(x, y) =

∫∫
E(x− x′, y − y′)pj(x′)Rj,ν(x

′, y′) dx′ dy′. (2.26)

Let Rq,ν be the corresponding expression with q. Then

|Rj,ν | ≤ Rq,ν .

We shall prove now that
Rj → Rp in L∞loc(R

2) (2.27)

as j →∞. Since it follows by (2.12) that
∑∞

ν=1Rq,ν is convergent in L∞loc(R
2), it suffices

to prove that Rj,ν is convergent in L∞loc for every ν. In view of (2.9) we have already
seen that this is true when ν = 1, so let us assume that ν > 1 and that the statement
has already been proved for lower values of ν. We notice that the functions in (2.26)
are equicontinuous, and therefore it is sufficient to show the pointwise convergence.
Since x′ ≤ x in the support of the integrand in (2.26), and since∫∫

x′≤N
|pj(x′)Rj,ν(x

′, y′)| dx′ dy ≤
∫∫

x′≤N
q(x′)Rq(x

′, y′) dx′ dy,

where the right-hand side tends to zero as N → −∞, we may replace the integration
in (2.26) by an integration over a compact set in x′ when proving our assertion. The
support conditions on E give us then also a bound on y′ when (x, y) is kept fixed. It is
sufficient therefore to prove the pointwise convergence of (2.26) when the integration is
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performed over a compact set. Since we know already that Rj,ν converges in L∞loc and∫
pj(x)u(x) dx is convergent when u ∈ L∞, our assertion follows.

Consider now the expression (2.17), which we write as

Xpj(y) = δ′(y)−
(

1

2

)(∫ +∞

−∞
pj(z)dz

)
δ(y)− 1

2
fpj(y).

The coefficient in front of δ(y) converges to the corresponding one for p, and we want
to show that fpj → fp in L1. Since∫

|pj(z)Rj(z, z + y)| dz ≤
∫
q(z)Rq(z, z + y) dz = W (y),

where W ∈ L1, it suffices to show that fj(y) = fpj(y) converges to fp in L1
loc. Set

Wn(y) =

∫ n

−n
q(z)Rq(z, z + y) dz.

Then |Wn| ≤ W and Wn → W pointwise. It follows by Lebesgue’s theorem that
Wn → W in L1 and that the norm in L1(R) of

y →
∫
|z|>n

pj(z)Rj(z, z + y) dz

converges to zero uniformly in j as n→∞. It suffices therefore to prove the convergence
in L1

loc(R) of

y →
∫ n

−n
pj(z)Rj(z, z + y) dz

to the corresponding integral when Rj has been replaced by R, and pj by p. The proof
is now complete, since we know that Rj → R in L∞loc and 〈pj, u〉 → 〈p, u〉 when u ∈ L∞.
2

In the same way one can prove the following result.

Theorem 2.3 The mapping p → Yp(y) − p(y/2)/4 is weakly sequentially continuous
from Bq to L1(R).

2.3 Proof of the main estimate

We have already observed the important result (2.14), valid for all potentials, such that
(1 + |x|)p(x) ∈ L1. The main estimate for the study of scattering poles is contained in
the following theorem. Before stating it, we introduce the notation

fp(y) =

∫ ∞
−∞

p(z)Rp(z, z + y) dz, (2.28)

so that

Xp(y) = δ′(y)− 1

2

(∫ ∞
−∞

p(z) dz

)
δ(y)− 1

2
fp(y).
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Theorem 2.4 Let (1 + |x|)e2a|x|p(x) ∈ L1 for some a > 0, and set

q(x) = e2a|x|p(x).

Then ∫ ∞
−∞

ea|y| |fp(y)| dy ≤ 2e2|| p |||| q || (|| q ||L1 + || q || || p ||L1) , (2.29)

where

|| p || =
∫ ∞
−∞
|x| |p(x)| dx.

Proof: Since |Rp| ≤ R|p|, we may assume that p ≥ 0. First we shall prove that

LkpR0,p(x, y) ≤ ea(x+y)LkpR0,q(x, y), (2.30)

for all k ≥ 0. We have

R0,p(x, y) =
1

2

∫ (x+y)/2

−∞
e−2a|t|q(t) dt ≤ ea(x+y)R0,q(x, y), y ≤ x,

since |t| ≥ −(x + y)/2. Therefore we assume that k ≥ 1, and (2.30) has been proved
for lower values of k. We have

LkpR0,p(x, y) =

∫∫
E(x− x′, y − y′)p(x′)Lk−1

p R0,p(x
′, y′) dx′ dy′

≤
∫∫

E(x− x′, y − y′)ea(x′+y′)p(x′)Lk−1
p R0,q(x

′, y′) dx′ dy′,

and we only have to notice that

x′ + y′ ≤ x+ y

when (x′, y′) is in the support of the integrand. This gives (2.30), and after a summation
over k, we get

Rp(x, y) ≤ ea(x+y)Rp,q(x, y),

where

Rp,q =
∞∑
k=0

LkpR0,q.

We have that y ≤ 0 in the support of Rp(x, x+ y) and it follows that

ea|y|
∫ ∞
−∞

p(z)Rp(z, z + y) dz ≤
∫ ∞
−∞

q(z)Rp,q(z, z + y) dz,

and then

|| ea|·|fp ||L1 ≤
∫ ∞
−∞

q(x)||Rp,q(x, ·) ||L1 dx. (2.31)
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Set r(x) = ||Rp,q(x, ·) ||. This function is bounded on any interval bounded to the
right. We now come to estimate r(x). Since Rp,q = LpRp,q +R0,q, it follows that

r(x) =

∫ x

−∞
(x− x′)p(x′)r(x′) dx′ +

∫ x

−∞
(x− x′)q(x′) dx′.

We shall estimate r(x) first for negative x. Set q−(x) = q(x) when x < 0 and q−(x) = 0
for x ≥ 0. Set also s(x) = |x| p(x). If x ≤ 0 we have

r(x) ≤
∫ x

−∞
s(x′)r(x′) dx′ + || q− ||.

This inequality may be written

ϕ′(x) ≤ s(x)ϕ(x) + s(x)|| q− ||,

where ϕ(x) =
∫ x
−∞ s(y)r(y) dy. If S(x) =

∫ x
−∞ s(y) dy it follows that

(
e−Sϕ

)′ ≤ −|| q− || d
dx
e−S.

Hence e−S(x)ϕ(x) ≤ (1− e−S(x))|| q− ||, and it follows that

r(x) ≤ ϕ(x) + || q− || ≤ e|| p
− |||| q− ||, x ≤ 0. (2.32)

Next we assume that x ≥ 0. Let us set

A = e|| p
− |||| q− || || p− ||L1 + || q ||L1 ,

and
B = e|| p

− |||| p− || || q− ||+ || q− ||.

Then it is easily seen that

r(x) ≤ x

∫ x

0

p(x′)r(x′) dx′ + Ax+B.

It follows if ψ(x) =
∫ x

0
p(y)r(y) dy that

ψ′(x) ≤ s(x)ψ(x) + As(x) +Bp(x).

If h(x) =
∫ x

0
s(y) dy this may be written

(
e−hψ

)′ ≤ −A d

dx
e−h +Be−hp(x).

Hence
e−hψ ≤ A(1− e−h) +B|| p+ ||L1
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and
ψ(x) ≤ A

(
eh(x) − 1

)
+ eh(x)B|| p+ ||L1 .

Here p+(x) = p(x) for x > 0 and 0 otherwise. It follows when x ≥ 0 that

r(x) ≤ xψ(x) + Ax+B ≤ Axeh +Bxeh|| p+ ||L1 +B

≤ xe|| p
+ || (A+B|| p+ ||L1

)
+B.

We have

A+B|| p+ ||L1 ≤ e|| p
− |||| q− || || p ||L1 + || q ||L1

+ e|| p
− |||| p− || || q− || || p ||L1 + || q− || || p+ ||L1

= e|| p
− |||| p ||L1 || q− ||

(
1 + || p− ||

)
+ || q ||L1 + || q− || || p+ ||L1

≤ || p ||L1e2|| p− |||| q− ||+ || q ||L1 + || q− || || p ||L1

≤ 2e2|| p− |||| p ||L1 || q− ||+ || q ||L1 ,

and
B ≤ e|| p

− |||| q− ||
(
1 + || p− ||

)
≤ e2|| p− |||| q− ||.

Hence it follows that for x ≥ 0

r(x) ≤ xe2|| p || (2|| p ||L1|| q− ||+ || q ||L1

)
+ e2|| p |||| q− ||.

Combining it with (2.32) we obtain∫ ∞
−∞

q(x)r(x) dx ≤ e|| p
− |||| q− || || q− ||L1 + e2|| p |||| q− || || q+ ||L1

+ e2|| p || (2|| p ||L1 || q− || || q+ ||+ || q ||L1 || q+ ||
)

≤ 2e2|| p |||| q || (|| q ||L1 + || p ||L1 || q ||) .

In view of (2.31) this completes the proof. 2

Remark. We notice that the estimate (2.29) is invariant under scaling. Indeed, when
δλp(x) = λ2p(λx), λ > 0, it follows from (2.24) that fδλp(x) = λ2fp(λx) and then∫ ∞

−∞
ea|y| |fp(y)| dy =

1

λ

∫ ∞
−∞

eaλ|y| |fδλp(y)| dy.

The assertion follows since when p is replaced by δλp and a by λa, then the right hand
side of (2.29) is multiplied by λ.

Remark. It follows from the proof of Theorem 2.4, or, alternatively, directly from (2.13)
that when x ≤ 0 in the support of p, the estimate (2.29) improves to the following
scaling invariant bound ∫ 0

−∞
ea|y| |fp(y)| dy ≤ e|| p |||| p ||L1|| q ||. (2.33)
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The estimate (2.29) will be particularly useful when estimating the Fourier trans-
form of fp at low frequencies. On the other hand, for high frequencies the following
bound on fp is available. This bound will be needed later.

Theorem 2.5 Assume that (1 + |x|)e2a|x|p(x) ∈ L1 for some a > 0. Then∫ ∞
−∞

ea|y| |fp(y)| dy ≤ 1

a
exp(|| p ||L1/a)

∫∫
e2a|x−y| |p(x)p(y)| dx dy. (2.34)

Proof: Computing the Fourier transform in (2.17), we find that

X̂(k) = ik − 1

2

∫ ∞
−∞

p(x)eixkg(x, k) dx, (2.35)

where g(x, k) is the left Jost function, introduced in (2.8). Put m(x, k) = eixkg(x, k).
Then m(x, k) satisfies

m(x, k) = 1 +

∫ x

−∞
Dk(x− t)p(t)m(t, k) dt, (2.36)

with

Dk(y) =
1

2ik

(
e2iky − 1

)
,

see [3]. The integral representation (2.35) can also be found in [3]. The equation (2.36)
is solved by iteration,

m(x, k) = 1 +
∞∑
n=1

gn(x, k),

where

gn(x, k) =

∫
xn≤xn−1≤...≤x

Dk(x− x1) . . . Dk(xn−1 − xn)p(x1) . . . p(xn) dx1 . . . dxn.

When Im k ≥ −a, we estimate Dk(y) by e2ay/|k|, y ≥ 0, and this gives

|gn(x, k)| ≤ e2ax

|k|n
∫
xn≤xn−1≤...≤x

|p(x1)| . . . |p(xn−1)| e−2axn |p(xn)| dx1 . . . dxn

≤ e2ax

|k|n
(u(x))n−1

(n− 1)!

(∫ x

−∞
e−2at |p(t)| dt

)
,

where

u(x) =

∫ x

−∞
|p(t)| dt.

We get

|m(x, k)− 1| ≤ e2ax

|k|

(∫ x

−∞
e−2at |p(t)| dt

)
exp(|| p ||L1/|k|). (2.37)
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Now

X̂(k) = ik − 1

2

(∫ ∞
−∞

p(x) dx

)
− 1

2
f̂p(k), (2.38)

and using (2.35) and (2.37) we get the following bound on f̂p,∣∣∣f̂p(k)
∣∣∣ ≤ 1

|k|
exp (|| p ||L1/|k|)

(∫∫
e2a|x−y| |p(x)| |p(y)| dx dy

)
, Im k ≥ −a. (2.39)

In particular when p ≥ 0 and k = −ia is purely imaginary, then fp ≥ 0 and it follows
that∫ 0

−∞
ea|y|fp(y) dy =

∣∣∣f̂p(−ia)
∣∣∣ ≤ 1

a
exp (|| p ||L1/a)

(∫∫
e2a|x−y| |p(x)| |p(y)| dx dy

)
.

Since |fp| ≤ f|p|, the proposition follows. 2

Remark. Using (2.24) and (2.25) we see that the estimate (2.34) is both scaling and
translation invariant.

2.4 Density of the poles

We shall now introduce the relevant class of potentials. We say that a potential p is
super-exponentially decaying if e2a|x|p(x) ∈ L1(R) for any a > 0. It follows then from
Theorem 2.4 that when p is super-exponentially decaying, X̂p extends to an entire

analytic function, and it is easily seen that Ŷp enjoys the same property. The relation
(2.4) extends to C as

k2 + Ŷ (k)Ŷ (−k) = X̂(k)X̂(−k), (2.40)

since X̂(k) = X̂(−k), Ŷ (k) = Ŷ (−k), k ∈ R. The zeros of X̂(k) in Im k < 0 will be
called scattering poles or resonances. These are the poles of the transmission coefficient
t(k) = ik/X̂(k) in C−. It follows from (2.40) that the scattering poles coincide with
the poles of the reflection coefficient

r(k) =
Ŷ (k)

X̂(k)

in C−. When p decays at some fixed exponential rate, the continuation of X̂ can be
made to a strip S around the real axis. In this case, the scattering poles are the zeros
of X̂ in S− = {k ∈ S; Im k < 0}.

Theorems 2.4 and 2.5 have a direct application to the problem of estimating the
density of resonances. We introduce the counting function N(r) as the number of
scattering poles in the disc |k| ≤ r, counted with their multiplicities. In the case of
compactly supported potentials it was proved by Zworski [17] that

N(r) =
2d

π
r + o(r), r →∞, (2.41)
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where d is the diameter of the support of the potential. For some special class of super-
exponentially decaying potentials and using different methods, Froese [5] established
that

N(r) = Crρ + o(rρ),

where ρ is the order of growth of the Fourier transform of the potential. Here we shall
give an upper bound on N(r) for a general super-exponentially decaying potential.
Similar bounds in any odd dimension have been obtained by Froese [6]. We shall
nevertheless give a proof, as it is short and serves as a preparation for the more general
results to follow.

The bound on N(r) will be given in terms of the function

ϕp(r) = log

(∫∫
e2r|x−y| |p(x)p(y)| dx dy

)
, r ≥ 0. (2.42)

We notice that this is a strictly increasing convex function, with linear growth at infinity
if and only if p is compactly supported.

Theorem 2.6 Let p be a super-exponentially decaying potential. Then∫ r

r/2

N(t)

t
dt ≤ C + ϕp(r), r ≥ 1, (2.43)

for some C depending on p.

Proof: First, we shall estimate the growth of X̂p in the lower half-plane. By (2.39) we
have ∣∣∣f̂p(k)

∣∣∣ ≤ 1

|k|
exp (|| p ||L1/ |k|)

∫∫
e2|β(x−y)| |p(x)p(y)| dx dy,

when k = α + iβ. Then ∣∣∣f̂p(k)
∣∣∣ ≤ C(p)eϕp(|β|), |k| = r ≥ 1.

Here C(p) denotes different constants, depending on the potential. Since X̂p(k) =

ik − (1/2)(
∫
p)− (1/2)f̂p(k), we have that a similar bound holds for X̂p,∣∣∣X̂p(k)

∣∣∣ ≤ C(p) exp(ϕp(r)), |k| ≤ r. (2.44)

Assume now that X̂p(0) 6= 0. Then Jensen’s formula, see [16],∫ r

0

N(t)

t
dt =

1

2π

∫ π

−π
log
∣∣∣X̂p(re

iθ)
∣∣∣ dθ − log

∣∣∣X̂p(0)
∣∣∣
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together with (2.44) implies (2.43) at once. When X̂p(0) = 0, we use the fact that the

zero is of order one, since
∣∣∣X̂p(k)

∣∣∣2 ≥ k2, k ∈ R. Then we can apply the preceding

argument to X̂p(k)/k, the conclusion being the same. 2

Remark. Since when a > 1 we have

N(r) = (log a)−1N(r)

∫ ar

r

dt

t
≤ (log a)−1

∫ ar

r

N(t)

t
dt,

we also get a bound on N(r).

3 Scattering poles near the real axis

3.1 Pole-free regions for compactly supported potentials

As a preparation for the later considerations, and also, since some of the results are only
valid in this case, we shall work here with compactly supported integrable potentials.

Let [a, b] be the smallest interval, containing the support of the potential p. Then
it follows from (2.20) and (2.21) that

suppX ⊆ [−2(b− a), 0], suppY ⊆ [2a, 2b],

and therefore X̂ and Ŷ are entire functions. Moreover, it was proved by Zworski [17]
that [−2(b− a), 0] is the smallest interval containing the support of X. The functions
f(x, k) and g(x, k) are also entire analytic functions of k. We have

f(x, k) = eixk for x > b,

and
g(x, k) = e−ixk for x < a.

Recall that the scattering poles, or resonances of p, are defined as the points k ∈ C−,
for which X̂(k) = 0. From (2.19) it follows that the poles can be characterized in the
following way: k ∈ C− is a scattering pole if and only if there exists a function ϕ(x)
such that

−ϕ′′(x) + p(x)ϕ(x) = k2ϕ(x), (3.1)

and

ϕ(x) =

{
Aeixk when x > b
e−ixk x < a.

for some number A. The solution ϕ(x) = g(x, k) grows exponentially at ±∞. Let us
also notice that the poles are symmetric with respect to reflection in the imaginary
axis. Indeed, we have that

X̂(k) = X̂(−k), k ∈ C, (3.2)
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since

X̂(k) = X̂(−k), k ∈ R.

Some lower bounds on the imaginary part of the poles ouside the imaginary axis,
depending on the real part, were obtained in the works [7] and [4]. Here we shall be
concerned with the existence of a pole-free strip below the real axis.

Theorem 3.1 Let p ∈ L1(R) be supported by an interval of length d > 0. Define the
function

h(p) =

(
1

4d

)
e−2d|| p ||L1 .

Then we have

1. The set S = {k;−h(p) < Im k < 0, Re k 6= 0} contains no scattering poles of p.

2. If ed|| p ||L1 < 1 then the interval −i
(

0,−(1/2d) log(d|| p ||L1)
)

contains at most

one pole of p.

3. Assume that p ≥ 0. Then the strip

S = {k;−h(p) < Im k < 0}

contains at most one pole of p. Moreover, set

g(p) = min

(
h(p),

|| p ||L1

2

)
.

Then the strip

Σ = {k ∈ C,−g(p) < Im k < 0}

is a pole-free region.

Remark. It follows from Theorem 3.1 that, as a sequence of nonnegative potentials
tends to infinity, the scattering poles can approach the real axis at most exponentially
fast.

The following proposition gives the first part of the theorem.

Proposition 3.2 Let p ∈ L1(R) be supported by an interval of length d > 0. Assume
that k is a scattering pole of p with Re k 6= 0. Then,

d |Im k| ≥ 1

4
e−2d|| p ||L1 . (3.3)
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Proof: By (2.24) and (2.25) we know that the scattering poles are invariant under
translations of the potential, and k is a pole of p if and only if λk is a pole of δλp(x) =
λ2p(λx). Therefore we may assume that the support of p is contained in the interval
[0, 1]. The function ϕ(x, k) satisfies

−ϕ′′(x, k) + p(x)ϕ(x, k) = k2ϕ(x, k), (3.4)

and
ϕ′(0) = −ikϕ(0), ϕ′(1) = ikϕ(1). (3.5)

Multiplying (3.4) by ϕ(x, k) and integrating by parts, we get

k2

∫ 1

0

|ϕ(x, k)|2 dx =

∫ 1

0

(−ϕ′′(x, k)ϕ(x, k) + p(x) |ϕ(x, k)|2) dx

= −ik(|ϕ(0)|2 + |ϕ(1)|2) +

∫ 1

0

(|ϕ′(x, k)|2 + p(x) |ϕ(x, k)|2) dx.

Therefore,

−Re k(|ϕ(0)|2 + |ϕ(1)|2) = 2Re kIm k

∫ 1

0

|ϕ(x, k)|2 dx,

and, as Re k 6= 0, we get

|Im k| = |ϕ(0)|2 + |ϕ(1)|2

2
∫ 1

0
|ϕ(x, k)|2 dx.

(3.6)

We shall now estimate ϕ(x, k) = g(x, k) when x ∈ [0, 1]. We may write

g(x, k) = e−ixk +

∫ x

−∞
R(x, y)e−iyk dy. (3.7)

It follows from (2.15) that R(x, y) 6= 0 if and only if −x ≤ y ≤ x. Therefore, writing
β = Im k, we get

|g(x, k)| ≤ e−x|β| +

∫ x

−x
|R(x, y)| e−y|β| dy

≤ 1 + ex|β|
∫ x

−x
|R(x, y)| dy ≤ e|β|

(
1 +

∫ x

−x
|R(x, y)| dy

)
.

Using the estimate (2.13), we get∫ x

−x
|R(x, y)| dy ≤ ev(x)

∫ x

0

u(t)e−v(t) dt = ev(x)−v(0) − 1 = ev(x) − 1,

since v(0) = 0. Therefore,

|g(x, k)| ≤ e|β|+v(x), 0 < x < 1.
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Since v is increasing and v(1) =
∫ 1

0
(1− t) |p(t)| dt ≤ || p ||L1 , we get∫ 1

0

|g(x, k)|2 dx ≤ e2|β|+2|| p ||L1 . (3.8)

As |g(0, k)|2 = 1, it follows from (3.6) and (3.8) that

|β| ≥ 1

2e2|β|+2|| p ||L1
.

Hence if s = 2 |β| and t = 2|| p ||L1 , we have ses ≥ e−t. If σ = e−t/2 we have

σeσ =
1

2
e−t exp(e−t/2) ≤ e1/2

2
e−t ≤ e−t ≤ ses.

Hence σ ≤ s, i.e.

|Im k| ≥ 1

4
e−2|| p ||L1 .

This completes the proof. 2

The second part of the theorem is given in the following proposition.

Proposition 3.3 Let p ∈ L1 be supported by an interval of length d and assume that

ed|| p ||L1 < 1. Then the interval −i
(

0,−(1/2d) log(d|| p ||L1)
)

contains at most one

pole of p.

Proof: When proving the proposition we may assume that supp(p) ⊂ [−1, 0] in view
of (2.24) and (2.25). Consider

ϕ(λ) = X̂p(−iλ) = λ− 1

2

(∫
p(y) dy

)
− 1

2

∫ 0

−∞
fp(y)eλ|y| dy, λ ≥ 0,

where

fp(y) =

∫ ∞
−∞

p(z)Rp(z, z + y) dz.

Since y ∈ [−2, 0] in supp(fp), using (2.33) we obtain∫ 0

−∞
|y| |fp(y)| eλ|y| dy ≤ 2

∫ 0

−∞
|fp(y)| eλ|y| dy

≤ 2e|| p |||| p ||L1

∫ ∞
−∞

e2λ|x| |x| |p(x)| dx ≤ 2e|| p ||L1+2λ|| p ||2L1 .

Therefore if e|| p ||L1 < 1 we have∫ 0

−∞
|y| |fp(y)| eλ|y| dy ≤ 2e2λ|| p ||L1 ,
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and then

ϕ′(λ) = 1− 1

2

∫ 0

−∞
|y| eλ|y|fp(y) dy ≥ 1− 1

2

∫ 0

−∞
|y| eλ|y| |fp(y)| dy

≥ 1− e2λ|| p ||L1 > 0,

if λ ∈
(

0,− (1/2) log(|| p ||L1)
)

. Therefore ϕ(λ) has at most one zero in this interval,

and the proof is complete. 2

It remains to prove the third assertion in the theorem. In the case of nonnegative
potentials additional information on the purely imaginary poles is available.

Proposition 3.4 Let p ∈ L1 be super-exponentially decaying and nonnegative. Then
Hp can have at most two poles on the imaginary axis. If k is such a pole, then

|k| > η0(p) ≡ (1/2)|| p ||L1 + (1/2)

∫ ∞
−∞

p(x)||R(x, ·) ||L1 dx. (3.9)

Define the functions

η1(p) = sup{λ > 0;

∫ ∞
−∞
|y| fp(y)eλ|y| dy < 2} ∈ [−∞,∞)

and
η(p) = max (η0(p), η1(p)) ,

where fp(y) is defined in (2.28) . Then there can be at most one pole of the form −iλ,
where λ ∈ (0, η(p)).

Finally, if p is such that ∫ ∞
−∞
|y| fp(y) dy ≥ 2, (3.10)

then Hp has no purely imaginary poles.

Proof: We may assume that p is not identically zero. Since

fp(y) =

∫ ∞
−∞

p(z)Rp(z, z + y) dz ≥ 0,

it follows that the function

ϕ(λ) = X̂p(−iλ) = λ− 1

2

(∫
p(y) dy

)
− 1

2

∫ 0

−∞
fp(y)eλ|y| dy, λ ≥ 0, (3.11)

is concave for λ ≥ 0, and ϕ(0) < 0. Therefore, there can be at most two zeros on
(0,∞), and if ϕ(λ) = 0, then

2λ > || p ||L1 +

∫ ∞
−∞

fp(y) dy = || p ||L1 +

∫ ∞
−∞

p(x)||R(x, ·) ||L1 dx,
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which is (3.9). Also, if ϕ′(0) ≤ 0, then ϕ(λ) < 0 for λ > 0, and this gives (3.10).
Finally, we shall estimate the length of an interval, containing at most one purely

imaginary pole of Hp. Since ϕ′(λ) > 0 on (0, η1(p)), it follows that ϕ(λ) has at most
one zero in this interval. Combining this with (3.9) completes the proof. 2

Remark. Let Hαp = −D2 +αp, where p ≥ 0 is some fixed super-exponentially decaying
potential, and α > 0 is the coupling constant. Using the arguments of Proposition
3.4, we may draw the following conclusions, concerning the behaviour of the purely
imaginary poles as functions of α. When α = 0, then X̂(0) = 0. When α > 0 is
sufficiently small, the function ϕ(λ) = ϕα(λ) has exactly two zeros λ1(α) and λ2(α),
with λ1(α) close to 0, and λ2(α) close to +∞. As α grows, the distance between the
two poles decreases. For a certain value of the coupling constant α0, the poles meet,
the function ϕα0 having a zero of multiplicity two. Increasing the coupling constant
further results in splitting of the double root, and the poles leave the imaginary axis,
so that (3.2) is respected.

We shall now complete the proof of Theorem 3.1. It follows from Propositions 3.2
and 3.4 that when p ≥ 0, then the strip

Σ = {k ∈ C,−g(p) < Im k < 0}
is a pole-free region. We have to consider therefore

S = {k ∈ C,−h(p) < Im k < 0}.
From Proposition 3.2 we know that S contains no poles off the imaginary axis, and we
only have to prove that the interval (0, h(p)) contains at most one λ such that −iλ is
a resonance.

Let η0(p) and η1(p) be defined as in Proposition 3.4, and consider

η(p) = max (η0(p), η1(p)) .

We know that the interval−i(0, η(p)) contains at most one pole, and it suffices therefore
to prove that η(p) ≥ h(p). When doing this, we may again assume that supp(p) ⊂
[−1, 0], see (2.24) and (2.25). It follows then as in Proposition 3.3 that∫ 0

−∞
|y| fp(y)eλ|y| dy ≤ 2e2λ+|| p ||L1 || p ||2L1 .

We write t = || p ||L1 , so that η0(p) ≥ (1/2)t and η1(p) ≥ λ if e2λ+tt2 = 1. Then the
inequality η(p) ≥ h(p) holds if

1

2e2t
≤ max

(
t, log

(
e−t

t2

))
.

It is enough to prove this when 1/(2 exp(2t)) > t. But then we have

log

(
e−t

t2

)
> log

(
4e−te4t

)
> 1 >

1

2e2t
.

The proof of Theorem 3.1 is now complete.
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3.2 A pole-free strip for exponentially decaying potentials

In the beginning of this section it will be assumed that the potential p is such that

(1 + |x|)e2a|x|p(x) ∈ L1

for some a > 0. It follows from Theorem 2.4 that X̂p is analytic in Im k > −a
and continuous up to the boundary of this set. We shall study the location of the
scattering poles near the real axis. In particular, we shall be interested in estimates
that are uniform in p.

When q ≥ 0 is such that (1 + |x|)e2a|x|q(x) ∈ L1, set

Bq = {p ∈ L1(R); |p| ≤ q}.

If µ is a measure, such that |µ| ≤ q, where q ∈ L1
loc, then µ is absolutely continuous.

The following result is then immediate from the first part of the proof of Theorem 2.2.

Proposition 3.5 Let pj be a sequence in Bq. Then there is a subsequence pjk and
some p ∈ Bq such that pjk → p weakly in L1(R).

We have the following

Theorem 3.6 Let K be a compact set in Im k > −a and F ⊂ L1(R) be sequentially
closed in the weak topology of measures. Assume that there is an integer n such that
X̂p has at most n zeros in K when p ∈ Bq ∩ F . Then there is an open neighbourhood

Ω of K such that X̂p has at most n zeros in Ω when p ∈ Bq ∩F . (All zeros are counted
with multiplicities.)

Proof: We write K = ∩∞j=1Ωj, where the Ωj form a decreasing sequence of small open
neighbourhoods of K. Assume that the statement is false. Then we may for every
j find pj ∈ Bq ∩ F such that X̂j = X̂pj has at least n + 1 zeros in Ωj. Passing to
a subsequence, we may assume that pj → p weakly in L1, where p ∈ Bq ∩ F . Then

we know by Theorem 2.2 that X̂j converges uniformly to X̂p in the upper half-plane,

and since the sequence X̂j is bounded in the space of functions, analytic in the set

Im k > −a, it follows by a normal families argument that X̂j → X̂p locally uniformly
in Im k > −a. Take now a relatively compact open neighbourhood V of K such that
X̂p 6= 0 on ∂V , and all zeros of X̂p in V are contained in K. An application of the

argument principle to V gives that X̂p must have as many zeros as X̂j in V when j is
large and we get a contradiction. 2

As an application of Theorem 3.6 we get

Proposition 3.7 There exists an open complex neighbourhood of the origin V , such
that V contains at most one pole of any p ∈ Bq.
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Proof: Since Bq is sequentially closed in the weak topology of measures, the result

follows from the fact that when p ∈ Bq, then X̂p vanishes at most to the first order at
the origin, since ∣∣∣X̂p(k)

∣∣∣2 ≥ k2, k ∈ R, (3.12)

in view of (2.4) and (2.16). 2

Using (3.12) together with Proposition 3.7 it is not difficult to see that there exists
a strip of the form −λ(q) < Im k < 0 which contains at most one pole of any p ∈ Bq.
Due to the symmetry of the poles, such a pole is then situated on the imaginary axis.
Now if p ∈ Bq is nonnegative and k is a purely imaginary pole of p, we have that
|k| ≥ || p ||L1/2 in view of Proposition 3.4. It follows therefore that if 0 ≤ p ∈ Bq

is such that || p ||L1 is sufficiently small, then the strip {k;−|| p ||L1/2 < Im k < 0}
contains no poles of p. We shall now prove a more precise result.

Theorem 3.8 Assume that 0 ≤ p is super-exponentially decaying and that

inf
x

∫ ∞
−∞

e|| p ||L1 |x−y|/2 |x− y| p(y) dy ≤ 1

10
. (3.13)

Then Hp has no resonances in the strip S = {k;−|| p ||L1/4 ≤ Im k < 0}.

Proof: Since the position of the resonances is not changed when p is replaced by a
translate of p we may assume that∫ ∞

−∞
e|| p ||L1 |y|/2 |y| p(y) dy ≤ 1

10
.

Also, since the conditions and conclusions of the theorem are the same for p(x) and
δλp(x) = λ2p(λx), we may assume that || p ||L1 = 1. We notice that

Re X̂p(β − iλ) = λ− 1

2
− 1

2

∫ 0

−∞
fp(y)eλ|y| cos (β |y|) dy

≤ λ− 1

2
+

1

2

∫ 0

−∞
fp(y)eλ|y| dy ≤ −1

4
+

1

2

∫ 0

−∞
fp(y)eλ|y| dy,

when β ∈ R and λ ≤ 1/4. It suffices to prove therefore that∫ 0

−∞
fp(y)e|y|/4 dy <

1

2
. (3.14)

Set q(y) = e|y|/2p(y). An application of Theorem 2.4 gives∫ 0

−∞
fp(y)e|y|/4 dy ≤ 2e2|| p |||| q || (|| q ||L1 + || q || || p ||L1) .
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By our assumptions we have || p ||L1 = 1, and || p || ≤ || q || ≤ 1/10. Hence∫ 0

−∞
e|y|/4fp(y) dy ≤ 2e2/10 1

10

(
|| q ||L1 +

1

10

)
.

We have

|| q ||L1 ≤ || q ||+
∫
|y|≤1

e|y|/2p(y) dy ≤ 1

10
+ e1/2|| p ||L1 =

1

10
+ e1/2.

We have thus proved that∫ 0

−∞
e|y|/4fp(y) dy ≤ 2

10
e2/10

(
2

10
+ e1/2

)
≤ 2

10

(
1 +

2

10
+

(
2

10

)2
)(

2

10
+

18

10

)
=

4

10
(1, 24) = 0.496 <

1

2
.

This completes the proof. 2

Remarks:
1. It follows from Theorem 3.1 that a similar result holds for compactly supported non-
negative potentials, the condition similar to (3.13) in this case being d|| p ||L1 ≤ t0/2,
where d is the length of the support of the potential and t0e

t0 = 1.

2. Using the arguments, similar to those used in the proof of Theorem 3.8 together
with the estimate (3.12) it is straightforward to estimate the width of a pole-free strip
in the case when p is not small. This leads, however, to more complicated expressions,
and therefore we shall avoid stating them explicitly.

3.3 Density of resonances in strips

We shall now turn to the problem of estimating the number of scattering poles in
arbitrary strips. We notice that any super-exponentially decaying potential p has only
finitely many poles in Im k ≥ −a for any a > 0. In fact, the function X̂p is entire

analytic and
∣∣∣X̂p(k)/k

∣∣∣ → 1 when |k| → ∞, Im k + a ≥ 0. We let Np(a) denote the

number of scattering poles in the set Im k ≥ −a. Our goal is to find upper bounds on
Np(a).

Our starting point is the following general result. The proof that we shall give has
been communicated to the author by Professor Lars Hörmander. The original proof of
the author was different and gave a slightly weaker result. The author is grateful to
Professor Hörmander for this contribution and for referring to [11], where more general
results have been given.



24

Proposition 3.9 Let h be a function, analytic in a neighbourhood of the set Im k ≥ 0.
Assume that |h(k)| ≤ 1 along R and

h(k) = 1 +
γ

ik
+O

(
1

|k|1+δ

)
, |k| → ∞, Im k ≥ 0, (3.15)

for some δ > 0. Then γ ≥ 0 and if kj are the zeros of h in the upper half-plane,
repeated according to their multiplicity, we have

γ = 2
∑

Im kj −
1

π

∫ ∞
−∞

log |h(t)| dt ≥ 2
∑

Im kj. (3.16)

Proof: It follows from the assumptions and the maximum principle that |h(k)| ≤ 1
when Im k ≥ 0, and since

|h(k)| = 1 + Re
( γ
ik

)
+ o

(
|k|−1) ,

we must have Re (γ/ik) ≤ 0 when Im k > 0, thus γ ≥ 0.
The Riesz representation formula for functions, subharmonic and ≤ 0 in the upper

half-plane (see [10]) gives

log |h(k)| = aIm k +
Im k

π

∫ ∞
−∞

log |h(t)|
|t− k|2

dt+
∑

log

∣∣∣∣k − kjk − kj

∣∣∣∣ , Im k > 0, (3.17)

where kj are the finitely many zeros of h in Im k > 0. The left-hand side is Re (γ/ik)+
o(|k|−1) at infinity and we have

log

∣∣∣∣k − kjk − kj

∣∣∣∣ = log

∣∣∣∣1− 2iIm kj

k − kj

∣∣∣∣ = Re

(
2Im kj
ik

)
+O

(
|k|−2) .

Since log |h(t)| is locally integrable and log |h(t)| = O(|t|−1−δ) at infinity, we have that
log |h(t)| ∈ L1(R). When α ≤ argk ≤ π−α, α > 0, we have that |k|2 ≤ Cα |t− k|2 for
t ∈ R, and therefore by Lebesgue’s theorem we obtain

|k|2
∫ ∞
−∞

log |h(t)|
|t− k|2

dt→
∫ ∞
−∞

log |h(t)| dt, k →∞, α ≤ argk ≤ π − α.

We have that Im k/|k|2 = Im (1/k) = −Re (1/ik) and then it follows from (3.17) that
the constant a = 0 and (3.16) is true. 2

Corollary 3.10 If h is analytic with |h| ≤ 1 in the open upper half-plane and (3.15)
holds there, then

2
∑

Im kj ≤ γ.

Thus the number of zeros with Im kj ≥ a/2 does not exceed γ/a.
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Proof: It suffices to apply the proposition to h(k + iε) for ε > 0 and let ε→ 0. 2

We are now ready to state

Theorem 3.11 For any super-exponentially decaying p we have

Np(a/2) ≤ C(p)(1 + ηa(p)), a ≥ 1,

where

ηa(p) =

∫∫
e2a|x−y| |p(x)p(y)| dx dy,

and C(p) is some constant depending on || p ||L1, but not on a.

Proof: We shall pass to a new function F (k), having the same zeros as X̂p and with the
property that |F (k)| ≤ 1 on Im k = −a. This will make it possible to apply Proposition
3.9 to the function F (k − ia).

When constructing the function F we write

X̂p(k) = ik − 1

2

(∫ ∞
−∞

p(x) dx

)
− 1

2
f̂p(k). (3.18)

By (2.39) we have ∣∣∣f̂p(k)
∣∣∣ ≤ 1

|k|
exp (|| p ||L1/|k|) ηa(p), Im k ≥ −a.

Using this, we shall now estimate X̂p(k) on the line Im k = −a. Writing k = ξ − ia
and using (3.18), we obtain∣∣∣X̂p(k)

∣∣∣2 ≤ ξ2 + c2 +
η2
a(p)

|k|2
e2|| p ||L1/|k| + e|| p ||L1/|k|ηa(p)

(
1 +
|c|
|k|

)
,

where c = a− (1/2)
∫
p(x) dx. Therefore, since a ≥ 1,∣∣∣X̂p(k)
∣∣∣2 ≤ ξ2 + a2 + C(p)a+ C(p)ηa(p) (1 + ηa(p))

≤ |k|2 + C(p)a (1 + ηa(p))
2 ,

where here and in what follows we let C(p) denote different constants ≥ 1, depending
only on || p ||L1 . It follows that if we take µ equal to

µ = C(p)a (1 + ηa(p)) (3.19)

then ∣∣∣∣∣ X̂p(k)

ik − µ

∣∣∣∣∣ ≤ 1, Im k = −a,
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since we may assume that µ− 2a ≥ 1 + ηa(p).
Therefore the function

F (k) =
X̂p(k)

ik − µ
has the same zeros as X̂p in the set Im k+a ≥ 0, and satisfies |F (k)| ≤ 1 on Im k = −a.
Moreover, since by (2.39)

X̂p(k)

ik
= 1− 1

2ik

(∫ ∞
−∞

p(x) dx

)
+O

(
1

k2

)
,

it follows that

F (k) = 1 +
γ

ik
+O

(
1

k2

)
, |k| → ∞, Im k ≥ −a, (3.20)

where

γ = µ− (1/2)

∫ ∞
−∞

p(x) dx, (3.21)

and we may assume that γ > 0. An application of Proposition 3.9 to the function
F (k − ia) shows that Np(a/2) ≤ γ/a, and this completes the proof. 2

Remark. It is known that the scattering poles of an integrable compactly supported
potential lie below a logarithmic curve, i.e. if k is a pole, then

|Im k| ≥ a+ b log |k|, (3.22)

with a ∈ R and b > 0 –see Theorem 3.14 and also [12], where this result is proved
in a more general setting in the three-dimensional case. Comparing Theorem 2.6 and
Theorem 3.11 we see, in particular, that the latter reflects the logarithmic bound (3.22).

Remark. We notice that after obvious modifications, the results above are also valid
when the potential p decays at some fixed exponential rate.

We shall finish this section by making some remarks concerning the question of
existence of resonances of exponentially decaying potentials. It is well known that
in the one-dimensional case, any compactly supported potential has infinitely many
resonances–see [17] for the precise results, and in [15] this is established for smooth
potentials in any odd dimension. However, the situation is completely different for
potentials, decaying at some fixed exponential rate. This is already seen from the
existence of the reflectionless potentials, all the resonances in this case being square
roots of the eigenvalues. We shall now give an example of an exponentially decaying
potential without bound states, which has only finitely many resonances in the set
where these are naturally defined. We start with the right reflection coefficient

r(k) =
2

(k + i)(k + 2i)
, (3.23)
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and try to find the corresponding potential p, which has no bound states. Then we
must have that x ≤ 0 in the support of the inverse Fourier transform of r, and it follows
from the Gelfand-Levitan equation for the right scattering data that x ≤ 0 in supp(p),
see [14]. In order to find the potential on the negative half-axis, we first compute the
left reflection coefficient ρ(k). We have the well-known formulas, see [13]

t(k) = exp

(
1

2πi

∫ +∞

−∞

log (1− |r(λ)|2)

λ− k
dλ

)
, Im k > 0, (3.24)

and

ρ(k) = −r(−k)t(k)

t(−k)
. (3.25)

Using (3.23) and (3.24) we can then calculate the transmission coefficient. We only
state the result and refer to [2] for a detailed discussion of the inverse scattering problem
for rational reflection coefficients. We have

t(k) =
k(k + αi)

(k + i)(k + 2i)
, α =

√
5, (3.26)

and using (3.25),

ρ(k) =
−2(k + αi)

(k + i)(k + 2i)(k − αi)
.

To determine the potential for x < 0, we use the Gelfand-Levitan equation for the left
scattering data,

R(x, y) +Q(x+ y) +

∫ x

−∞
R(x, z)Q(z + y)dz = 0 when x > y, (3.27)

where

Q(x) =
1

2π

∫ +∞

−∞
ρ(k)e−ixkdk.

The residue calculus then gives that

Q(x) =
−4α

(α + 1)(α + 2)
eαx, x < 0,

and therefore solving (3.27), we find that the potential is given by

p(x) =
16α2µe2αx

(µ− 2e2αx)2
, x < 0, (3.28)

where µ = (α + 1)(α + 2). The transmission coefficient t(k) admits a meromorphic
continuation to the set Im k > −α, and the poles there are the resonances of p. From
(3.26) we see that there are only two resonances, both situated on the imaginary axis.
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The example above admits a direct generalization which we shall finally describe.
When doing this we start with a function R(x, y) in the form

R(x, y) =
(
u(x)eα(y−x)θ−(x) + (f(x− y) + g(x+ y)) θ+(x)

)
θ+(x− y). (3.29)

Here θ−(x) = θ+(−x) and α is a positive number. The functions f , g and u are to be
chosen so that I +R will be the intertwining operator A− corresponding to a potential
p, supported by R−. We then must have that(

∂2
x − ∂2

y

)
R(x, y) = p(x)R(x, y) + p(x)δ(x− y). (3.30)

If we require that
f(−y) + g(y) = u(0)eαy, y ≤ 0, (3.31)

then
(∂x + ∂y)R(x, y) =

(
u′(x)eα(y−x)θ−(x) + 2g′(x+ y)θ+(x)

)
θ+(x− y),

and hence if
2g′(y) = u′(0)eαy, y ≤ 0, (3.32)

we obtain (
∂2
x − ∂2

y

)
R(x, y) = 2 (u′(x)θ−(x) + 2g′(2x)θ+(x)) δ(x− y)

+ (u′′(x)− 2αu′(x)) eα(y−x)θ−(x)θ+(x− y).

If we choose u such that

u′′(x)− 2αu′(x) = 2u(x)u′(x), x < 0, (3.33)

and if finally
g′(x) = 0, x > 0, (3.34)

then it follows that R satisfies (3.30) with p(x) = 2u′(x)θ−(x). Assuming that u is not
identically zero, solving (3.33) we find that

u(x) =
2αe2αx

2αC − e2αx
, x < 0,

for some C with 2αC > 1, and we now have to choose f and g so that the conditions
(3.31), (3.32) and (3.34) are satisfied. Now (3.32) together with (3.34) gives that
g(y) = (u′(0)/2α)eαyθ−(y) + (u′(0)/2α)θ+(y), since g must be continuous. Then by
(3.31) we get

f(y) = u(0)e−αy − u′(0)

2α
e−αy, y > 0.

and we have constructed R such that I +R is the intertwining operator A−.
Using (3.29) it is now easy to compute Xp. Since for x < 0 we have that

R(x, y) = u(x)eα(y−x)θ+(x− y),
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and x ≤ 0 in the support of p, we get∫
p(z)R(z, z + y) dz =

(∫ 0

−∞
p(z)u(z) dz

)
eαyθ−(y) = u2(0)eαyθ−(y),

since p(x) = 2u′(x). Then

Xp(y) = δ′(y)− u(0)δ(y)− 1

2
θ−(y)u2(0)eαy. (3.35)

The conclusion that X̂p has only finitely many zeros is now immediate. In particular,
in the special case when R comes from the potential given by (3.28), computing the
Fourier transform in (3.35) we recover the expression (3.26).

3.4 A coupled system of Riccati equations

The purpose of this section is to present an alternative approach to the study of the
location of resonances. It is more direct than before and does not depend on the study
of the scattering matrix. Instead we shall work with a system of Riccati equations.
Notice that a related approach has been used in [1] when studying stability of the shape
resonances.

Working with Riccati equations will allow us to recover the results concerning the
purely imaginary poles, and also, we shall derive bounds giving improved estimates on
the imaginary part of the poles with sufficiently large real part. A further study of
the system of the Riccati equations (3.37) below could perhaps lead to more precise
estimates.

We assume first that p ∈ L1 is compactly supported and supp(p) ⊂ [a, b]. For
k ∈ C− we let u(x, k) be the solution to the problem

Hpu = k2u, u(x, k) = e−ixk, x < a.

We want to investigate when

u(x, k) = ceikx for x > b.

Consider the function

ϕ(x, k) =
u′x(x, k)

u(x, k)
, (3.36)

which solves the Riccati equation

ϕ′ = p− k2 − ϕ2

in the set where u 6= 0. In what follows we write k = α− iβ, where β > 0, and α will
be kept fixed. If instead of ϕ we consider

ψ = ϕ+ ik,
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then
ψ′ = p+ 2ikψ − ψ2, ψ(x) = 0, x < a.

For reasons of symmetry we may assume that α ≥ 0, and we write

ψ = f + ig.

This gives us a coupled system of ODE:{
f ′ = p+ 2βf − 2αg − f 2 + g2,
g′ = 2αf + 2βg − 2fg,

(3.37)

and f(x) = g(x) = 0 for x < a. We know that α − iβ is a resonance precisely when
f(b, β) = 2β and g(b, β) = 2α. First, we shall examine the situation when α = 0 and
p ≥ 0. In this case the description of the resonances is given by Proposition 3.4, but it
is instructive to recover these results by studying (3.37). Then g = 0 and we have the
equation

f ′ = p+ 2βf − f 2. (3.38)

Since f(x) = 0 for x ≤ a and p(x) ≥ 0, it is true that f(x) ≥ 0 where it is defined.
Then

f(x) ≤
∫ x

a

e2β(x−y)p(y) dy,

and it follows that f exists on the whole interval [a, b]. Notice also that Proposition
3.4 gives

|| p ||L1 > 2β ⇒ −iβ is not a scattering pole. (3.39)

Next we shall study the derivative f ′β of f with respect to β. We have

f ′′xβ = 2βf ′β + 2f − 2ff ′β

and f ′β(a, β) = 0. Since f ≥ 0, it follows from this equation that f ′β(x, β) ≥ 0. Then

f ′′xβ ≤ 2βf ′β + 2f,

and it implies that

f ′β(x, β) ≤ 2e2xβ

∫ x

a

e−2yβf(y, β) dy ≤ 2e2bβ

∫ b

a

e−2yβf(y, β) dy, x ≤ b.

Now, in view of (3.38),∫ b

a

e−2yβf(y, β) dy =

∫ b

a

(b− y)∂y(e
−2yβf(y, β)) dy (3.40)

=

∫ b

a

(b− y)p(y)e−2βy dy −
∫ b

a

(b− y)f 2(y)e−2yβ dy ≤
∫ b

a

(b− y)p(y)e−2βy dy.
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Define the function

ϕ(p) = sup{β ≥ 0, e2bβ

∫ b

a

(b− y)p(y)e−2βy dy < 1}.

Then ϕ(p) ≥ β0, where e2β0(b−a)(b − a)|| p ||L1 = 1. Since f ′β(b, β) < 2 on (0, β0),
it follows that the equation f(b, β) = 2β has at most one solution on this interval.
Taking into account (3.39), we summarize the discussion above in the following result,
which is just a restatement of Proposition 3.3, combined with (3.39).

Proposition 3.12 Let 0 ≤ p ∈ L1 be supported by an interval of length d > 0. Put

η(p) = max

(
1

2
|| p ||L1 ,

1

2d
log

(
1

d|| p ||L1

))
.

Then there can be at most one resonance of the form −iβ, when β ∈ (0, η(p)).

In the case of poles off the imaginary axis and in the case when the potential has
variable sign, the situation becomes more subtle, and it is no longer clear that the
coupled system of equations (3.37) has a global solution. To circumvent this difficulty,
we view the function ϕ, defined in (3.36) as taking values in the complex projective
line CP 1. If we use u and u′ as a system of homogeneous coordinates, then the
(nonautonomuous) vector field X, generating the global flow, is given by

X(u : u′) = p− k2 −
(
u′

u

)2

on an open set where u 6= 0, and

X(u : u′) = 1− (p− k2)
( u
u′

)2

,

where u′ 6= 0. It is now convenient to introduce new homogeneous coordinates ku− iu′
and ku + iu′, so that the solution curve starts at the point (0 : 1). We may then
formulate the condition that k is a pole by saying that the solution curve passes through
the point (1 : 0) at time x = b. A straightforward computation, using, for example,
transition functions for the tangent bundle of CP 1, gives the expression for the vector
field X on an open set, where ku+ iu′ 6= 0. We get

X =
p

2ik

(
1 +

ku− iu′

ku+ iu′

)2

+ 2ik
ku− iu′

ku+ iu′
.

Therefore, the function

f(x, k) =
ku− iu′

ku+ iu′
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vanishes for x < a, and solves the differential equation

f ′x =
p

2ik
(1 + f)2 + 2ikf.

Our aim now is to estimate the lifespan of the solution. In particular, if f exists on
the entire interval (−∞, b], then k is not a resonance. To that end, we shall derive a
differential inequality for |f |. A computation shows that

d

dx
|f |2 = 4β |f |2 +

2pβ |f |2

|k|2
+ Re

(
pf

ik

)
+ p |f |2 Re

(
f

ik

)
,

and therefore, for |f(x)| 6= 0, we have

d

dx
|f | ≤ 2β |f |+ |p| |f |

|k|
+
|p|

2 |k|
+
|p| |f |2

2 |k|
.

If g solves

g′(x) = 2βg(x) +
|p(x)| g(x)

|k|
+
|p(x)|
2 |k|

+
|p(x)| g2(x)

2 |k|
and g vanishes for x = a, then, by comparison, we have that 0 ≤ |f | ≤ g, where g is
defined. To estimate the lifespan of g, we apply the following lemma.

Lemma 3.13 Consider a nonlinear differential equation{
h′(t) = a(t)h2(t) + b(t),
h(0) = 0,

where a and b are nonnegative locally integrable functions. If(∫ T

0

a(t) dt

)(∫ T

0

b(t) dt

)
< 1,

then the solution h(t) exists on [0, T ].

Proof: This follows from Lemma 1.3.3 in [9]. 2

To apply the lemma, we just write

g(x) = h(x) exp(2βx+ (1/ |k|)P (x)),

where

P (x) =

∫ x

−∞
|p(y)| dy,

so that h solves

h′(x) =
|p(x)|
2 |k|

exp(2βx+(1/ |k|)P (x))h2(x)+
|p(x)|
2 |k|

exp(−2βx−(1/ |k|)P (x)). (3.41)
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Using that the product of the integrals of the coefficients in (3.41) is less than or equal
to

1

4 |k|2
exp(|| p ||L1/ |k|)

∫∫
e2β|x−y| |p(x) p(y)| dx dy,

we arrive at the following theorem.

Theorem 3.14 Let p be super-exponentially decaying. Then if k = α − iβ, β > 0, is
a scattering pole of p, we have

1

4 |k|2
exp(|| p ||L1/ |k|)

∫∫
e2β|x−y| |p(x) p(y)| dx dy ≥ 1. (3.42)

Proof: We have already observed that if p is compactly supported, the assertion is a
direct application of Lemma 3.13 to (3.41). In the general case, we choose a sequence
pj ∈ L1 of compactly supported functions such that |pj| ≤ |p| and pj → p almost

everywhere. Then it follows as in Theorem 3.6 that X̂pj → X̂p locally uniformly.
An application of Hurwitz’s theorem shows then that k is a pole of p if and only if
k = limj→∞ kj, where kj is a pole of pj. Applying (3.42) to each pj and letting j →∞
gives the theorem. 2

We can remark here that when p is compactly supported, then Theorem 3.14 gives
a direct proof of the logarithmic bound for the imaginary part of the poles in this case.

Remark. We finally notice that a result, similar to Theorem 3.14 can be obtained if one
uses the characterization of the resonances as poles of the meromorphic continuation
of the weighted resolvent of the Schrödinger operator. In fact, it is essentially well
known (see, for example, [5]) and follows from the resolvent equation combined with
the analytic Fredholm theory, that, for a super-exponentially decaying potential, the
weighted resolvent

Rp(k) = p1/2R(k)|p|1/2

admits a meromorphic continuation to the lower half-plane. Here p1/2 = sign(p) |p|1/2
and

R(k) = (Hp − k2)−1, Im k > 0, k2 /∈ σ(Hp).

Moreover, the poles of the continuation are precisely the points k such that the weighted
free resolvent

R0,p(k) = p1/2R0(k)|p|1/2 (3.43)

has −1 as an eigenvalue. Since

R0(k)(x, y) = i
eik|x−y|

2k
,

it follows that (3.43) is an analytic family of Hilbert-Schmidt operators for k 6= 0.
Therefore if k is such that the Hilbert-Schmidt norm of R0,p(k) is less than one, then
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k is not a pole. This leads to an estimate, similar to (3.42).
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Verlag 1986

[14] Melin, A.: Operator methods for inverse scattering on the real line. Comm. P.D.E.
10, 677–786 (1985)
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