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1. Background
We let P, (C") denote the space of polynomials of degree < min n
complex variables and let

dic,m(f) = inf{|[f = pllx; p € Pm(C")}

denote the smallest error in an approximation of f by polynomials of
degree < m, i.e., the distance from f to Pp,(C") in the supremum norm

I Il on C(K).
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We let P, (C") denote the space of polynomials of degree < min n
complex variables and let

dic,m(f) = inf{|[f = pllx; p € Pm(C")}

denote the smallest error in an approximation of f by polynomials of
degree < m, i.e., the distance from f to Pp,(C") in the supremum norm

I Il on C(K).
Theorem (Bernstein 1912) Let f: [-1,1] - C and R > 1. Then
m'inoo (di—111,m(f)) / < R

if and only if f has a holomorphic extension to the domain bounded by
the ellipse with focii —1 and 1 and semi-major axis R.

. S



Theorem (Bernstein-Walsh ~1925) Let K C C be compact, f a
holomorphic function in some neighborhood of K, and assume that C\ K
is connected and a regular domain for the Dirichlet problem for harmonic
functions with logarithmic growth at oo,



Theorem (Bernstein-Walsh ~1925) Let K C C be compact, f a
holomorphic function in some neighborhood of K, and assume that C\ K
is connected and a regular domain for the Dirichlet problem for harmonic
functions with logarithmic growth at oo,

Then for a given real number R > 1 the inequality

— 1/m l
mll;noo (dK}m(f)) < R
holds if and only if £ has a holomorphic extension to
Qr = {z € C; gx(z,) < log R},

where gk (-, 00) is the Green function of K with logaritmic pole at
infinity, which is the unique function on C, which is 0 on K, harmonic on
C\ K, and has logarithmic growth at cc.



For the closed unit disc D we have

gy(z) = Iog+(|z\)7 zeC,

and R is the radius of convergence of the power series of the given
function at the origin.



For the closed unit disc D we have

gy(z) = Iog+(|z\)7 zeC,

and R is the radius of convergence of the power series of the given
function at the origin.

We have an explicit formula for the Green function for K = [—1,1],
gk(z,00) =log|z + (2 —1)*/?|,  zeC\[-1,1],

where the branch of the square root is chosen such that for ¢t > 1 the
value t + (t2 —1)¥/2 > 0.
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A review of some results from approximation theory

» Weierstrass (1885): Every complex valued continuous function on
a compact interval [a, b] can be approximated uniformly on [a, b] by
polynomials.

» Runge (1885): If K is a compact subset of C and A is a subset of
C\ K with at least one point in each bounded component of C\ K,
then every holomorphic function f defined on some open
neighborhood X of K can be approximated uniformly on K by
rational functions with poles in A.

> Mergelyan (1951): The Runge theorem holds for C \ K connected
even if it is only assume that the given function is continuous on K
and holomorphic in the interior of K.
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Stone-Weierstrass (1937): A major result in functional analysis
which generalizes the Weierstrass theorem.
Runge-Oka-Weil (1935-6): Recall that a compact subset K of C”

is said to be polynomially convex if K = K, where the polynomial
hull of K is defined by

K={zeC"; |p(2)| < sup |pl, vp € P(C")}.

and that for n = 1 the compact set K is polynomially convex if and
only if C\ K is connected.

The Runge-Oka-Weil theorem states that every holomorphic
function on some neighborhood of a polynomially convex set in C”
can be approximated uniformly on K by polynomials.
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Generalizations to higher dimensions

>

>

Stone-Weierstrass (1937): A major result in functional analysis
which generalizes the Weierstrass theorem.
Runge-Oka-Weil (1935-6): Recall that a compact subset K of C”

is said to be polynomially convex if K = K, where the polynomial
hull of K is defined by

K={zeC"; |p(2)| < sup |pl, vp € P(C")}.

and that for n = 1 the compact set K is polynomially convex if and
only if C\ K is connected.

The Runge-Oka-Weil theorem states that every holomorphic
function on some neighborhood of a polynomially convex set in C”
can be approximated uniformly on K by polynomials.

Mergelyan: There is no generalization to higher dimensions.

It is not clear what would be the correct statement, because we have
to take into account the complex structure in 0K.

Only fragmentary results are known for special classes of compacts
K, e.g., products of compact sets, convex domains, closure of a
strictly pseudoconvex domain.



Siciak’s extremal functions

Orm = sup{[pl™; p € Pu(C), [Pk <1} Gk = Tm Gk,

The Fekete lemma implies

Gy = lim Px m= sup Ox m,
m— o0 ) meN



Siciak’s extremal functions

Onm = sup{lp/™; p € Pu(C). pllx <1} Ok = Fm O,

The Fekete lemma implies

Gy = lim Px m= sup Ox m,
m—o0 meN

Theorem (Bernstein-Walsh-Siciak 1961)

Let K be polynomially convex, f € O(K), R > 1, and assume that ¢ is

continuous. Then )
fim (dic.m(F))" = <.

m—0o0 R

if and only if f has a holomorphic extension to the open set

Qr ={z€C"; logdk(z) < log R}.



Siciak-Zakharyuta theorem

We have
log |p(2)[Y™ < ¢, +log™ ||z, z€C", pePn(C").
We let £(C") denote the class of all u € PSH(C") satisfying
u(z) <cy+logt l|zlle,  z€C,

and set
Vi = sup{u; u e L(C"),ulx <0}

then we have log ®x < Vg

Theorem (Siciak-Zakharyuta) For every compact K we have

|Og CDK = VK
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Graded polynomial spaces P2 (C")

Let S be a compact convex subset of R} with 0 € S and S # {0}.

S-polynomial spaces:
For every m € N we associate to S the space P> (C") of all polynomials
in n complex variables of the form

pa)= S azt,  zec

a€(mS)NN"
with the standard multi-index notation and let P5(C") = USS_ P35 (C").

P3(C") is a graded ring;:
PP (CMPE(C") € PP(CT)

The standard simplex:

Observe that for ¥ = {x € R7; 3_", x; < 1} we have

PE(C™) = Pm(C™).
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The supporting function of S

For every compact subset S of R” we define the supporting function

ps(€) =sup (x,§) = max (x,£), (ER"
xeS x€ext S

There is a bijective correspondence between compact convex subsets of
R" and 1-positively homogeneous convex functions ¢ on R”

= s & S={xeR"; (x,&) <p(§), V€ eR"}.
For every S C R’ and cone I' C R” we define the I'-hull of S by
Sr={x €RY; (x,€) < p(€), VEET}.
The standard simplex is ¥ = ch{0, e,...,e,}, so

ex(&) = max{&f, ... &} = [1€7 oo
where & = max{¢;,0} and €7 = (&,...,&F).



The logarithmic supporting function of S

From now on we take S CR", 0€ S, and S # {0}.

We let Log: C*" — C by Logz = (log|z1],...,log|za|). define Hs by
Hs(z) = (p o Log)(z) = ps(log|zil,- - -, log |za|), zeC,
and extend the definition to the coordinate hyperplanes by

Hs(z)= Tim Hs(w), ze€CM\C™.

C*nSw—z



The logarithmic supporting function of S

From now on we take S CR", 0€ S, and S # {0}.

We let Log: C*" — C by Logz = (log|z1],...,log|za|). define Hs by
Hs(z) = (p o Log)(z) = ps(log|zil,- - -, log |za|), zeC,
and extend the definition to the coordinate hyperplanes by

Hs(z)= Tim Hs(w), ze€CM\C™.

C*ow—z

For the standard simplex we have
Hs(z) = log™ ||z 0o, zeC"

Proposition: Hs € PSH(C") N C(C") for every S.
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The class £°(C")

consists of all u € PSH(C") satisfying a growth estimate
u(z) < ¢y + Hs(z), zeC".

We have £*(C") = L£(C").

Proposition: Let p € O(C"). Then

p € P5(C") < log|p|'/™ € £3(C").
Proof-
For & € N\ mS we find («, &) > mys(&)

1 / p(¢) d¢i---d¢a
(27-”')n Ce Ca Cl"'Cn '

where C; is the polycircle with center 0 and polyradius (e, ... et¢").

dg =



For ¢ = (ef&atifs  eténtifn) c C, we have

p(€)]/¢%| < Cemtlad)=mes(&) 0t — 4o0.



A Liouville type theorem

The Liouville theorem tells us that an entire function p € O(C"), which
for some m € N and a € [0, 1] satisfies a growth estimate

p(2)] < CA+ |z, zeC

is a polynomial of degree < m, i.e., p € Pp,(C").



A Liouville type theorem

The Liouville theorem tells us that an entire function p € O(C"), which
for some m € N and a € [0, 1] satisfies a growth estimate

p(z)] < C(1+[z])*"™,  zeC"
is a polynomial of degree < m, i.e., p € Pp,(C").
The following is a Liouville type theorem for the classes Pj,(C"):

Proposition: Let p € O(C") and assume that for some C > 0 and
a > 0 less than the euclidean distance between mS and N" \ mS we have

P(2)] < C+ [zly?em™s), zecn.

Then p € P35 (C™).



Proof:  Choose ¢ such that s, € mS satisfies
la = sa| = d(a, mS) = (& — 54, &) = (o, §) — mps(£) > a.
Then

IP(O)I/1CY] < C(1+ (€% + - -  e2tn)1/2) % tl(a)=mes(9))
<C(1+ \/ﬁ)ae*t((a@)*mws(&)fa) -0, t = 400,



The convexity of ¢s implies
Hs(zywy, ..., zawy,) < Hs(z) 4+ Hs(w),
and as a special case when all w; are equal we get
Hs(\z1,...,Az,) < Hs(z) + Hs(A1) = Hs(z) + ¢s(1) log™ |\l

and
Hs(z) < vs(1) log™ 1]l oo zeC".

Hence B, =D" CNs={zeC"; Hs(z) =0}.



Admissible weight function and external fields

Definition: Let E C C" and w: E — R, be a function and set
g=—logw: E - RU {+0c0}.

The function w is said to be an admissible weight and q is said to be an
admissible external field with respect to S on E if

(i) w is upper semi-continuous ( < q is lower semi-continuous),

(ii) the set

{zeE; w(z) >0} ={z€ E; q(z) < +o0o}
is non-pluripolar, and

(iii) if E is unbounded, then

lim efs(® =0 < lim —H = +00.
lm () i (qlz) - Hs(z)) = +o0
z€E z€E

Some authors call g admissible weight function rather than w = e~9.



3. Weighted extremal functions

Siciak functions:

O ¢.m(2) = sup{|p(2)"'™; p € P5(C"), |[pe™ e < 1}.
forzeC" m=1,2,3,..., and

OF o(2) = Tim &F 4 ()

Siciak-Zakharyuta functions:

VE o(2) = sup{u(2); w € £5(C"), ule < q).

We obviously have log®2 , < V2



Density of rational points

Recall that SCR%,0€ S, and S # {0}

The smallest such S it a line segment. If its endpoints have both rational
and irrational coordinates, then mS does not have any integer points
except 0 and P2 only consists of constants.

Proposition: Let K C C" be a compact with 9B., C K. Then
Vi = Hs.
Observe that if S = SN Q" then PS'(C") = PS(C") and &3 , = &% .
so if §’ # S, the proposition tells us that at some point z € C"
®3_(2) =92 _(2) < VE_(2) < V&_(2).

It is neccessary to assume that SN Q" is dense in S in order to have a
Siciak-Zakharyuta type theorem.



4. A Siciak-Zakharyuta type theorem

Theorem (BSM, AES, RS and BS, 2023):

Let S C R be compact and convex with 0 € S, let g be an admissible
weight on a compact subset K of C" and assume that V; g 1S
continuous. Then
S S
VK,q - |Og ¢K,q

if and only if SN Q" is dense in S.



4. A Siciak-Zakharyuta type theorem

Theorem (BSM, AES, RS and BS, 2023):

Let S C R be compact and convex with 0 € S, let g be an admissible
weight on a compact subset K of C" and assume that V; g 1S
continuous. Then
S S
VK,q - |Og ¢K,q

if and only if SN Q" is dense in S.

A convex compact S C R’} is said to be a lower set if for every s € S
CG=1[0,s1] x --- x[0,8,] € S.

Bayraktar, Hussung, Levenberg, and Perera, 2020 proved the theorem
for convex bodies that are lower sets.



5.

[? estimates and polynomial spaces

Theorem (BSM, AES, RS, and BS, 2023):

Let S be a compact convex subset of R, 0 € S, m € N*, and
dm = d(mS,N"\ mS) denote the the euclidean distance between the
sets mS and N"\ mS. Let f € O(C"), assume that

/ IFI2(1+[¢[?) e 2™Hs dX\ < 400
(CII

for some 0 < v < d,;;, and let 7o denote the infinum of such 7. Let

F={¢eR"; (1,§) = —(dm —0)I¢]},

be the cone consisting of all £ such that the angle between the vectors
1=(1,...,1) and ¢ is < arccos(—(dm — 70)/+/n) and let

Sr={x €R"; (x,6) < ps(€),VE € T}

be the hull of S with respect to the cone I'. Then f € P,%{((C").



51 H -+ sn =0

Om = arccos(—(dm — 0)/+/n)



Example showing that the hull is optimal
Fix m. Let 0 < a < b < 1 and define S C R? as the quadrangle
S = ch{(0,0), (,0), (b, 1 — b), (0,1)}.

We show that for f(z) = z%, a = (k,0), k=1,...,m—3,and y =0,
the L2 estimate in the theorem holds, but f & P3(C").

(0,m)

Moo m(1-5)

(Y] |-co000000000000000000000002
B, (mb m(1-b))
(1.0) (m—1,0) (m.0)

mS
N0y



6. A weighted Bernstein-Walsh-Siciak theorem

Weighted distances to the polynomial spaces

For every bounded function f: E — C we define the distance of f from
P3(C") with respect to the weight q by

dE q.m(f) = inf{|[(f —p)e"™|e;pePa(C")}, m=0,12,....

and we say that f can be approximated by S-polynomials with respect to
qgon Eif
lim dg . .(f) =0.



Recall that the Runge-Oka-Weil theorem says that if K = K and f is
holomorphic in some neighborhood of K, then

lim dyc.m(f) =0,

m— o0

and that the Bernstein-Walsh-Siciak theorem says that f extends as a
holomorphic function to {z € C";, Vk < log R} if and only if

T 1/m
Tim_dicm()Y™ <1/R.



Pointwise convergence

Although f can be approximated by S-polynomials with respect to g we
can not claim that f is a uniform limit of S-polynomials on K.

Assume first that f: K — C is any bounded, K is not necessarily

polynomially convex, and lim d3 f)=0. If g is bounded above we
m—00

can find p;, € Pn(C") with ||(f — pm)e™ ™|k = d,f,q(f), which is
equivalent to

am

|f(z) - pm(z)| < dg,q,m(f)emq(Z)a zZE K’
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Pointwise convergence

Although f can be approximated by S-polynomials with respect to g we
can not claim that f is a uniform limit of S-polynomials on K.

Assume first that f: K — C is any bounded, K is not necessarily
polynomially convex, and lim d3 f)=0. If g is bounded above we
m—00

can find p;, € Pn(C") with ||(f — pm)e™ ™|k = d,%}q(f), which is
equivalent to

am

|f(z) - pm(z)| < dg,q,m(f)emq(Z)a zZE K’
which shows that p,, — f pointwise in

_ N S z) _
L={zeK; lim d2 o.m(f)e™) =0}

If sup, q is attained at some point in L, then p,, — f uniformly on L, and
if ¢ <0 on K, then p,, — f uniformly on K.
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Assume now that V;Zq is continuous and define for r > R
Q, ={zeC"; V,‘zq(z) <logr}.

Let R > 0, supy g < log R, and assume that

|~

— 1/m
Jim (dR g m(F) " <



Assume now that V;Zq is continuous and define for r > R
Q, ={zeC"; V,‘zq(z) <logr}.
Let R > 0, supy g < log R, and assume that
T (48 qm(F)"/" < %
m—00 K R
Then for every 0 < v < R there exists a constant A, > 0 such that

Ay

M meN.
(R—7y)m

AR q.m(f) < (f = pm)e™ ™Ik <



Assume now that V;Zq is continuous and define for r > R
Q, ={zeC"; V,‘zq(z) <logr}.
Let R > 0, supy g < log R, and assume that

_— 1/m 1
A (dkam(f) " < -

Then for every 0 < v < R there exists a constant A, > 0 such that

A"/
(R—)m™’

For every j =1,2,3,... and every z € K we have

di%,q,m(f) <|(f — pm)e” ™|k < m e N.

1pi(2) = pi-1(2)] < |f(2) = pi(2)| + f(2) = Pj-1(2))

A eia(2) R—~
<= _(1+—=).
_(R—W)J( + eq(z))



Since g € LSC(K) takes its minimum a at some point in K, we have
1 :
o ((R=YIpi(2) = pi-1(2)l/B,) < a(z),  z€K,

where B, = A, (14 (R —)/€®), and by the definition of V2
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1 :
o ((R=YIpi(2) = pi-1(2)l/B,) < a(z),  z€K,

where B, = A, (14 (R — v)/e), and by the definition of Vi _ this
implies that '
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Since g € LSC(K) takes its minimum a at some point in K, we have
1 :
o ((R=YIpi(2) = pi-1(2)l/B,) < a(z),  z€K,

where B, = A, (14 (R — v)/e), and by the definition of Vi _ this
implies that '

B, &/VR.a(2)

W’ ZEC

|pj(2) = pi-1(2)] <
If 0 < o<1, then

pi(2) = Pi-1(2)] < Byd, 2 € Qur—ry,

and this estimate implies that p,, = Zj'il(pj — pj—1) converges locally
uniformly on Qg_., to a holomorphic function F,. If L # &, then F, = f

on L.

We sum up our observations so far in:



Theorem (BSM, AES, RS, and BS, 2023):

Assume that V,%q is continuous, f: K — C is bounded, and
_— l/m 1
m||~r>noo (dK q, m(f)) E

holds with R > 0 such that supy g < log R, and that
— A S mq(z
L={zeK; mlinoo dg g m(f)e =0} # @.

Then for every 0 < v < R the function f|; extends to a holomorphic
function F, € O(Qr_-). If X is an open component of Qg, Lx =L N X
is non-pluripolar, and f is holomorphic in some neighborhood of Lx, then
f|L, extends to a unique holomorphic function on X.



The converse
Theorem (BSM, AES, RS, and BS, 2023):

Assume that V,iq is continuous, R > 0, supq < log R and

a= lim (d(mS,N"\ ms))*™ >0,

m— 00

If f € O(Qgr) can be approximated by S-polynomials on K with respect
to q, then

_— §|—m l/m 1
m||_l’>’noo (dK,q,m(f)) S 31/2R7

where Sr,, and T is the same as in the previous L?-theorem.

Proposition:
If S is a polytope with rational vertices, then a =1



The converse
Theorem (BSM, AES, RS, and BS, 2023):
Assume that V,f’q is continuous, R > 0, supq < log R and

a= lim (d(mS,N"\ ms))*™ >0,

m— 00

If f € O(Qgr) can be approximated by S-polynomials on K with respect

to q, then
_— §|—m l/m 1
m||_l’>’noo (dK,q,m(f)) S 31/2R7

where Sr,, and T is the same as in the previous L?-theorem.

Proposition:
If S is a polytope with rational vertices, then a =1

The proof is based on construction of entire functions with the aid of
Hoérmander's existence theorem for the Cauchy-Riemann system with
weighted [2-estimates.



Hoérmander’'s [%-estimates

Theorem(Hormander) Let X be a pseudoconvex domain of C”,
© € PSH(X), and define for a € R,

©a(z) = ¢(z) + alog(1 + |z|°), zeX.

Then for every a >0 and f € L%OJ)(X, ©a_2) satisfying Of = 0 there

exists a solution u € L?(X, ¢,) of the inhomogeneous Cauchy-Riemann
equation Ju = f satisfying the estimate

lull?, I/X\UI2(1+\ZI2)"’G’“" dX
1 2 2y—a+t2 ,— L2
<< [ A+ 2[F) 77 e dA = —|f]|

afx a

Py—2"

If f € C(X)forj=1,...,n, then ue C=(X).



From [? estimates to uniform estimates

Let B(z,6) C X with B(z,0) Nsupp f = @, then u is holomorphic in
B(z,¢) and the mean value theorem gives

1
u(z) = Msu(z) = pyen /B( ; udA.

By the Cauchy-Schwarz inequality

1
7/ \u|e_“""/2 -e®a/2 g\
C"62n B(z,8)

1 1/2
——||u e¥2 d\
Cn52"” ”%</B(z,5) )

— ¢ 20 V|4, - 5" (Ms(e%%)(2)) 2

|u(z)]

For every v € PSH(X) we have Msv(z) N\, v(z) as § \, 0, so the art of
applying this estimate is the choice of § as a function of z.



Proof:

Lete >0and 0 <y < R such that supg < log(R—~)andlet 0 < < 1
be so small that K5 = {z € C"; d(z, K) < 4} is contained in Qg_~ and

|V,§7q(w) - V,‘?,q(z)| <e, lw—2z| <0, z€e K.



Proof:

Lete >0and 0 <y < R such that supg < log(R—~)andlet 0 < < 1
be so small that K5 = {z € C"; d(z, K) < 4} is contained in Qg_~ and

|V,§7q(w) - V,‘?,q(z)| <e, lw—2z| <0, z€e K.

Take x € C*°(Qgr), with 0 < x <1, and x =1 in some nbh of ﬁR_n,.



Proof:

Lete >0and 0 <y < R such that supg < log(R—~)andlet 0 < < 1
be so small that K5 = {z € C"; d(z, K) < 4} is contained in Qg_~ and

|V,§7q(w) - V,‘?,q(z)| <e, lw—2z| <0, z€e K.

Take x € C*°(Qgr), with 0 < x <1, and x =1 in some nbh of ﬁR_n,.
Set p, = 2mV,f’q, am = 3d(mS,N"\ mS), and define for z € C”

Um(2) = om(2)+amlog(1+|z[*) and  na(2) = vm(2)—2log(1+]z]?).



Proof:

Lete >0and 0 <y < R such that supg < log(R—~)andlet 0 < < 1
be so small that K5 = {z € C"; d(z, K) < 4} is contained in Qg_~ and

|V,§7q(w) - V,‘?,q(z)| <e, lw—2z| <0, z€e K.

Take x € C*°(Qgr), with 0 < x <1, and x =1 in some nbh of ﬁR_n,.
Set p, = 2mV,f’q, am = 3d(mS,N"\ mS), and define for z € C”

Um(2) = ¢m(2)+amlog(1+]z?)  and  na(2) = Ym(z)—2log(1+]z?).

We have Hf(?anm < +00. By Hérmander there exists a solution
Um € C®(C") of u,, = fOx satisfying

1
lumll = [ lun0 4 122)2me2m R dh < £,
n m



Proof:

Lete >0and 0 <y < R such that supg < log(R—~)andlet 0 < < 1
be so small that K5 = {z € C"; d(z, K) < 4} is contained in Qg_~ and

|V,§7q(w) - V,‘?,q(z)| <e, lw—2z| <0, z€e K.

Take x € C*°(Qgr), with 0 < x <1, and x =1 in some nbh of ﬁR_n,.
Set p, = 2mV,f’q, am = 3d(mS,N"\ mS), and define for z € C”

Um(2) = om(2)+amlog(1+|z[*) and  na(2) = vm(2)—2log(1+]z]?).

We have Hf(?anm < +00. By Hérmander there exists a solution
Um € C®(C") of u,, = fOx satisfying

1
lumll = [ lun0 4 122)2me2m R dh < £,
n m

We define p,, = fo— Upm. Then the [2-estimate and the previous theorm
imply that p,, € P;Cérq((C") and that there exists a constant C, > 0 such
that

C’YemE

I(F = pm)e™™ < 3 - ———
ar (R~ ~)"

., m=123,....



Example: of S for which

lim (d(mS, N"\mS))l/m 1.

m— o0

S = Di(0,1) N Dy(1,0)

1
d(mS,N"\mS)=v1+m>—m= —u_——



Example: of S for which

1/m

lim (d(mS,N"\ mS))”" =o0.

m— o0

Take f € C2[0,1], with £(0) =0, f'(x) > 0, and f”(x) > 0, x €]0,1].

S (e, o

(v, f(v,

7 o«
d(mS,N"\ mS) = md(S,(1/m)N"\ S) < mf(1/m)

Take f(x) = e=¢/**+¢, x €]0,1], and £(0) = 0, where ¢ > 3



Thank you for your attention!

Congratulations Anders!



