A generalization of the Bernstein-Walsh-Siciak theorem on uniform approximation of functions by polynomials on compact sets.

Ragnar Sigurð̌sson
University of Iceland
(Joint work with: Benedikt Steinar Magnússon, Álfheiður Edda Sigurðardóttir and Bergur Snorrason)

Workshop on Microlocal Analysis and Mathematical Physics
In honor of Anders Melin's 80th birthday
September 19-21, 2023

Contents:

1.	Background
2.	Graded polynomial spaces $\mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right)$
3.	Weighted extremal functions
4.	A weighted Siciak-Zakharyuta theorem
5.	L^{2} estimates and polynomial spaces
6.	A weighted Bernstein-Walsh-Siciak theorem

1. Background

We let $\mathcal{P}_{m}\left(\mathbb{C}^{n}\right)$ denote the space of polynomials of degree $\leq m$ in n complex variables and let

$$
d_{K, m}(f)=\inf \left\{\|f-p\|_{K} ; p \in \mathcal{P}_{m}\left(\mathbb{C}^{n}\right)\right\}
$$

denote the smallest error in an approximation of f by polynomials of degree $\leq m$, i.e., the distance from f to $\mathcal{P}_{m}\left(\mathbb{C}^{n}\right)$ in the supremum norm $\|\cdot\|_{K}$ on $\mathcal{C}(K)$.

1. Background

We let $\mathcal{P}_{m}\left(\mathbb{C}^{n}\right)$ denote the space of polynomials of degree $\leq m$ in n complex variables and let

$$
d_{K, m}(f)=\inf \left\{\|f-p\|_{K} ; p \in \mathcal{P}_{m}\left(\mathbb{C}^{n}\right)\right\}
$$

denote the smallest error in an approximation of f by polynomials of degree $\leq m$, i.e., the distance from f to $\mathcal{P}_{m}\left(\mathbb{C}^{n}\right)$ in the supremum norm $\|\cdot\|_{K}$ on $\mathcal{C}(K)$.
Theorem (Bernstein 1912) Let $f:[-1,1] \rightarrow \mathbb{C}$ and $R>1$. Then

$$
\overline{\lim }_{m \rightarrow \infty}\left(d_{[-1,1], m}(f)\right)^{1 / m} \leq \frac{1}{R}
$$

if and only if f has a holomorphic extension to the domain bounded by the ellipse with focii -1 and 1 and semi-major axis R.

Theorem (Bernstein-Walsh ~1925) Let $K \subset \mathbb{C}$ be compact, f a holomorphic function in some neighborhood of K, and assume that $\mathbb{C} \backslash K$ is connected and a regular domain for the Dirichlet problem for harmonic functions with logarithmic growth at ∞,

Theorem (Bernstein-Walsh ~1925) Let $K \subset \mathbb{C}$ be compact, f a holomorphic function in some neighborhood of K, and assume that $\mathbb{C} \backslash K$ is connected and a regular domain for the Dirichlet problem for harmonic functions with logarithmic growth at ∞,
Then for a given real number $R \geq 1$ the inequality

$$
\varlimsup_{m \rightarrow \infty}\left(d_{K, m}(f)\right)^{1 / m} \leq \frac{1}{R}
$$

holds if and only if f has a holomorphic extension to

$$
\Omega_{R}=\left\{z \in \mathbb{C} ; g_{K}(z, \infty)<\log R\right\}
$$

where $g_{K}(\cdot, \infty)$ is the Green function of K with logaritmic pole at infinity, which is the unique function on \mathbb{C}, which is 0 on K, harmonic on $\mathbb{C} \backslash K$, and has logarithmic growth at ∞.

For the closed unit disc $\overline{\mathbb{D}}$ we have

$$
g_{\overline{\mathbb{D}}}(z)=\log ^{+}(|z|), \quad z \in \mathbb{C},
$$

and R is the radius of convergence of the power series of the given function at the origin.

For the closed unit disc $\overline{\mathbb{D}}$ we have

$$
g_{\bar{D}}(z)=\log ^{+}(|z|), \quad z \in \mathbb{C},
$$

and R is the radius of convergence of the power series of the given function at the origin.

We have an explicit formula for the Green function for $K=[-1,1]$,

$$
g_{K}(z, \infty)=\log \left|z+\left(z^{2}-1\right)^{1 / 2}\right|, \quad z \in \mathbb{C} \backslash[-1,1],
$$

where the branch of the square root is chosen such that for $t>1$ the value $t+\left(t^{2}-1\right)^{1 / 2}>0$.

A review of some results from approximation theory

- Weierstrass (1885): Every complex valued continuous function on a compact interval $[a, b]$ can be approximated uniformly on $[a, b]$ by polynomials.

A review of some results from approximation theory

- Weierstrass (1885): Every complex valued continuous function on a compact interval $[a, b]$ can be approximated uniformly on $[a, b]$ by polynomials.
- Runge (1885): If K is a compact subset of \mathbb{C} and \mathcal{A} is a subset of $\mathbb{C} \backslash K$ with at least one point in each bounded component of $\mathbb{C} \backslash K$, then every holomorphic function f defined on some open neighborhood X of K can be approximated uniformly on K by rational functions with poles in \mathcal{A}.

A review of some results from approximation theory

- Weierstrass (1885): Every complex valued continuous function on a compact interval $[a, b]$ can be approximated uniformly on $[a, b]$ by polynomials.
- Runge (1885): If K is a compact subset of \mathbb{C} and \mathcal{A} is a subset of $\mathbb{C} \backslash K$ with at least one point in each bounded component of $\mathbb{C} \backslash K$, then every holomorphic function f defined on some open neighborhood X of K can be approximated uniformly on K by rational functions with poles in \mathcal{A}.
- Mergelyan (1951): The Runge theorem holds for $\mathbb{C} \backslash K$ connected even if it is only assume that the given function is continuous on K and holomorphic in the interior of K.

Generalizations to higher dimensions

- Stone-Weierstrass (1937): A major result in functional analysis which generalizes the Weierstrass theorem.

Generalizations to higher dimensions

- Stone-Weierstrass (1937): A major result in functional analysis which generalizes the Weierstrass theorem.
- Runge-Oka-Weil (1935-6): Recall that a compact subset K of \mathbb{C}^{n} is said to be polynomially convex if $K=\widehat{K}$, where the polynomial hull of K is defined by

$$
\widehat{K}=\left\{z \in \mathbb{C}^{n} ;|p(z)| \leq \sup _{K}|p|, \forall p \in \mathcal{P}\left(\mathbb{C}^{n}\right)\right\}
$$

and that for $n=1$ the compact set K is polynomially convex if and only if $\mathbb{C} \backslash K$ is connected.
The Runge-Oka-Weil theorem states that every holomorphic function on some neighborhood of a polynomially convex set in \mathbb{C}^{n} can be approximated uniformly on K by polynomials.

Generalizations to higher dimensions

- Stone-Weierstrass (1937): A major result in functional analysis which generalizes the Weierstrass theorem.
- Runge-Oka-Weil (1935-6): Recall that a compact subset K of \mathbb{C}^{n} is said to be polynomially convex if $K=\widehat{K}$, where the polynomial hull of K is defined by

$$
\widehat{K}=\left\{z \in \mathbb{C}^{n} ;|p(z)| \leq \sup _{K}|p|, \forall p \in \mathcal{P}\left(\mathbb{C}^{n}\right)\right\}
$$

and that for $n=1$ the compact set K is polynomially convex if and only if $\mathbb{C} \backslash K$ is connected.
The Runge-Oka-Weil theorem states that every holomorphic function on some neighborhood of a polynomially convex set in \mathbb{C}^{n} can be approximated uniformly on K by polynomials.

- Mergelyan: There is no generalization to higher dimensions.

It is not clear what would be the correct statement, because we have to take into account the complex structure in ∂K.

Generalizations to higher dimensions

- Stone-Weierstrass (1937): A major result in functional analysis which generalizes the Weierstrass theorem.
- Runge-Oka-Weil (1935-6): Recall that a compact subset K of \mathbb{C}^{n} is said to be polynomially convex if $K=\widehat{K}$, where the polynomial hull of K is defined by

$$
\widehat{K}=\left\{z \in \mathbb{C}^{n} ;|p(z)| \leq \sup _{K}|p|, \forall p \in \mathcal{P}\left(\mathbb{C}^{n}\right)\right\}
$$

and that for $n=1$ the compact set K is polynomially convex if and only if $\mathbb{C} \backslash K$ is connected.
The Runge-Oka-Weil theorem states that every holomorphic function on some neighborhood of a polynomially convex set in \mathbb{C}^{n} can be approximated uniformly on K by polynomials.

- Mergelyan: There is no generalization to higher dimensions.

It is not clear what would be the correct statement, because we have to take into account the complex structure in ∂K.
Only fragmentary results are known for special classes of compacts K, e.g., products of compact sets, convex domains, closure of a strictly pseudoconvex domain.

Siciak's extremal functions

$$
\Phi_{K, m}=\sup \left\{|p|^{1 / m} ; p \in \mathcal{P}_{m}\left(\mathbb{C}^{n}\right),\|p\|_{K} \leq 1\right\} \quad \Phi_{K}=\varlimsup_{m \rightarrow \infty} \Phi_{K, m}
$$

The Fekete lemma implies

$$
\Phi_{K}=\lim _{m \rightarrow \infty} \Phi_{K, m}=\sup _{m \in \mathbb{N}} \Phi_{K, m}
$$

Siciak's extremal functions

$$
\Phi_{K, m}=\sup \left\{|p|^{1 / m} ; p \in \mathcal{P}_{m}\left(\mathbb{C}^{n}\right),\|p\|_{K} \leq 1\right\} \quad \Phi_{K}=\varlimsup_{m \rightarrow \infty} \Phi_{K, m},
$$

The Fekete lemma implies

$$
\Phi_{K}=\lim _{m \rightarrow \infty} \Phi_{K, m}=\sup _{m \in \mathbb{N}} \Phi_{K, m},
$$

Theorem (Bernstein-Walsh-Siciak 1961)

Let K be polynomially convex, $f \in \mathcal{O}(K), R \geq 1$, and assume that Φ_{K} is continuous. Then

$$
\overline{\lim }_{m \rightarrow \infty}\left(d_{K, m}(f)\right)^{1 / m}=\frac{1}{R}
$$

if and only if f has a holomorphic extension to the open set

$$
\Omega_{R}=\left\{z \in \mathbb{C}^{n} ; \log \Phi_{K}(z)<\log R\right\} .
$$

Siciak-Zakharyuta theorem

We have

$$
\log |p(z)|^{1 / m} \leq c_{p}+\log ^{+}\|z\|, \quad z \in \mathbb{C}^{n}, \quad p \in \mathcal{P}_{m}\left(\mathbb{C}^{n}\right)
$$

We let $\mathcal{L}\left(\mathbb{C}^{n}\right)$ denote the class of all $u \in \mathcal{P S H}\left(\mathbb{C}^{n}\right)$ satisfying

$$
u(z) \leq c_{u}+\log ^{+}\|z\|_{\infty}, \quad z \in \mathbb{C}^{n}
$$

and set

$$
V_{K}=\sup \left\{u ; u \in \mathcal{L}\left(\mathbb{C}^{n}\right),\left.u\right|_{K} \leq 0\right\}
$$

then we have $\log \Phi_{K} \leq V_{K}$

Theorem (Siciak-Zakharyuta) For every compact K we have

$$
\log \Phi_{K}=V_{K}
$$

2. Graded polynomial spaces $\mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right)$

Let S be a compact convex subset of \mathbb{R}_{+}^{n} with $0 \in S$ and $S \neq\{0\}$.

2. Graded polynomial spaces $\mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right)$

Let S be a compact convex subset of \mathbb{R}_{+}^{n} with $0 \in S$ and $S \neq\{0\}$. S-polynomial spaces:
For every $m \in \mathbb{N}$ we associate to S the space $\mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right)$ of all polynomials in n complex variables of the form

$$
p(z)=\sum_{\alpha \in(m S) \cap \mathbb{N} \boldsymbol{n}} a_{\alpha} z^{\alpha}, \quad z \in \mathbb{C}^{n},
$$

with the standard multi-index notation and let $\mathcal{P}^{S}\left(\mathbb{C}^{n}\right)=\cup_{m=0}^{\infty} \mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right)$.

2. Graded polynomial spaces $\mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right)$

Let S be a compact convex subset of \mathbb{R}_{+}^{n} with $0 \in S$ and $S \neq\{0\}$. S-polynomial spaces:
For every $m \in \mathbb{N}$ we associate to S the space $\mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right)$ of all polynomials in n complex variables of the form

$$
p(z)=\sum_{\alpha \in(m S) \cap \mathbb{N} \boldsymbol{n}} a_{\alpha} z^{\alpha}, \quad z \in \mathbb{C}^{n},
$$

with the standard multi-index notation and let $\mathcal{P}^{S}\left(\mathbb{C}^{n}\right)=\cup_{m=0}^{\infty} \mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right)$. $\mathcal{P}^{S}\left(\mathbb{C}^{n}\right)$ is a graded ring:

$$
\mathcal{P}_{j}^{S}\left(\mathbb{C}^{n}\right) \mathcal{P}_{k}^{S}\left(\mathbb{C}^{n}\right) \subseteq \mathcal{P}_{j+k}^{S}\left(\mathbb{C}^{n}\right)
$$

2. Graded polynomial spaces $\mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right)$

Let S be a compact convex subset of \mathbb{R}_{+}^{n} with $0 \in S$ and $S \neq\{0\}$. S-polynomial spaces:
For every $m \in \mathbb{N}$ we associate to S the space $\mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right)$ of all polynomials in n complex variables of the form

$$
p(z)=\sum_{\alpha \in(m S) \cap \mathbb{N} \boldsymbol{n}} a_{\alpha} z^{\alpha}, \quad z \in \mathbb{C}^{n},
$$

with the standard multi-index notation and let $\mathcal{P}^{S}\left(\mathbb{C}^{n}\right)=\cup_{m=0}^{\infty} \mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right)$. $\mathcal{P}^{S}\left(\mathbb{C}^{n}\right)$ is a graded ring:

$$
\mathcal{P}_{j}^{S}\left(\mathbb{C}^{n}\right) \mathcal{P}_{k}^{S}\left(\mathbb{C}^{n}\right) \subseteq \mathcal{P}_{j+k}^{S}\left(\mathbb{C}^{n}\right)
$$

The standard simplex:
Observe that for $\Sigma=\left\{x \in \mathbb{R}_{+}^{n} ; \sum_{j=1}^{n} x_{j} \leq 1\right\}$ we have

$$
\mathcal{P}_{m}^{\sum}\left(\mathbb{C}^{n}\right)=\mathcal{P}_{m}\left(\mathbb{C}^{n}\right) .
$$

The supporting function of S

For every compact subset S of \mathbb{R}^{n} we define the supporting function

$$
\varphi_{S}(\xi)=\sup _{x \in S}\langle x, \xi\rangle=\max _{x \in \operatorname{ext} S}\langle x, \xi\rangle, \quad \xi \in \mathbb{R}^{n}
$$

The supporting function of S

For every compact subset S of \mathbb{R}^{n} we define the supporting function

$$
\varphi_{S}(\xi)=\sup _{x \in S}\langle x, \xi\rangle=\max _{x \in \operatorname{ext} S}\langle x, \xi\rangle, \quad \xi \in \mathbb{R}^{n} .
$$

There is a bijective correspondence between compact convex subsets of \mathbb{R}^{n} and 1-positively homogeneous convex functions φ on \mathbb{R}^{n}

$$
\varphi=\varphi_{S} \quad \Leftrightarrow \quad S=\left\{x \in \mathbb{R}^{n} ;\langle x, \xi\rangle \leq \varphi(\xi), \forall \xi \in \mathbb{R}^{n}\right\}
$$

The supporting function of S

For every compact subset S of \mathbb{R}^{n} we define the supporting function

$$
\varphi_{S}(\xi)=\sup _{x \in S}\langle x, \xi\rangle=\max _{x \in \operatorname{ext} S}\langle x, \xi\rangle, \quad \xi \in \mathbb{R}^{n} .
$$

There is a bijective correspondence between compact convex subsets of \mathbb{R}^{n} and 1-positively homogeneous convex functions φ on \mathbb{R}^{n}

$$
\varphi=\varphi_{S} \quad \Leftrightarrow \quad S=\left\{x \in \mathbb{R}^{n} ;\langle x, \xi\rangle \leq \varphi(\xi), \forall \xi \in \mathbb{R}^{n}\right\}
$$

For every $S \subset \mathbb{R}_{+}^{n}$ and cone $\Gamma \subseteq \mathbb{R}^{n}$ we define the Γ-hull of S by

$$
\widehat{S}_{\Gamma}=\left\{x \in \mathbb{R}_{+}^{n} ;\langle x, \xi\rangle \leq \varphi(\xi), \forall \xi \in \Gamma\right\} .
$$

The supporting function of S

For every compact subset S of \mathbb{R}^{n} we define the supporting function

$$
\varphi_{s}(\xi)=\sup _{x \in S}\langle x, \xi\rangle=\max _{x \in \operatorname{ext} S}\langle x, \xi\rangle, \quad \xi \in \mathbb{R}^{n} .
$$

There is a bijective correspondence between compact convex subsets of \mathbb{R}^{n} and 1-positively homogeneous convex functions φ on \mathbb{R}^{n}

$$
\varphi=\varphi_{S} \quad \Leftrightarrow \quad S=\left\{x \in \mathbb{R}^{n} ;\langle x, \xi\rangle \leq \varphi(\xi), \forall \xi \in \mathbb{R}^{n}\right\}
$$

For every $S \subset \mathbb{R}_{+}^{n}$ and cone $\Gamma \subseteq \mathbb{R}^{n}$ we define the Γ-hull of S by

$$
\widehat{S}_{\Gamma}=\left\{x \in \mathbb{R}_{+}^{n} ;\langle x, \xi\rangle \leq \varphi(\xi), \forall \xi \in \Gamma\right\} .
$$

The standard simplex is $\Sigma=\operatorname{ch}\left\{0, e_{1}, \ldots, e_{n}\right\}$, so

$$
\varphi_{\Sigma}(\xi)=\max \left\{\xi_{1}^{+}, \ldots, \xi_{n}^{+}\right\}=\left\|\xi^{+}\right\|_{\infty},
$$

where $\xi_{j}^{+}=\max \left\{\xi_{j}, 0\right\}$ and $\xi^{+}=\left(\xi_{1}^{+}, \ldots, \xi_{n}^{+}\right)$.

The logarithmic supporting function of S

From now on we take $S \subseteq \mathbb{R}_{+}^{n}, 0 \in S$, and $S \neq\{0\}$.

We let Log: $\mathbb{C}^{* n} \rightarrow \mathbb{C}$ by $\log z=\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)$, define H_{S} by

$$
H_{S}(z)=(\varphi \circ \log)(z)=\varphi_{S}\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right), \quad z \in \mathbb{C}^{* n},
$$

and extend the definition to the coordinate hyperplanes by

$$
H_{S}(z)=\varlimsup_{\mathbb{C}^{* n} \ni w \rightarrow z} H_{S}(w), \quad z \in \mathbb{C}^{n} \backslash \mathbb{C}^{* n} .
$$

The logarithmic supporting function of S

From now on we take $S \subseteq \mathbb{R}_{+}^{n}, 0 \in S$, and $S \neq\{0\}$.

We let $\log : \mathbb{C}^{* n} \rightarrow \mathbb{C}$ by $\log z=\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)$, define H_{S} by

$$
H_{S}(z)=(\varphi \circ \log)(z)=\varphi_{S}\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right), \quad z \in \mathbb{C}^{* n},
$$

and extend the definition to the coordinate hyperplanes by

$$
H_{S}(z)=\varlimsup_{\mathbb{C}^{*} \ni \ni w \rightarrow z} H_{S}(w), \quad z \in \mathbb{C}^{n} \backslash \mathbb{C}^{* n}
$$

For the standard simplex we have

$$
H_{\Sigma}(z)=\log ^{+}\|z\|_{\infty}, \quad z \in \mathbb{C}^{n}
$$

Proposition: $H_{s} \in \mathcal{P S H}\left(\mathbb{C}^{n}\right) \cap C\left(\mathbb{C}^{n}\right)$ for every S.

The class $\mathcal{L}^{S}\left(\mathbb{C}^{n}\right)$

consists of all $u \in \mathcal{P S H}\left(\mathbb{C}^{n}\right)$ satisfying a growth estimate

$$
u(z) \leq c_{u}+H_{S}(z), \quad z \in \mathbb{C}^{n}
$$

We have $\mathcal{L}^{\Sigma}\left(\mathbb{C}^{n}\right)=\mathcal{L}\left(\mathbb{C}^{n}\right)$.

The class $\mathcal{L}^{S}\left(\mathbb{C}^{n}\right)$

consists of all $u \in \mathcal{P S H}\left(\mathbb{C}^{n}\right)$ satisfying a growth estimate

$$
u(z) \leq c_{u}+H_{S}(z), \quad z \in \mathbb{C}^{n} .
$$

We have $\mathcal{L}^{\Sigma}\left(\mathbb{C}^{n}\right)=\mathcal{L}\left(\mathbb{C}^{n}\right)$.

Proposition: Let $p \in \mathcal{O}\left(\mathbb{C}^{n}\right)$. Then

$$
p \in \mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right) \Leftrightarrow \log |p|^{1 / m} \in \mathcal{L}^{S}\left(\mathbb{C}^{n}\right) .
$$

The class $\mathcal{L}^{S}\left(\mathbb{C}^{n}\right)$

consists of all $u \in \mathcal{P S H}\left(\mathbb{C}^{n}\right)$ satisfying a growth estimate

$$
u(z) \leq c_{u}+H_{S}(z), \quad z \in \mathbb{C}^{n}
$$

We have $\mathcal{L}^{\Sigma}\left(\mathbb{C}^{n}\right)=\mathcal{L}\left(\mathbb{C}^{n}\right)$.

Proposition: Let $p \in \mathcal{O}\left(\mathbb{C}^{n}\right)$. Then

$$
p \in \mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right) \Leftrightarrow \log |p|^{1 / m} \in \mathcal{L}^{S}\left(\mathbb{C}^{n}\right) .
$$

Proof:
For $\alpha \in \mathbb{N}^{n} \backslash m S$ we find $\langle\alpha, \xi\rangle>m \varphi_{S}(\xi)$

$$
a_{\alpha}=\frac{1}{(2 \pi i)^{n}} \int_{C_{\mathrm{t}}} \frac{p(\zeta)}{\zeta^{\alpha}} \frac{d \zeta_{1} \cdots d \zeta_{n}}{\zeta_{1} \cdots \zeta_{n}} .
$$

where C_{t} is the polycircle with center 0 and polyradius $\left(e^{t \xi_{1}}, \ldots, e^{t \xi_{n}}\right)$.

For $\zeta=\left(e^{t \xi_{\mathbf{1}}+i \theta_{\mathbf{1}}}, \ldots, e^{t \xi_{\boldsymbol{n}}+i \theta_{\boldsymbol{n}}}\right) \in C_{t}$ we have

$$
|p(\zeta)| /\left|\zeta^{\alpha}\right| \leq C e^{-t\left(\langle\alpha, \xi\rangle-m \varphi_{s}(\xi)\right)} \rightarrow 0, \quad t \rightarrow+\infty
$$

A Liouville type theorem

The Liouville theorem tells us that an entire function $p \in \mathcal{O}\left(\mathbb{C}^{n}\right)$, which for some $m \in \mathbb{N}$ and $a \in[0,1[$ satisfies a growth estimate

$$
|p(z)| \leq C(1+|z|)^{a+m}, \quad z \in \mathbb{C}^{n}
$$

is a polynomial of degree $\leq m$, i.e., $p \in \mathcal{P}_{m}\left(\mathbb{C}^{n}\right)$.

A Liouville type theorem

The Liouville theorem tells us that an entire function $p \in \mathcal{O}\left(\mathbb{C}^{n}\right)$, which for some $m \in \mathbb{N}$ and $a \in[0,1[$ satisfies a growth estimate

$$
|p(z)| \leq C(1+|z|)^{a+m}, \quad z \in \mathbb{C}^{n}
$$

is a polynomial of degree $\leq m$, i.e., $p \in \mathcal{P}_{m}\left(\mathbb{C}^{n}\right)$.
The following is a Liouville type theorem for the classes $\mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right)$:
Proposition: Let $p \in \mathcal{O}\left(\mathbb{C}^{n}\right)$ and assume that for some $C>0$ and $a \geq 0$ less than the euclidean distance between $m S$ and $\mathbb{N}^{n} \backslash m S$ we have

$$
|p(z)| \leq C(1+|z|)^{a} e^{m H_{s}(z)}, \quad z \in \mathbb{C}^{n}
$$

Then $p \in \mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right)$.

Proof: Choose ξ such that $s_{\alpha} \in m S$ satisfies

$$
\left|\alpha-s_{\alpha}\right|=d(\alpha, m S)=\left\langle\alpha-s_{\alpha}, \xi\right\rangle=\langle\alpha, \xi\rangle-m \varphi_{s}(\xi)>a
$$

Then

$$
\begin{aligned}
|p(\zeta)| /\left|\zeta^{\alpha}\right| & \leq C\left(1+\left(e^{2 t \xi_{\mathbf{1}}}+\cdots+e^{2 t \xi_{\boldsymbol{n}}}\right)^{1 / 2}\right)^{a} e^{-t\left(\langle\alpha, \xi\rangle-m \varphi_{\boldsymbol{s}}(\xi)\right)} \\
& \leq C(1+\sqrt{n})^{a} e^{-t\left(\langle\alpha, \xi\rangle-m \varphi_{\boldsymbol{s}}(\xi)-a\right)} \rightarrow 0, \quad t \rightarrow+\infty
\end{aligned}
$$

The convexity of φ_{s} implies

$$
H_{s}\left(z_{1} w_{1}, \ldots, z_{n} w_{n}\right) \leq H_{S}(z)+H_{s}(w),
$$

and as a special case when all w_{j} are equal we get

$$
H_{S}\left(\lambda z_{1}, \ldots, \lambda z_{n}\right) \leq H_{S}(z)+H_{S}(\lambda 1)=H_{S}(z)+\varphi_{S}(1) \log ^{+}|\lambda| .
$$

and

$$
H_{S}(z) \leq \varphi_{S}(1) \log ^{+}\|z\|_{\infty}, \quad z \in \mathbb{C}^{n}
$$

Hence $\mathbb{B}_{\infty}=\overline{\mathbb{D}}^{n} \subseteq \mathcal{N}_{S}=\left\{z \in \mathbb{C}^{n} ; H_{S}(z)=0\right\}$.

Admissible weight function and external fields

Definition: Let $E \subseteq \mathbb{C}^{n}$ and $w: E \rightarrow \mathbb{R}_{+}$be a function and set

$$
q=-\log w: E \rightarrow \mathbb{R} \cup\{+\infty\} .
$$

The function w is said to be an admissible weight and q is said to be an admissible external field with respect to S on E if
(i) w is upper semi-continuous ($\Leftrightarrow q$ is lower semi-continuous),
(ii) the set

$$
\{z \in E ; w(z)>0\}=\{z \in E ; q(z)<+\infty\}
$$

is non-pluripolar, and
(iii) if E is unbounded, then

$$
\lim _{\substack{|z| \rightarrow+\infty \\ z \in E}} e^{H_{s}(z)} w(z)=0 \Leftrightarrow \lim _{\substack{|z| \rightarrow+\infty \\ z \in E}}\left(q(z)-H_{S}(z)\right)=+\infty
$$

Some authors call q admissible weight function rather than $w=e^{-q}$.

3. Weighted extremal functions

Siciak functions:

$$
\Phi_{E, q, m}^{S}(z)=\sup \left\{|p(z)|^{1 / m} ; p \in \mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right),\left\|p e^{-m q}\right\|_{E} \leq 1\right\} .
$$

for $z \in \mathbb{C}^{n}, m=1,2,3, \ldots$, and

$$
\Phi_{E, q}^{S}(z)=\overline{\lim }_{m \rightarrow \infty} \Phi_{E, q, m}^{S}(z)
$$

Siciak-Zakharyuta functions:

$$
V_{E, q}^{S}(z)=\sup \left\{u(z) ; u \in \mathcal{L}^{S}\left(\mathbb{C}^{n}\right),\left.u\right|_{E} \leq q\right\}
$$

We obviously have $\log \Phi_{E, q}^{S} \leq V_{E, q}^{S}$

Density of rational points

Recall that $S \subset \mathbb{R}_{+}^{n}, 0 \in S$, and $S \neq\{0\}$
The smallest such S it a line segment. If its endpoints have both rational and irrational coordinates, then $m S$ does not have any integer points except 0 and \mathcal{P}_{m}^{S} only consists of constants.

Proposition: Let $K \subset \mathbb{C}^{n}$ be a compact with $\partial \mathbb{B}_{\infty} \subseteq K$. Then

$$
V_{K}^{S}=H_{S} .
$$

Observe that if $S^{\prime}=\overline{S \cap \mathbb{Q}^{n}}$, then $\mathcal{P}^{S^{\prime}}\left(\mathbb{C}^{n}\right)=\mathcal{P}^{S}\left(\mathbb{C}^{n}\right)$ and $\Phi_{K, q}^{S^{\prime}}=\Phi_{K, q}^{S}$, so if $S^{\prime} \neq S$, the proposition tells us that at some point $z \in \mathbb{C}^{n}$

$$
\Phi_{\mathbb{B}_{\infty}}^{S^{\prime}}(z)=\Phi_{\mathbb{B}_{\infty}}^{S}(z) \leq V_{\mathbb{B}_{\infty}}^{S^{\prime}}(z)<V_{\mathbb{B}_{\infty}}^{S}(z) .
$$

It is neccessary to assume that $S \cap \mathbb{Q}^{n}$ is dense in S in order to have a Siciak-Zakharyuta type theorem.

4. A Siciak-Zakharyuta type theorem

Theorem (BSM, ÁES, RS and BS, 2023):
Let $S \subset \mathbb{R}_{+}^{n}$ be compact and convex with $0 \in S$, let q be an admissible weight on a compact subset K of \mathbb{C}^{n} and assume that $V_{K, q}^{S}$ is continuous. Then

$$
V_{K, q}^{S}=\log \Phi_{K, q}^{S}
$$

if and only if $S \cap \mathbb{Q}^{n}$ is dense in S.

4. A Siciak-Zakharyuta type theorem

Theorem (BSM, ÁES, RS and BS, 2023):
Let $S \subset \mathbb{R}_{+}^{n}$ be compact and convex with $0 \in S$, let q be an admissible weight on a compact subset K of \mathbb{C}^{n} and assume that $V_{K, q}^{S}$ is continuous. Then

$$
V_{K, q}^{S}=\log \Phi_{K, q}^{S}
$$

if and only if $S \cap \mathbb{Q}^{n}$ is dense in S.

A convex compact $S \subseteq \mathbb{R}_{+}^{n}$ is said to be a lower set if for every $s \in S$

$$
C_{s}=\left[0, s_{1}\right] \times \cdots \times\left[0, s_{n}\right] \subseteq S .
$$

Bayraktar, Hussung, Levenberg, and Perera, 2020 proved the theorem for convex bodies that are lower sets.

5. L^{2} estimates and polynomial spaces

Theorem (BSM, ÁES, RS, and BS, 2023):
Let S be a compact convex subset of $\mathbb{R}_{+}^{n}, 0 \in S, m \in \mathbb{N}^{*}$, and $d_{m}=d\left(m S, \mathbb{N}^{n} \backslash m S\right)$ denote the the euclidean distance between the sets $m S$ and $\mathbb{N}^{n} \backslash m S$. Let $f \in \mathcal{O}\left(\mathbb{C}^{n}\right)$, assume that

$$
\int_{\mathbb{C}^{n}}|f|^{2}\left(1+|\zeta|^{2}\right)^{-\gamma} e^{-2 m H_{s}} d \lambda<+\infty
$$

for some $0 \leq \gamma<d_{m}$, and let γ_{0} denote the infinum of such γ. Let

$$
\Gamma=\left\{\xi \in \mathbb{R}^{n} ;\langle 1, \xi\rangle \geq-\left(d_{m}-\gamma_{0}\right)|\xi|\right\},
$$

be the cone consisting of all ξ such that the angle between the vectors $1=(1, \ldots, 1)$ and ξ is $\leq \arccos \left(-\left(d_{m}-\gamma_{0}\right) / \sqrt{n}\right)$ and let

$$
\widehat{S}_{\Gamma}=\left\{x \in \mathbb{R}_{+}^{n} ;\langle x, \xi\rangle \leq \varphi s(\xi), \forall \xi \in \Gamma\right\}
$$

be the hull of S with respect to the cone Γ. Then $f \in \mathcal{P}_{m}^{\widehat{S}_{\Gamma}}\left(\mathbb{C}^{n}\right)$.

$$
\theta_{m}=\arccos \left(-\left(d_{m}-\gamma_{0}\right) / \sqrt{n}\right)
$$

Example showing that the hull is optimal

Fix m. Let $0<a<b<1$ and define $S \subseteq \mathbb{R}_{+}^{2}$ as the quadrangle

$$
S=\operatorname{ch}\{(0,0),(a, 0),(b, 1-b),(0,1)\} .
$$

We show that for $f(z)=z^{\alpha}, \alpha=(k, 0), k=1, \ldots, m-3$, and $\gamma=0$, the L^{2} estimate in the theorem holds, but $f \notin \mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right)$.

6. A weighted Bernstein-Walsh-Siciak theorem

Weighted distances to the polynomial spaces
For every bounded function $f: E \rightarrow \mathbb{C}$ we define the distance of f from $\mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right)$ with respect to the weight q by

$$
d_{E, q, m}^{S}(f)=\inf \left\{\left\|(f-p) e^{-m q}\right\|_{E} ; p \in \mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right)\right\}, \quad m=0,1,2, \ldots .
$$

and we say that f can be approximated by S-polynomials with respect to q on E if

$$
\lim _{m \rightarrow \infty} d_{E, q, m}^{S}(f)=0
$$

Recall that the Runge-Oka-Weil theorem says that if $K=\widehat{K}$ and f is holomorphic in some neighborhood of K, then

$$
\lim _{m \rightarrow \infty} d_{K, m}(f)=0
$$

and that the Bernstein-Walsh-Siciak theorem says that f extends as a holomorphic function to $\left\{z \in \mathbb{C}^{n} ;, V_{K}<\log R\right\}$ if and only if

$$
\varlimsup_{m \rightarrow \infty} d_{K, m}(f)^{1 / m} \leq 1 / R
$$

Pointwise convergence

Although f can be approximated by S-polynomials with respect to q we can not claim that f is a uniform limit of S-polynomials on K.
Assume first that $f: K \rightarrow \mathbb{C}$ is any bounded, K is not necessarily polynomially convex, and $\lim _{m \rightarrow \infty} d_{K, q, m}^{S}(f)=0$. If q is bounded above we can find $p_{m} \in \mathcal{P}_{m}\left(\mathbb{C}^{n}\right)$ with $\left\|\left(f-p_{m}\right) e^{-m q}\right\|_{K}=d_{K, q}^{S}(f)$, which is equivalent to

$$
\left|f(z)-p_{m}(z)\right| \leq d_{E, q, m}^{S}(f) e^{m q(z)}, \quad z \in K
$$

Pointwise convergence

Although f can be approximated by S-polynomials with respect to q we can not claim that f is a uniform limit of S-polynomials on K.
Assume first that $f: K \rightarrow \mathbb{C}$ is any bounded, K is not necessarily polynomially convex, and $\lim _{m \rightarrow \infty} d_{K, q, m}^{S}(f)=0$. If q is bounded above we can find $p_{m} \in \mathcal{P}_{m}\left(\mathbb{C}^{n}\right)$ with $\left\|\left(f-p_{m}\right) e^{-m q}\right\|_{K}=d_{K, q}^{S}(f)$, which is equivalent to

$$
\left|f(z)-p_{m}(z)\right| \leq d_{E, q, m}^{S}(f) e^{m q(z)}, \quad z \in K
$$

which shows that $p_{m} \rightarrow f$ pointwise in

$$
L=\left\{z \in K ; \lim _{m \rightarrow \infty} d_{E, q, m}^{S}(f) e^{m q(z)}=0\right\} .
$$

Pointwise convergence

Although f can be approximated by S-polynomials with respect to q we can not claim that f is a uniform limit of S-polynomials on K.

Assume first that $f: K \rightarrow \mathbb{C}$ is any bounded, K is not necessarily polynomially convex, and $\lim _{m \rightarrow \infty} d_{K, q, m}^{S}(f)=0$. If q is bounded above we can find $p_{m} \in \mathcal{P}_{m}\left(\mathbb{C}^{n}\right)$ with $\left\|\left(f-p_{m}\right) e^{-m q}\right\|_{K}=d_{K, q}^{S}(f)$, which is equivalent to

$$
\left|f(z)-p_{m}(z)\right| \leq d_{E, q, m}^{S}(f) e^{m q(z)}, \quad z \in K
$$

which shows that $p_{m} \rightarrow f$ pointwise in

$$
L=\left\{z \in K ; \lim _{m \rightarrow \infty} d_{E, q, m}^{S}(f) e^{m q(z)}=0\right\} .
$$

If $\sup _{L} q$ is attained at some point in L, then $p_{m} \rightarrow f$ uniformly on L, and if $q \leq 0$ on K, then $p_{m} \rightarrow f$ uniformly on K.

Assume now that $V_{K, q}^{S}$ is continuous and define for $r>\in \mathbb{R}$

$$
\Omega_{r}=\left\{z \in \mathbb{C}^{n} ; V_{K, q}^{S}(z)<\log r\right\}
$$

Assume now that $V_{K, q}^{S}$ is continuous and define for $r>\in \mathbb{R}$

$$
\Omega_{r}=\left\{z \in \mathbb{C}^{n} ; V_{K, q}^{S}(z)<\log r\right\}
$$

Let $R>0, \sup _{K} q<\log R$, and assume that

$$
\overline{\lim }_{m \rightarrow \infty}\left(d_{K, q, m}^{S}(f)\right)^{1 / m} \leq \frac{1}{R} .
$$

Assume now that $V_{K, q}^{S}$ is continuous and define for $r>\in \mathbb{R}$

$$
\Omega_{r}=\left\{z \in \mathbb{C}^{n} ; V_{K, q}^{S}(z)<\log r\right\}
$$

Let $R>0, \sup _{K} q<\log R$, and assume that

$$
\overline{\lim }_{m \rightarrow \infty}\left(d_{K, q, m}^{S}(f)\right)^{1 / m} \leq \frac{1}{R} .
$$

Then for every $0<\gamma<R$ there exists a constant $A_{\gamma}>0$ such that

$$
d_{K, q, m}^{S}(f) \leq\left\|\left(f-p_{m}\right) e^{-m q}\right\|_{K} \leq \frac{A_{\gamma}}{(R-\gamma)^{m}}, \quad m \in \mathbb{N} .
$$

Assume now that $V_{K, q}^{S}$ is continuous and define for $r>\in \mathbb{R}$

$$
\Omega_{r}=\left\{z \in \mathbb{C}^{n} ; V_{K, q}^{S}(z)<\log r\right\} .
$$

Let $R>0, \sup _{K} q<\log R$, and assume that

$$
\overline{\lim }_{m \rightarrow \infty}\left(d_{K, q, m}^{S}(f)\right)^{1 / m} \leq \frac{1}{R} .
$$

Then for every $0<\gamma<R$ there exists a constant $A_{\gamma}>0$ such that

$$
d_{K, q, m}^{S}(f) \leq\left\|\left(f-p_{m}\right) e^{-m q}\right\|_{K} \leq \frac{A_{\gamma}}{(R-\gamma)^{m}}, \quad m \in \mathbb{N} .
$$

For every $j=1,2,3, \ldots$ and every $z \in K$ we have

$$
\begin{aligned}
\left|p_{j}(z)-p_{j-1}(z)\right| & \leq\left|f(z)-p_{j}(z)\right|+\left|f(z)-p_{j-1}(z)\right| \\
& \leq \frac{A_{\gamma} \mathrm{e}^{j q(z)}}{(R-\gamma)^{j}}\left(1+\frac{R-\gamma}{e^{q(z)}}\right) .
\end{aligned}
$$

Since $q \in \mathcal{L S C}(K)$ takes its minimum a at some point in K, we have

$$
\frac{1}{j} \log \left((R-\gamma)^{j}\left|p_{j}(z)-p_{j-1}(z)\right| / B_{\gamma}\right) \leq q(z), \quad z \in K,
$$

where $B_{\gamma}=A_{\gamma}\left(1+(R-\gamma) / e^{a}\right)$, and by the definition of $V_{K, q}^{S}$

Since $q \in \mathcal{L S C}(K)$ takes its minimum a at some point in K, we have

$$
\frac{1}{j} \log \left((R-\gamma)^{j}\left|p_{j}(z)-p_{j-1}(z)\right| / B_{\gamma}\right) \leq q(z), \quad z \in K,
$$

where $B_{\gamma}=A_{\gamma}\left(1+(R-\gamma) / e^{a}\right)$, and by the definition of $V_{K, q}^{S}$ this implies that

$$
\left|p_{j}(z)-p_{j-1}(z)\right| \leq \frac{B_{\gamma} e^{j v_{K, q}^{s}(z)}}{(R-\gamma)^{j}}, \quad z \in \mathbb{C}^{n}
$$

Since $q \in \mathcal{L S C}(K)$ takes its minimum a at some point in K, we have

$$
\frac{1}{j} \log \left((R-\gamma)^{j}\left|p_{j}(z)-p_{j-1}(z)\right| / B_{\gamma}\right) \leq q(z), \quad z \in K
$$

where $B_{\gamma}=A_{\gamma}\left(1+(R-\gamma) / e^{a}\right)$, and by the definition of $V_{K, q}^{S}$ this implies that

$$
\left|p_{j}(z)-p_{j-1}(z)\right| \leq \frac{B_{\gamma} e^{j v_{K, q}^{s}(z)}}{(R-\gamma)^{j}}, \quad z \in \mathbb{C}^{n}
$$

If $0<\varrho<1$, then

$$
\left|p_{j}(z)-p_{j-1}(z)\right| \leq B_{\gamma} \varrho^{j}, \quad z \in \Omega_{\varrho(R-\gamma)},
$$

Since $q \in \mathcal{L S C}(K)$ takes its minimum a at some point in K, we have

$$
\frac{1}{j} \log \left((R-\gamma)^{j}\left|p_{j}(z)-p_{j-1}(z)\right| / B_{\gamma}\right) \leq q(z), \quad z \in K
$$

where $B_{\gamma}=A_{\gamma}\left(1+(R-\gamma) / e^{a}\right)$, and by the definition of $V_{K, q}^{S}$ this implies that

$$
\left|p_{j}(z)-p_{j-1}(z)\right| \leq \frac{B_{\gamma} e^{j V_{K, q}^{s}(z)}}{(R-\gamma)^{j}}, \quad z \in \mathbb{C}^{n}
$$

If $0<\varrho<1$, then

$$
\left|p_{j}(z)-p_{j-1}(z)\right| \leq B_{\gamma} \varrho^{j}, \quad z \in \Omega_{\varrho(R-\gamma)},
$$

and this estimate implies that $p_{m}=\sum_{j=1}^{m}\left(p_{j}-p_{j-1}\right)$ converges locally uniformly on $\Omega_{R-\gamma}$ to a holomorphic function F_{γ}. If $L \neq \varnothing$, then $F_{\gamma}=f$ on L.
We sum up our observations so far in:

Theorem (BSM, ÁES, RS, and BS, 2023):
Assume that $V_{K, q}^{S}$ is continuous, $f: K \rightarrow \mathbb{C}$ is bounded, and

$$
\varlimsup_{m \rightarrow \infty}\left(d_{K, q, m}^{S}(f)\right)^{1 / m} \leq \frac{1}{R}
$$

holds with $R>0$ such that $\sup _{K} q<\log R$, and that

$$
L=\left\{z \in K ; \lim _{m \rightarrow \infty} d_{E, q, m}^{S}(f) e^{m q(z)}=0\right\} \neq \varnothing .
$$

Then for every $0<\gamma<R$ the function $\left.f\right|_{L}$ extends to a holomorphic function $F_{\gamma} \in \mathcal{O}\left(\Omega_{R-\gamma}\right)$. If X is an open component of $\Omega_{R}, L_{X}=L \cap X$ is non-pluripolar, and f is holomorphic in some neighborhood of L_{X}, then $\left.f\right|_{L_{X}}$ extends to a unique holomorphic function on X.

The converse

Theorem (BSM, ÁES, RS, and BS, 2023):
Assume that $V_{K, q}^{S}$ is continuous, $R>0$, $\sup q<\log R$ and

$$
a=\lim _{m \rightarrow \infty}\left(d\left(m S, \mathbb{N}^{n} \backslash m S\right)\right)^{1 / m}>0
$$

If $f \in \mathcal{O}\left(\Omega_{R}\right)$ can be approximated by S-polynomials on K with respect to q, then

$$
\overline{\lim }_{m \rightarrow \infty}\left(d_{K, q, m}^{\widehat{S}_{\Gamma m}}(f)\right)^{1 / m} \leq \frac{1}{a^{1 / 2} R}
$$

where $\widehat{S}_{\Gamma_{m}}$ and Γ is the same as in the previous L^{2}-theorem.

Proposition:
If S is a polytope with rational vertices, then $a=1$

The converse

Theorem (BSM, ÁES, RS, and BS, 2023):
Assume that $V_{K, q}^{S}$ is continuous, $R>0$, $\sup q<\log R$ and

$$
a=\underline{\lim }_{m \rightarrow \infty}\left(d\left(m S, \mathbb{N}^{n} \backslash m S\right)\right)^{1 / m}>0
$$

If $f \in \mathcal{O}\left(\Omega_{R}\right)$ can be approximated by S-polynomials on K with respect to q, then

$$
\overline{\lim }_{m \rightarrow \infty}\left(d_{K, q, m}^{\widehat{\widehat{S}}_{\Gamma_{m}}}(f)\right)^{1 / m} \leq \frac{1}{a^{1 / 2} R}
$$

where $\widehat{S}_{\Gamma_{m}}$ and Γ is the same as in the previous L^{2}-theorem.

Proposition:

If S is a polytope with rational vertices, then $a=1$

The proof is based on construction of entire functions with the aid of Hörmander's existence theorem for the Cauchy-Riemann system with weighted L^{2}-estimates.

Hörmander's L^{2}-estimates

Theorem(Hörmander) Let X be a pseudoconvex domain of \mathbb{C}^{n}, $\varphi \in \mathcal{P S H}(X)$, and define for $a \in \mathbb{R}$,

$$
\varphi_{a}(z)=\varphi(z)+a \log \left(1+|z|^{2}\right), \quad z \in X
$$

Then for every $a>0$ and $f \in L_{(0,1)}^{2}\left(X, \varphi_{a-2}\right)$ satisfying $\bar{\partial} f=0$ there exists a solution $u \in L^{2}\left(X, \varphi_{a}\right)$ of the inhomogeneous Cauchy-Riemann equation $\bar{\partial} u=f$ satisfying the estimate

$$
\begin{aligned}
\|u\|_{\varphi_{\mathbf{a}}}^{2} & =\int_{X}|u|^{2}\left(1+|z|^{2}\right)^{-a} e^{-\varphi} d \lambda \\
& \leq \frac{1}{a} \int_{X}|f|^{2}\left(1+|z|^{2}\right)^{-a+2} e^{-\varphi} d \lambda=\frac{1}{a}\|f\|_{\varphi_{\gamma-2}}^{2}
\end{aligned}
$$

If $f_{j} \in C^{\infty}(X)$ for $j=1, \ldots, n$, then $u \in C^{\infty}(X)$.

From L^{2} estimates to uniform estimates

Let $\bar{B}(z, \delta) \subseteq X$ with $\bar{B}(z, \delta) \cap$ supp $f=\varnothing$, then u is holomorphic in $B(z, \delta)$ and the mean value theorem gives

$$
u(z)=\mathcal{M}_{\delta} u(z)=\frac{1}{c_{n} \delta^{2 n}} \int_{B(z, \delta)} u d \lambda .
$$

By the Cauchy-Schwarz inequality

$$
\begin{aligned}
|u(z)| & \leq \frac{1}{c_{n} \delta^{2 n}} \int_{B(z, \delta)}|u| e^{-\varphi_{\mathbf{a}} / 2} \cdot e^{\varphi_{\mathbf{a}} / 2} d \lambda \\
& \leq \frac{1}{c_{n} \delta^{2 n}}\|u\|_{\varphi_{\mathbf{a}}}\left(\int_{B(z, \delta)} e^{\varphi_{\mathbf{a}}} d \lambda\right)^{1 / 2} \\
& =c_{n}^{-1 / 2} a^{-1 / 2}\|f\|_{\varphi_{\mathbf{a}-2}} \cdot \delta^{-n}\left(\mathcal{M}_{\delta}\left(e^{\varphi_{\mathbf{a}}}\right)(z)\right)^{1 / 2} .
\end{aligned}
$$

For every $v \in \mathcal{P S H}(X)$ we have $\mathcal{M}_{\delta} v(z) \searrow v(z)$ as $\delta \searrow 0$, so the art of applying this estimate is the choice of δ as a function of z.

Proof:

Let $\varepsilon>0$ and $0<\gamma<R$ such that $\sup q<\log (R-\gamma)$ and let $0<\delta<1$ be so small that $K_{\delta}=\left\{z \in \mathbb{C}^{n} ; d(z, K) \leq \delta\right\}$ is contained in $\Omega_{R-\gamma}$ and

$$
\left|V_{K, q}^{S}(w)-V_{K, q}^{S}(z)\right|<\varepsilon, \quad|w-z|<\delta, z \in K
$$

Proof:

Let $\varepsilon>0$ and $0<\gamma<R$ such that $\sup q<\log (R-\gamma)$ and let $0<\delta<1$ be so small that $K_{\delta}=\left\{z \in \mathbb{C}^{n} ; d(z, K) \leq \delta\right\}$ is contained in $\Omega_{R-\gamma}$ and

$$
\left|V_{K, q}^{S}(w)-V_{K, q}^{S}(z)\right|<\varepsilon, \quad|w-z|<\delta, z \in K
$$

Take $\chi \in C^{\infty}\left(\Omega_{R}\right)$, with $0 \leq \chi \leq 1$, and $\chi=1$ in some nbh of $\bar{\Omega}_{R-\gamma}$.

Proof:

Let $\varepsilon>0$ and $0<\gamma<R$ such that $\sup q<\log (R-\gamma)$ and let $0<\delta<1$ be so small that $K_{\delta}=\left\{z \in \mathbb{C}^{n} ; d(z, K) \leq \delta\right\}$ is contained in $\Omega_{R-\gamma}$ and

$$
\left|V_{K, q}^{S}(w)-V_{K, q}^{S}(z)\right|<\varepsilon, \quad|w-z|<\delta, z \in K
$$

Take $\chi \in C^{\infty}\left(\Omega_{R}\right)$, with $0 \leq \chi \leq 1$, and $\chi=1$ in some nbh of $\bar{\Omega}_{R-\gamma}$. Set $\varphi_{m}=2 m V_{K, q}^{S}, a_{m}=\frac{1}{2} d\left(m S, \mathbb{N}^{n} \backslash m S\right)$, and define for $z \in \mathbb{C}^{n}$

$$
\psi_{m}(z)=\varphi_{m}(z)+a_{m} \log \left(1+|z|^{2}\right) \quad \text { and } \quad \eta_{n}(z)=\psi_{m}(z)-2 \log \left(1+|z|^{2}\right)
$$

Proof:

Let $\varepsilon>0$ and $0<\gamma<R$ such that $\sup q<\log (R-\gamma)$ and let $0<\delta<1$ be so small that $K_{\delta}=\left\{z \in \mathbb{C}^{n} ; d(z, K) \leq \delta\right\}$ is contained in $\Omega_{R-\gamma}$ and

$$
\left|V_{K, q}^{S}(w)-V_{K, q}^{S}(z)\right|<\varepsilon, \quad|w-z|<\delta, z \in K .
$$

Take $\chi \in C^{\infty}\left(\Omega_{R}\right)$, with $0 \leq \chi \leq 1$, and $\chi=1$ in some nbh of $\bar{\Omega}_{R-\gamma}$. Set $\varphi_{m}=2 m V_{K, q}^{S}, a_{m}=\frac{1}{2} d\left(m S, \mathbb{N}^{n} \backslash m S\right)$, and define for $z \in \mathbb{C}^{n}$
$\psi_{m}(z)=\varphi_{m}(z)+a_{m} \log \left(1+|z|^{2}\right) \quad$ and $\quad \eta_{n}(z)=\psi_{m}(z)-2 \log \left(1+|z|^{2}\right)$.
We have $\|f \bar{\partial} \chi\|_{\eta_{m}}<+\infty$. By Hörmander there exists a solution $u_{m} \in C^{\infty}\left(\mathbb{C}^{n}\right)$ of $\bar{\partial} u_{m}=f \bar{\partial} \chi$ satisfying

$$
\left\|u_{m}\right\|_{\psi_{\boldsymbol{m}}}^{2}=\int_{\mathbb{C}^{\boldsymbol{n}}}\left|u_{\boldsymbol{m}}\right|^{2}\left(1+|z|^{2}\right)^{-a_{\boldsymbol{m}}} e^{-2 m V_{\kappa, q}^{s}} d \lambda \leq \frac{1}{a_{\boldsymbol{m}}}\|f \bar{\partial} \chi\|_{\eta_{\boldsymbol{m}}}^{2} .
$$

Proof:

Let $\varepsilon>0$ and $0<\gamma<R$ such that $\sup q<\log (R-\gamma)$ and let $0<\delta<1$ be so small that $K_{\delta}=\left\{z \in \mathbb{C}^{n} ; d(z, K) \leq \delta\right\}$ is contained in $\Omega_{R-\gamma}$ and

$$
\left|V_{K, q}^{S}(w)-V_{K, q}^{S}(z)\right|<\varepsilon, \quad|w-z|<\delta, z \in K
$$

Take $\chi \in C^{\infty}\left(\Omega_{R}\right)$, with $0 \leq \chi \leq 1$, and $\chi=1$ in some nbh of $\bar{\Omega}_{R-\gamma}$. Set $\varphi_{m}=2 m V_{K, q}^{S}, a_{m}=\frac{1}{2} d\left(m S, \mathbb{N}^{n} \backslash m S\right)$, and define for $z \in \mathbb{C}^{n}$
$\psi_{m}(z)=\varphi_{m}(z)+a_{m} \log \left(1+|z|^{2}\right) \quad$ and $\quad \eta_{n}(z)=\psi_{m}(z)-2 \log \left(1+|z|^{2}\right)$.
We have $\|f \bar{\partial} \chi\|_{\eta_{m}}<+\infty$. By Hörmander there exists a solution $u_{m} \in C^{\infty}\left(\mathbb{C}^{n}\right)$ of $\bar{\partial} u_{m}=f \bar{\partial} \chi$ satisfying

$$
\left\|u_{m}\right\|_{\psi_{\boldsymbol{m}}}^{2}=\int_{\mathbb{C}^{\boldsymbol{n}}}\left|u_{m}\right|^{2}\left(1+|z|^{2}\right)^{-a_{\boldsymbol{m}}} e^{-2 m V_{\boldsymbol{K}, \boldsymbol{q}}^{s}} d \lambda \leq \frac{1}{a_{m}}\|f \bar{\partial} \chi\|_{\eta_{\boldsymbol{m}}}^{2}
$$

We define $p_{m}=f \chi-u_{m}$. Then the L^{2}-estimate and the previous theorm imply that $p_{m} \in \mathcal{P}_{K, q}^{\widehat{S}_{\Gamma}}\left(\mathbb{C}^{n}\right)$ and that there exists a constant $C_{\gamma}>0$ such that

$$
\left\|\left(f-p_{m}\right) e^{-m q}\right\|_{K} \leq \frac{C_{\gamma} e^{m \varepsilon}}{a_{m}^{1 / 2}(R-\gamma)^{m}}, \quad m=1,2,3, \ldots
$$

Example: of S for which

$$
\begin{gathered}
\lim _{m \rightarrow \infty}\left(d\left(m S, \mathbb{N}^{n} \backslash m S\right)\right)^{1 / m}=1 . \\
S=D_{1}(0,1) \cap D_{1}(1,0) \\
d\left(m S, \mathbb{N}^{n} \backslash m S\right)=\sqrt{1+m^{2}}-m=\frac{1}{\sqrt{1+m^{2}}+m} .
\end{gathered}
$$

Example: of S for which

$$
\lim _{m \rightarrow \infty}\left(d\left(m S, \mathbb{N}^{n} \backslash m S\right)\right)^{1 / m}=0
$$

Take $f \in C^{2}[0,1]$, with $f(0)=0, f^{\prime}(x)>0$, and $\left.\left.f^{\prime \prime}(x)>0, x \in\right] 0,1\right]$.

$$
d\left(m S, \mathbb{N}^{n} \backslash m S\right)=m d\left(S,(1 / m) \mathbb{N}^{n} \backslash S\right) \leq m f(1 / m)
$$

Take $\left.\left.f(x)=e^{-c / x^{2}+c}, x \in\right] 0,1\right]$, and $f(0)=0$, where $c>\frac{3}{2}$.

Thank you for your attention!

Congratulations Anders!

