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1. Background
We let Pm(Cn) denote the space of polynomials of degree ≤ m in n

complex variables and let

dK ,m(f ) = inf{‖f − p‖K ; p ∈ Pm(Cn)}

denote the smallest error in an approximation of f by polynomials of
degree ≤ m, i.e., the distance from f to Pm(Cn) in the supremum norm
‖ · ‖K on C(K ).

Theorem (Bernstein 1912) Let f : [−1, 1]→ C and R > 1. Then

lim
m→∞

(
d[−1,1],m(f )

)1/m ≤ 1
R

if and only if f has a holomorphic extension to the domain bounded by
the ellipse with focii −1 and 1 and semi-major axis R.
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Theorem (Bernstein-Walsh ∼1925) Let K ⊂ C be compact, f a
holomorphic function in some neighborhood of K , and assume that C \K
is connected and a regular domain for the Dirichlet problem for harmonic
functions with logarithmic growth at ∞,

Then for a given real number R ≥ 1 the inequality

lim
m→∞

(
dK ,m(f )

)1/m ≤ 1
R

holds if and only if f has a holomorphic extension to

ΩR = {z ∈ C ; gK (z ,∞) < logR},

where gK (·,∞) is the Green function of K with logaritmic pole at
in�nity, which is the unique function on C, which is 0 on K , harmonic on
C \ K , and has logarithmic growth at ∞.



Theorem (Bernstein-Walsh ∼1925) Let K ⊂ C be compact, f a
holomorphic function in some neighborhood of K , and assume that C \K
is connected and a regular domain for the Dirichlet problem for harmonic
functions with logarithmic growth at ∞,

Then for a given real number R ≥ 1 the inequality

lim
m→∞

(
dK ,m(f )

)1/m ≤ 1
R

holds if and only if f has a holomorphic extension to

ΩR = {z ∈ C ; gK (z ,∞) < logR},

where gK (·,∞) is the Green function of K with logaritmic pole at
in�nity, which is the unique function on C, which is 0 on K , harmonic on
C \ K , and has logarithmic growth at ∞.



For the closed unit disc D we have

gD(z) = log+(|z |), z ∈ C,

and R is the radius of convergence of the power series of the given
function at the origin.

We have an explicit formula for the Green function for K = [−1, 1],

gK (z ,∞) = log |z + (z2 − 1)1/2|, z ∈ C \ [−1, 1],

where the branch of the square root is chosen such that for t > 1 the
value t + (t2 − 1)1/2 > 0.
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A review of some results from approximation theory

I Weierstrass (1885): Every complex valued continuous function on
a compact interval [a, b] can be approximated uniformly on [a, b] by
polynomials.

I Runge (1885): If K is a compact subset of C and A is a subset of
C \ K with at least one point in each bounded component of C \ K ,
then every holomorphic function f de�ned on some open
neighborhood X of K can be approximated uniformly on K by
rational functions with poles in A.

I Mergelyan (1951): The Runge theorem holds for C \ K connected
even if it is only assume that the given function is continuous on K

and holomorphic in the interior of K .
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Generalizations to higher dimensions
I Stone-Weierstrass (1937): A major result in functional analysis

which generalizes the Weierstrass theorem.

I Runge-Oka-Weil (1935-6): Recall that a compact subset K of Cn

is said to be polynomially convex if K = K̂ , where the polynomial
hull of K is de�ned by

K̂ = {z ∈ Cn ; |p(z)| ≤ sup
K

|p|,∀p ∈ P(Cn)},

and that for n = 1 the compact set K is polynomially convex if and
only if C \ K is connected.
The Runge-Oka-Weil theorem states that every holomorphic
function on some neighborhood of a polynomially convex set in Cn

can be approximated uniformly on K by polynomials.
I Mergelyan: There is no generalization to higher dimensions.

It is not clear what would be the correct statement, because we have
to take into account the complex structure in ∂K .

Only fragmentary results are known for special classes of compacts
K , e.g., products of compact sets, convex domains, closure of a
strictly pseudoconvex domain.
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Siciak's extremal functions

ΦK ,m = sup{|p|1/m ; p ∈ Pm(Cn), ‖p‖K ≤ 1} ΦK = lim
m→∞

ΦK ,m,

The Fekete lemma implies

ΦK = lim
m→∞

ΦK ,m = sup
m∈N

ΦK ,m,

Theorem (Bernstein-Walsh-Siciak 1961)
Let K be polynomially convex, f ∈ O(K ), R ≥ 1, and assume that ΦK is
continuous. Then

lim
m→∞

(
dK ,m(f )

)1/m
=

1
R
.

if and only if f has a holomorphic extension to the open set

ΩR = {z ∈ Cn ; log ΦK (z) < logR}.
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Siciak-Zakharyuta theorem

We have

log |p(z)|1/m ≤ cp + log+ ‖z‖, z ∈ Cn, p ∈ Pm(Cn).

We let L(Cn) denote the class of all u ∈ PSH(Cn) satisfying

u(z) ≤ cu + log+ ‖z‖∞, z ∈ Cn,

and set
VK = sup{u ; u ∈ L(Cn), u|K ≤ 0}

then we have log ΦK ≤ VK

Theorem (Siciak-Zakharyuta) For every compact K we have

log ΦK = VK

.



2. Graded polynomial spaces PS
m(Cn)

Let S be a compact convex subset of Rn
+ with 0 ∈ S and S 6= {0}.

S-polynomial spaces:
For every m ∈ N we associate to S the space PS

m(Cn) of all polynomials
in n complex variables of the form

p(z) =
∑

α∈(mS)∩Nn
aαz

α, z ∈ Cn,

with the standard multi-index notation and let PS(Cn) = ∪∞m=0
PS
m(Cn).

PS(Cn) is a graded ring:

PS
j (Cn)PS

k (Cn) ⊆ PS
j+k(Cn)

The standard simplex:
Observe that for Σ = {x ∈ Rn

+ ;
∑n

j=1
xj ≤ 1} we have

PΣ
m(Cn) = Pm(Cn).
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The supporting function of S

For every compact subset S of Rn we de�ne the supporting function

ϕS(ξ) = sup
x∈S
〈x , ξ〉 = max

x∈ext S
〈x , ξ〉, ξ ∈ Rn.

There is a bijective correspondence between compact convex subsets of
Rn and 1-positively homogeneous convex functions ϕ on Rn

ϕ = ϕS ⇔ S = {x ∈ Rn ; 〈x , ξ〉 ≤ ϕ(ξ), ∀ξ ∈ Rn}.

For every S ⊂ Rn
+ and cone Γ ⊆ Rn we de�ne the Γ-hull of S by

ŜΓ = {x ∈ Rn
+ ; 〈x , ξ〉 ≤ ϕ(ξ), ∀ξ ∈ Γ}.

The standard simplex is Σ = ch{0, e1, . . . , en}, so

ϕΣ(ξ) = max{ξ+
1
, . . . , ξ+

n } = ‖ξ+‖∞,

where ξ+
j = max{ξj , 0} and ξ+ = (ξ+

1
, . . . , ξ+

n ).
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The logarithmic supporting function of S

From now on we take S ⊆ Rn
+, 0 ∈ S , and S 6= {0}.

We let Log : C∗n → C by Log z = (log |z1|, . . . , log |zn|), de�ne HS by

HS(z) = (ϕ ◦ Log)(z) = ϕS(log |z1|, . . . , log |zn|), z ∈ C∗n,

and extend the de�nition to the coordinate hyperplanes by

HS(z) = lim
C∗n3w→z

HS(w), z ∈ Cn \ C∗n.

For the standard simplex we have

HΣ(z) = log+ ‖z‖∞, z ∈ Cn.

Proposition: HS ∈ PSH(Cn) ∩ C (Cn) for every S .
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The class LS(Cn)

consists of all u ∈ PSH(Cn) satisfying a growth estimate

u(z) ≤ cu + HS(z), z ∈ Cn.

We have LΣ(Cn) = L(Cn).

Proposition: Let p ∈ O(Cn). Then

p ∈ PS
m(Cn)⇔ log |p|1/m ∈ LS(Cn).

Proof:

For α ∈ Nn \mS we �nd 〈α, ξ〉 > mϕS(ξ)

aα =
1

(2πi)n

∫
Ct

p(ζ)

ζα
dζ1 · · · dζn
ζ1 · · · ζn

.

where Ct is the polycircle with center 0 and polyradius (etξ1 , . . . , etξn ).
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For ζ = (etξ1+iθ1 , . . . , etξn+iθn ) ∈ Ct we have

|p(ζ)|/|ζα| ≤ Ce−t(〈α,ξ〉−mϕS (ξ)) → 0, t → +∞.



A Liouville type theorem

The Liouville theorem tells us that an entire function p ∈ O(Cn), which
for some m ∈ N and a ∈ [0, 1[ satis�es a growth estimate

|p(z)| ≤ C (1 + |z |)a+m, z ∈ Cn

is a polynomial of degree ≤ m, i.e., p ∈ Pm(Cn).

The following is a Liouville type theorem for the classes PS
m(Cn):

Proposition: Let p ∈ O(Cn) and assume that for some C > 0 and
a ≥ 0 less than the euclidean distance between mS and Nn \mS we have

|p(z)| ≤ C (1 + |z |)aemHS (z), z ∈ Cn.

Then p ∈ PS
m(Cn).
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Proof: Choose ξ such that sα ∈ mS satis�es

|α− sα| = d(α,mS) = 〈α− sα, ξ〉 = 〈α, ξ〉 −mϕS(ξ) > a.

Then

|p(ζ)|/|ζα| ≤ C
(
1 + (e2tξ1 + · · ·+ e2tξn )1/2

)a
e−t(〈α,ξ〉−mϕS (ξ))

≤ C (1 +
√
n)ae−t(〈α,ξ〉−mϕS (ξ)−a) → 0, t → +∞,



The convexity of ϕS implies

HS(z1w1, . . . , znwn) ≤ HS(z) + HS(w),

and as a special case when all wj are equal we get

HS(λz1, . . . , λzn) ≤ HS(z) + HS(λ1) = HS(z) + ϕS(1) log+ |λ|.

and
HS(z) ≤ ϕS(1) log+ ‖z‖∞, z ∈ Cn.

Hence B∞ = Dn ⊆ NS = {z ∈ Cn ; HS(z) = 0}.



Admissible weight function and external �elds

De�nition: Let E ⊆ Cn and w : E → R+ be a function and set

q = − logw : E → R ∪ {+∞}.

The function w is said to be an admissible weight and q is said to be an
admissible external �eld with respect to S on E if

(i) w is upper semi-continuous ( ⇔ q is lower semi-continuous),

(ii) the set
{z ∈ E ; w(z) > 0} = {z ∈ E ; q(z) < +∞}

is non-pluripolar, and

(iii) if E is unbounded, then

lim
|z|→+∞
z∈E

eHS (z)w(z) = 0 ⇔ lim
|z|→+∞
z∈E

(
q(z)− HS(z)

)
= +∞.

Some authors call q admissible weight function rather than w = e−q.



3. Weighted extremal functions

Siciak functions:

ΦS
E ,q,m(z) = sup{|p(z)|1/m ; p ∈ PS

m(Cn), ‖pe−mq‖E ≤ 1}.

for z ∈ Cn, m = 1, 2, 3, . . . , and

ΦS
E ,q(z) = lim

m→∞
ΦS
E ,q,m(z)

Siciak-Zakharyuta functions:

V S
E ,q(z) = sup{u(z) ; u ∈ LS(Cn), u|E ≤ q}.

We obviously have log ΦS
E ,q ≤ V S

E ,q



Density of rational points

Recall that S ⊂ Rn
+, 0 ∈ S , and S 6= {0}

The smallest such S it a line segment. If its endpoints have both rational
and irrational coordinates, then mS does not have any integer points
except 0 and PS

m only consists of constants.

Proposition: Let K ⊂ Cn be a compact with ∂B∞ ⊆ K . Then

V S
K = HS .

Observe that if S ′ = S ∩Qn, then PS′(Cn) = PS(Cn) and ΦS′

K ,q = ΦS
K ,q,

so if S ′ 6= S , the proposition tells us that at some point z ∈ Cn

ΦS′

B∞(z) = ΦS
B∞(z) ≤ V S′

B∞(z) < V S
B∞(z).

It is neccessary to assume that S ∩Qn is dense in S in order to have a
Siciak-Zakharyuta type theorem.



4. A Siciak-Zakharyuta type theorem

Theorem (BSM, ÁES, RS and BS, 2023):
Let S ⊂ Rn

+ be compact and convex with 0 ∈ S , let q be an admissible
weight on a compact subset K of Cn and assume that V S

K ,q is
continuous. Then

V S
K ,q = log ΦS

K ,q

if and only if S ∩Qn is dense in S .

A convex compact S ⊆ Rn
+ is said to be a lower set if for every s ∈ S

Cs = [0, s1]× · · · × [0, sn] ⊆ S .

Bayraktar, Hussung, Levenberg, and Perera, 2020 proved the theorem
for convex bodies that are lower sets.
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5. L
2 estimates and polynomial spaces

Theorem (BSM, ÁES, RS, and BS, 2023):
Let S be a compact convex subset of Rn

+, 0 ∈ S , m ∈ N∗, and
dm = d(mS ,Nn \mS) denote the the euclidean distance between the
sets mS and Nn \mS . Let f ∈ O(Cn), assume that∫

Cn
|f |2(1 + |ζ|2)−γe−2mHS dλ < +∞

for some 0 ≤ γ < dm, and let γ0 denote the in�num of such γ. Let

Γ = {ξ ∈ Rn ; 〈1, ξ〉 ≥ −(dm − γ0)|ξ|},

be the cone consisting of all ξ such that the angle between the vectors
1 = (1, . . . , 1) and ξ is ≤ arccos(−(dm − γ0)/

√
n) and let

ŜΓ = {x ∈ Rn
+ ; 〈x , ξ〉 ≤ ϕS(ξ),∀ξ ∈ Γ}

be the hull of S with respect to the cone Γ. Then f ∈ P ŜΓ
m (Cn).



s1 + · · ·+ sn = 0

(1, . . . , 1)

Γ

θm

θm = arccos(−(dm − γ0)/
√
n)



Example showing that the hull is optimal

Fix m. Let 0 < a < b < 1 and de�ne S ⊆ R2

+ as the quadrangle

S = ch{(0, 0), (a, 0), (b, 1− b), (0, 1)}.

We show that for f (z) = zα, α = (k, 0), k = 1, . . . ,m − 3, and γ = 0,
the L2 estimate in the theorem holds, but f 6∈ PS

m(Cn).

mS

(0,m)

(ma, 0)

(m−1, 0) (m, 0)

(0, 1)

(1, 0)

(mb,m(1−b))

N
mS

(0,0)

N
mS

(0,m)

NmS
(mb,m(1−b))

N
mS

(ma,0)



6. A weighted Bernstein-Walsh-Siciak theorem

Weighted distances to the polynomial spaces
For every bounded function f : E → C we de�ne the distance of f from

PS
m(Cn) with respect to the weight q by

dSE ,q,m(f ) = inf{‖(f − p)e−mq‖E ; p ∈ PS
m(Cn)}, m = 0, 1, 2, . . . .

and we say that f can be approximated by S-polynomials with respect to

q on E if
lim

m→∞
dSE ,q,m(f ) = 0.



Recall that the Runge-Oka-Weil theorem says that if K = K̂ and f is
holomorphic in some neighborhood of K , then

lim
m→∞

dK ,m(f ) = 0,

and that the Bernstein-Walsh-Siciak theorem says that f extends as a
holomorphic function to {z ∈ Cn ; ,VK < logR} if and only if

lim
m→∞

dK ,m(f )1/m ≤ 1/R.



Pointwise convergence

Although f can be approximated by S-polynomials with respect to q we
can not claim that f is a uniform limit of S-polynomials on K .

Assume �rst that f : K → C is any bounded, K is not necessarily
polynomially convex, and lim

m→∞
dSK ,q,m(f ) = 0. If q is bounded above we

can �nd pm ∈ Pm(Cn) with ‖(f − pm)e−mq‖K = dSK ,q(f ), which is
equivalent to

|f (z)− pm(z)| ≤ dSE ,q,m(f )emq(z), z ∈ K ,

which shows that pm → f pointwise in

L = {z ∈ K ; lim
m→∞

dSE ,q,m(f )emq(z) = 0}.

If supL q is attained at some point in L, then pm → f uniformly on L, and
if q ≤ 0 on K , then pm → f uniformly on K .
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Assume now that V S
K ,q is continuous and de�ne for r >∈ R

Ωr = {z ∈ Cn ; V S
K ,q(z) < log r}.

Let R > 0, supK q < logR, and assume that

lim
m→∞

(
dSK ,q,m(f )

)1/m ≤ 1
R
.

Then for every 0 < γ < R there exists a constant Aγ > 0 such that

dSK ,q,m(f ) ≤ ‖(f − pm)e−mq‖K ≤
Aγ

(R − γ)m
, m ∈ N.

For every j = 1, 2, 3, . . . and every z ∈ K we have

|pj(z)− pj−1(z)| ≤ |f (z)− pj(z)|+ |f (z)− pj−1(z)|

≤ Aγe
jq(z)

(R − γ)j

(
1 +

R − γ
eq(z)

)
.
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Since q ∈ LSC(K ) takes its minimum a at some point in K , we have

1
j

log
(
(R − γ)j |pj(z)− pj−1(z)|/Bγ

)
≤ q(z), z ∈ K ,

where Bγ = Aγ(1 + (R − γ)/ea), and by the de�nition of V S
K ,q

this
implies that

∣∣pj(z)− pj−1(z)
∣∣ ≤ Bγe

jV S
K,q(z)

(R − γ)j
, z ∈ Cn.

If 0 < % < 1, then

|pj(z)− pj−1(z)| ≤ Bγ%
j , z ∈ Ω%(R−γ),

and this estimate implies that pm =
∑m

j=1
(pj − pj−1) converges locally

uniformly on ΩR−γ to a holomorphic function Fγ . If L 6= ∅, then Fγ = f

on L.

We sum up our observations so far in:
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Theorem (BSM, ÁES, RS, and BS, 2023):
Assume that V S

K ,q is continuous, f : K → C is bounded, and

lim
m→∞

(
dSK ,q,m(f )

)1/m ≤ 1
R
.

holds with R > 0 such that supK q < logR, and that

L = {z ∈ K ; lim
m→∞

dSE ,q,m(f )emq(z) = 0} 6= ∅.

Then for every 0 < γ < R the function f |L extends to a holomorphic
function Fγ ∈ O(ΩR−γ). If X is an open component of ΩR , LX = L ∩ X

is non-pluripolar, and f is holomorphic in some neighborhood of LX , then
f |LX extends to a unique holomorphic function on X .



The converse

Theorem (BSM, ÁES, RS, and BS, 2023):
Assume that V S

K ,q is continuous, R > 0, sup q < logR and

a = lim
m→∞

(
d(mS ,Nn \mS)

)1/m
> 0,

If f ∈ O(ΩR) can be approximated by S-polynomials on K with respect

to q, then

lim
m→∞

(
d
ŜΓm

K ,q,m(f )
)1/m ≤ 1

a1/2R
,

where ŜΓm and Γ is the same as in the previous L2-theorem.

Proposition:
If S is a polytope with rational vertices, then a = 1

The proof is based on construction of entire functions with the aid of
Hörmander's existence theorem for the Cauchy-Riemann system with
weighted L2-estimates.
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weighted L2-estimates.



Hörmander's L
2-estimates

Theorem(Hörmander) Let X be a pseudoconvex domain of Cn,
ϕ ∈ PSH(X ), and de�ne for a ∈ R,

ϕa(z) = ϕ(z) + a log(1 + |z |2), z ∈ X .

Then for every a > 0 and f ∈ L2(0,1)(X , ϕa−2) satisfying ∂̄f = 0 there

exists a solution u ∈ L2(X , ϕa) of the inhomogeneous Cauchy-Riemann
equation ∂̄u = f satisfying the estimate

‖u‖2ϕa =

∫
X

|u|2(1 + |z |2)−ae−ϕ dλ

≤ 1
a

∫
X

|f |2(1 + |z |2)−a+2e−ϕ dλ =
1
a
‖f ‖2ϕγ−2 .

If fj ∈ C∞(X ) for j = 1, . . . , n, then u ∈ C∞(X ).



From L
2 estimates to uniform estimates

Let B̄(z , δ) ⊆ X with B̄(z , δ) ∩ supp f = ∅, then u is holomorphic in
B(z , δ) and the mean value theorem gives

u(z) =Mδu(z) =
1

cnδ2n

∫
B(z,δ)

u dλ.

By the Cauchy-Schwarz inequality

|u(z)| ≤ 1
cnδ2n

∫
B(z,δ)

|u|e−ϕa/2 · eϕa/2 dλ

≤ 1
cnδ2n

‖u‖ϕa
(∫

B(z,δ)

eϕa dλ

)1/2

= c−1/2n a−1/2‖f ‖ϕa−2 · δ−n
(
Mδ(eϕa)(z)

)1/2
.

For every v ∈ PSH(X ) we haveMδv(z)↘ v(z) as δ ↘ 0, so the art of
applying this estimate is the choice of δ as a function of z .



Proof:
Let ε > 0 and 0 < γ < R such that sup q < log(R − γ) and let 0 < δ < 1
be so small that Kδ = {z ∈ Cn ; d(z ,K ) ≤ δ} is contained in ΩR−γ and

|V S
K ,q(w)− V S

K ,q(z)| < ε, |w − z | < δ, z ∈ K .

Take χ ∈ C∞(ΩR), with 0 ≤ χ ≤ 1, and χ = 1 in some nbh of ΩR−γ .
Set ϕm = 2mV S

K ,q, am = 1

2
d(mS ,Nn \mS), and de�ne for z ∈ Cn

ψm(z) = ϕm(z)+am log(1+|z |2) and ηn(z) = ψm(z)−2 log(1+|z |2).

We have ‖f ∂̄χ‖ηm < +∞. By Hörmander there exists a solution
um ∈ C∞(Cn) of ∂̄um = f ∂̄χ satisfying

‖um‖2ψm =

∫
Cn
|um|2(1 + |z |2)−ame−2mV S

K,q dλ ≤ 1
am
‖f ∂̄χ‖2ηm .

We de�ne pm = f χ− um. Then the L2-estimate and the previous theorm

imply that pm ∈ P ŜΓ

K ,q(Cn) and that there exists a constant Cγ > 0 such
that

‖(f − pm)e−mq‖K ≤
Cγe

mε

a
1/2
m (R − γ)m

, m = 1, 2, 3, . . . .



Proof:
Let ε > 0 and 0 < γ < R such that sup q < log(R − γ) and let 0 < δ < 1
be so small that Kδ = {z ∈ Cn ; d(z ,K ) ≤ δ} is contained in ΩR−γ and

|V S
K ,q(w)− V S

K ,q(z)| < ε, |w − z | < δ, z ∈ K .

Take χ ∈ C∞(ΩR), with 0 ≤ χ ≤ 1, and χ = 1 in some nbh of ΩR−γ .

Set ϕm = 2mV S
K ,q, am = 1

2
d(mS ,Nn \mS), and de�ne for z ∈ Cn

ψm(z) = ϕm(z)+am log(1+|z |2) and ηn(z) = ψm(z)−2 log(1+|z |2).

We have ‖f ∂̄χ‖ηm < +∞. By Hörmander there exists a solution
um ∈ C∞(Cn) of ∂̄um = f ∂̄χ satisfying

‖um‖2ψm =

∫
Cn
|um|2(1 + |z |2)−ame−2mV S

K,q dλ ≤ 1
am
‖f ∂̄χ‖2ηm .

We de�ne pm = f χ− um. Then the L2-estimate and the previous theorm

imply that pm ∈ P ŜΓ
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‖um‖2ψm =

∫
Cn
|um|2(1 + |z |2)−ame−2mV S

K,q dλ ≤ 1
am
‖f ∂̄χ‖2ηm .

We de�ne pm = f χ− um. Then the L2-estimate and the previous theorm

imply that pm ∈ P ŜΓ

K ,q(Cn) and that there exists a constant Cγ > 0 such
that

‖(f − pm)e−mq‖K ≤
Cγe

mε

a
1/2
m (R − γ)m

, m = 1, 2, 3, . . . .



Example: of S for which

lim
m→∞

(
d(mS ,Nn \mS)

)1/m
= 1.

S

S = D1(0, 1) ∩ D1(1, 0)

d(mS ,Nn \mS) =
√
1 + m2 −m =

1√
1 + m2 + m

.



Example: of S for which

lim
m→∞

(
d(mS ,Nn \mS)

)1/m
= 0.

Take f ∈ C 2[0, 1], with f (0) = 0, f ′(x) > 0, and f ′′(x) > 0, x ∈]0, 1].

S

γ

(γ, f (γ))

α

(α, f (α))

d(mS ,Nn \mS) = md(S , (1/m)Nn \ S) ≤ mf (1/m)

Take f (x) = e−c/x
2+c , x ∈]0, 1], and f (0) = 0, where c > 3

2
.



Thank you for your attention!

Congratulations Anders!


