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HECKE FIELDS OF ANALYTIC FAMILIES

OF MODULAR FORMS

HARUZO HIDA

Fix a prime p, and put p = 4 if p = 2 and p = p otherwise. For a Hecke
eigenform f ∈ Sk(Γ0(Nprp), ψ) (p � N, r ≥ 0) and a subfield K of C, the Hecke
field K(f) inside C is generated over K by the eigenvalues an = a(n, f) of f for the
Hecke operators T (n) for all n. Then Q(f) is a finite extension of Q sitting inside
the algebraic closure Q in C. Let Γ = 1 + pZp, which is a maximal torsion-free
subgroup of Z×

p . We choose and fix a generator γ := (1 + p) ∈ Γ so that Γ = γZp

and identify the Iwasawa algebra Λ = W [[Γ]] with the power series ring W [[x]] by
Γ � γ �→ (1+x) (for a discrete valuation ring W finite flat over Zp). A p-adic slope
0 analytic family of eigenforms F = {fP |P ∈ Spec(I)(Cp)} is indexed by points
of Spec(I)(Cp), where Spec(I) is a finite flat irreducible covering of Spec(Λ). For
each P ∈ Spec(I), fP is a p-adic modular form of slope 0 of level Np∞ for a fixed
prime to p-level N . The family is called analytic because P �→ a(n, fP ) is a p-adic
analytic function on Spec(I). We call P arithmetic of weight k = k(P ) ∈ Z with
character εP : Γ → μp∞(Cp) if P contains (1 + x − εP (γ)γ

k) ∈ Λ and k(P ) ≥ 2.
If P is arithmetic, fP is known to be a p-stabilized classical Hecke eigenform and
has Neben character ψP whose restriction to Γ is given by εP . We write pr(P )

for the order of εP (then, the classical form fP has level Npr(P )p). In order to
make the introduction succinct, we put off, to Section 1, recalling the theory of
analytic families of eigenforms including the definition and necessary properties of
CM families. We define the following Hecke fields out of F :

(V) For a fixed level Nprp (0 ≤ r ≤ ∞), QV,r(F) is the composite of Q(fP )

for all arithmetic P ∈ Spec(I)(Qp) with k(P ) ≥ 2 and εP factoring through

Γ/Γpr

.
(H) For a fixed weight k ≥ 2, QH,k(F) is the composite of Q(fP ) for all arith-

metic P ∈ Spec(I)(Qp) with k(P ) = k.

Here the composite is taken in the algebraic closure Q inside C. If r = 0, periodically
in k(P ), fP is old at p associated to a unique new form f◦

P of level N prime to p;
so, putting F◦ = {f◦

P } for such arithmetic P s, we can also define QV (F◦) as the
composite of Q(f◦

P ). Abusing the notation, we put QV,−1(F) := QV (F◦).
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Once L. Clozel asked me if (or when) the Hecke field QV,r(F) for a finite r
is a finite extension of Q. At the time, for a lack of examples, my answer was
“probably” that it is finite if and only if the family contains a CM theta series (i.e.,
a binary theta series) of weight k(P ) ≥ 2. If the family contains a binary theta
series of weight k ≥ 2 of an imaginary quadratic field M , all forms have CM by the
same (fixed) imaginary quadratic field M , and hence QV,r(F) (r < ∞) is contained
in a finite extension of the imaginary quadratic field M (see Corollary 4.2). The
following conjecture is anybody’s guess (and perhaps Clozel must have had the
same thought):

Conjecture. The following three assertions are equivalent:

(1) The field QV,r(F) (r < ∞) is a finite extension of Q.
(2) The family F contains a theta series of weight k ≥ 2 of an imaginary

quadratic field M .
(3) The family F is made up of theta series of a fixed imaginary quadratic field

M .

As already mentioned, the assertions (2) and (3) are equivalent; so, hereafter, we
only state (2), which implies (3). We tentatively recall that F has CM (complex
multiplication) by M if the above (2) is satisfied (see (CM1–3) in Section 1 for
a precise definition of CM families). When N = 1 and r = −1, Maeda made a
conjecture predicting that d(P ) = [Q(f◦

P );Q] = dimC Sk(P )(SL2(Z)) and the Galois
group of the Galois closure of Q(f◦

P )/Q is isomorphic to the symmetric group of d(P )
letters (see [HM, Conjecture 1.2]; see also Corollary 6.3 and Conjecture 8.1 in the
text). Since there is no CM family of prime-to-p level N = 1, his conjecture implies
our conjecture if N = 1.

Write AP for the abelian variety (defined over Q) associated to fP at an arith-
metic point P ∈ Spec(I) with k(P ) = 2 and r(P ) ≤ r (defined by Shimura [IAT,
Theorem 7.14]). Our result towards the conjecture is as follows.

Vertical Theorem. Suppose p > 2 and that we have an arithmetic point P ∈
Spec(I) of weight k(P ) = 2 with r(P ) ≤ r such that AP has good ordinary reduction
over Zp[μpr+1 ]. Then the field QV,r(F) for a bounded p-power level Npr+1 (r ≥ 0)
is a finite extension of Q if and only if F contains a theta series of weight k ≥ 2
of an imaginary quadratic field.

The abelian variety AP has good ordinary reduction at p if one of the following
three conditions is satisfied (see Corollary 2.2 in the text and [GME, Section 4.2]):

• AP is an elliptic curve with good reduction at p,
• AP has good reduction at p and Q(fP )/Q is unramified at p,
• AP has good reduction at p and a(p, fP ) generates the integral closure of
Zp in Q(fP )⊗Z Zp.

The main point of the assumption is the “ordinarity” (not really the good reduc-
tion), and we analyze closely the case where AP has multiplicative reduction at p
in Corollary 7.3. By the above facts, for any family F giving a non-CM elliptic
curve of ordinary good reduction at p, QV,r(F) is an infinite extension. In the
text, we prove a stronger version of the theorem (Theorem 3.2) telling us that any
non-CM family F having an arithmetic P associated to an “ordinary” motive po-
tentially crystalline (at p) has infinite QV,r(F); so, if Q(f◦

P ) = Q with k(P ) > 2,
QV,r(F) has infinite degree over Q. In particular, for the p-adic family FΔ contain-
ing Ramanujan’s Δ-function, we have [QV,r(FΔ) : Q] = ∞ (though we do not know
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if FΔ always has a weight 2 point P with AP having ordinary good reduction).
For a non-CM family F , we conjecture that lim supP,fP∈F [Q(fP ) : Q] = ∞ for P
running over arithmetic points P of bounded level (Conjecture 8.1). If we do not
bound the level exponent r(P ), lim supP,fP∈F [K(fP ) : K] = ∞ for K = Q(μp∞) as
in the following theorem (see also Corollary 6.3).

There is a horizontal version. We have T (l)2−T (l2) = l·T (l, l) for primes l outside
the level (for the central action T (l, l) in [IAT, Theorem 3.24]), and fP |T (l, l) =
εP (l)l

k−2fP if l ∈ Γ. Thus QH,k(F) contains Q(μp∞). Again, if the family contains
a CM theta series of weight k ≥ 2 of a quadratic field M , all forms have CM by
the same imaginary quadratic field M , and hence QH,k(F) (k ≥ 2) is contained
in a finite extension of M(μp∞) (Corollary 4.2). The horizontal theorem is more
complete as it does not require the existence of P with ordinary AP .

Horizontal Theorem. Suppose p > 2. The Hecke field QH,k(F) for a fixed weight
k ≥ 2 is a finite extension of K := Q(μp∞) if and only if F contains a theta series
of weight k ≥ 2 of an imaginary quadratic field. Moreover, for a non-CM family
F , we have lim supP,fP∈F [K(fP ) : K] = ∞ for P running over infinitely many
arithmetic points P of fixed weight (i.e., k(P ) = k ≥ 2).

In this paper, we study these assertions and their variants. We will prove a
stronger version of the horizontal theorem (Theorem 3.3) which implies not only
the horizontal theorem but also the vertical theorem. The proof of the above
theorems is based on the elementary finiteness of Weil l-numbers of given weight in
Q[μp∞ ] up to multiplication by roots of unity and on a simple analysis of the prime
factorization of Weil numbers in Hecke fields. The same finiteness of Weil l-numbers
of given weight (up to roots of unity) in the maximal abelian extension of Q is a
nontrivial fact (a conjecture of Robinson proven by Loxton [Lo]; see Lemma 2.3 in
the text).

The author owes much to Kiran Kedlaya who supplied us with a proof of
Lemma 5.1 more elementary than the one by the author and informed the author
about the result of Loxton. The author would like to thank him for his assistance.
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1. Analytic families of Hecke eigenforms

Fix a field embedding Q
ip
↪→ Qp ⊂ Cp and a positive integer N prime to p. Here

Q is the algebraic closure of Q in C and Qp is an algebraic closure of Qp. A p-adic
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analytic family F of modular forms is defined with respect to the fixed embedding
ip : Q ↪→ Cp. We write |α|p for the p-adic absolute value (with |p|p = 1/p) induced

by ip. We also fix a field embedding Qp ↪→ C inducing the inclusion on Q ⊂ C.

As a base ring, we take a (sufficiently large) discrete valuation ring W ⊂ Qp finite
flat over the p-adic integer ring Zp. Recall that p = p if p is odd and p = 4
otherwise. Take a Dirichlet character ψ : (Z/NprpZ)× → W× with (p � N, r ≥ 0),
and consider the space of elliptic cusp forms Sk(Γ0(Nprp), ψ) with character ψ as
defined in [IAT, (3.5.4)]. Let the ring Z[ψ] ⊂ C and Zp[ψ] ⊂ Qp be generated
by the values ψ over Z and Zp, respectively. The Hecke algebra over Z[ψ] is the
subalgebra of the linear endomorphism algebra of Sk(Γ0(Nprp), ψ) generated by
Hecke operators T (n):

h = Z[ψ][T (n)|n = 1, 2, · · · ] ⊂ End(Sk(Γ0(Nprp), ψ)),

where T (n) is the Hecke operator as in [IAT, §3.5]. We put hk,ψ = hk,ψ/W =
h ⊗Z[ψ] W . When we need to indicate that our T (l) is the Hecke operator of
a prime factor l of Nprp, we write it as U(l), since T (l) acting on a subspace
Sk(Γ0(N

′), ψ) ⊂ Sk(Γ0(Nprp), ψ) of level N ′ prime to l does not coincide with
U(l) on Sk(Γ0(Nprp), ψ). The ordinary part hk,ψ/W ⊂ hk,ψ/W is the maximal
ring direct summand on which U(p) is invertible. We write e for the idempotent of
hk,ψ/W , and hence e = limn→∞ U(p)n! under the p-adic topology of hk,ψ/W . By the

fixed embedding Qp ↪→ C, the idempotent e not only acts on the space of modular
forms with coefficients in W but also on the classical space Sk(Γ0(Nprp), ψ). We
write the image of the idempotent as Sord

k .
Fix ψ, and assume now that ψp = ψ|

Z
×
p
has conductor at most p and ψ(−1) =

1. Let ω be the modulo p Teichmüller character (so, if p = 2, ω is the unique
non-trivial character of (Z/4Z)×). Recall that the multiplicative group Γ := 1 +
pZp in Z×

p and its topological generator γ = 1 + p. Then the Iwasawa algebra

Λ = W [[Γ]] = lim←−n
W [Γ/Γpn

] is identified with the power series ring W [[x]] by

a W -algebra isomorphism sending γ ∈ Γ to 1 + x. As constructed in [H86a],
[H86b] and [GME], we have a unique ‘big’ ordinary Hecke algebra h. The algebra
h is characterized by the following two properties (called Control theorems; see
[H86a, Theorem 3.1, Corollary 3.2] and [H86b, Theorem 1.2] for p ≥ 5 and [GME,
Theorem 3.2.15 and Corollary 3.2.18] for general p):

(C1) h is free of finite rank over Λ equipped with T (n) ∈ h for all 1 ≤ n ∈ Z (so
U(l) for l|Np),

(C2) if k ≥ 2 and ε : Z×
p → μp∞ is a character,

h/(1 + x− ε(γ)γk)h ∼= hk,εψk
(γ = 1 + p) for ψk := ψω−k,

sending T (n) to T (n) (and U(l) to U(l) for l|Np).

In the sequel, we often make use of another variable X = γ−1(1 + x)− 1. We still
have Λ = W [[X]]. The prime ideal ((1 + x) − γ) is equal to (X); so, if (C2) were
valid for k = 1, h/Xh would have been the Hecke algebra of weight 1; so, we call
the variable X of Λ the variable centered at weight 1.

Let Spec(I) be a reduced irreducible component Spec(I) ⊂ Spec(h). Write
a(n) for the image of T (n) in I (so, a(p) is the image of U(p)). If a point P of
Spec(I)(Qp) kills (1 + x − ε(γ)γk) = (1 + X − ε(γ)γk−1) with 2 ≤ k ∈ Z (i.e.,
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P ((1 + x − ε(γ)γk)) = 0), we call it an arithmetic point and we write εP = ε,
k(P ) = k ≥ 2 and pr(P ) for the order of εP . If P is arithmetic, by (C2), we
have a Hecke eigenform fP ∈ Sk(Γ0(Npr(P )p), εψk) such that its eigenvalue for
T (n) is given by aP (n) := P (a(n)) ∈ Qp for all n. Thus I gives rise to a family
F = {fP |arithemtic P ∈ Spec(I)} of Hecke eigenforms. We define a p-adic ana-
lytic family of slope 0 (with coefficients in I) to be the family as above of Hecke
eigenforms associated to an irreducible component Spec(I) ⊂ Spec(h). We call
this family slope 0 because |aP (p)|p = 1 for the p-adic absolute value | · |p of Qp

(it is also often called an ordinary family). We call this family analytic because
the Hecke eigenvalue aP (n) for T (n) is given by an analytic function a(n) on (the
rigid analytic space associated to) the p-profinite formal spectrum Spf(I). Iden-
tify Spec(I)(Qp) with HomW -alg(I,Qp) so that each element a ∈ I gives rise to a

“function” a : Spec(I)(Qp) → Qp whose value at (P : I → Qp) ∈ Spec(I)(Qp)

is aP := P (a) ∈ Qp. Then a is an analytic function of the rigid analytic space

associated to Spf(I). Taking a finite covering Spec(˜I) of Spec(I) with surjection

Spec(˜I)(Qp) � Spec(I)(Qp), abusing slightly the definition, we may regard the fam-

ily F as being indexed by arithmetic points of Spec(˜I)(Qp), where arithmetic points

of Spec(˜I)(Qp) are made up of the points above arithmetic points of Spec(I)(Qp).

The choice of ˜I is often the normalization of I or the integral closure of I in a finite
extension of the quotient field of I.

Each (reduced) irreducible component Spec(I) ⊂ Spec(h) has a 2-dimensional
semi-simple (absolutely irreducible) continuous representation ρI of Gal(Q/Q) with
coefficients in the quotient field of I (see [H86b]). The representation ρI restricted to
the p-decomposition group Dp is reducible with unramified quotient character (e.g.,
[GME, §4.2]). We write ρss

I
for its semi-simplification over Dp. As is well known

now (e.g., [GME, §4.2]), ρI is unramified outside Np and satisfies, for primes l � Np,

(Gal) Tr(ρI(Frobl)) = a(l), ρss
I
([γs,Qp]) ∼

(

(1+X)s 0
0 1

)

, ρss
I
([p,Qp]) ∼

( ∗ 0
0 a(p)

)

,

where γs = (1 + p)s =
∑∞

n=0

(

s
n

)

pn ∈ Z×
p for s ∈ Zp and [x,Qp] is the local Artin

symbol.
By (Gal) and the Chebotarev density theorem, Tr(ρI) has values in I; so, P◦

Tr(ρI) : Gal(Q/Q) → Qp (P ∈ Spec(I)(Qp)) gives rise to a pseudo-representation
of Wiles (e.g., [MFG, §2.2]). Then by a theorem of Wiles, we can make a unique 2-
dimensional semi-simple continuous representation ρP : Gal(Q/Q) → GL2(Qp) un-
ramified outside Np with Tr(ρP (Frobl)) = aP (l) for all primes l outside Np (though
the construction of ρP does not require the technique of pseudo-representation and
was known before the invention of the technique; see [MW, §9, Proposition 1]). This
is the Galois representation associated to the Hecke eigenform fP (constructed ear-
lier by Shimura and Deligne) if P is arithmetic (e.g., [GME, §4.2]).

A component I is called a CM component if there exists a nontrivial character
χ : Gal(Q/Q) → I× such that ρI ∼= ρI ⊗ χ. We also say that I has complex
multiplication if I is a CM component. In this case, we call the corresponding
family F a CM family (or we say that F has complex multiplication). If F is a CM
family associated to I with ρI ∼= ρI⊗χ, then χ is a quadratic character of Gal(Q/Q)

which cuts out an imaginary quadratic field M , i.e., χ =
(

M/Q
)

. Write ˜I for the

integral closure of Λ inside the quotient field of I. The following three conditions
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are known to be equivalent:

(CM1) F has CM with ρI ∼= ρI ⊗
(

M/Q
)

(⇔ ρI ∼= IndQM
̂λ for a character ̂λ of

Gal(Q/M) with values in ˜I×).
(CM2) For all arithmetic P of Spec(I)(Qp), fP is a binary theta series of the norm

form of M/Q.
(CM3) For some arithmetic P of Spec(I)(Qp), fP is a binary theta series of the

norm form of M/Q.

Indeed, (CM1) is equivalent to ρI ∼= IndQM
̂λ for a character ̂λ : Gal(Q/M) →

˜I× unramified outside Np (e.g., [MFG, Lemma 2.15]). Since the characteristic

polynomial of ρI(σ) has coefficients in I, its eigenvalues fall in ˜I; so, the character
̂λ has values in ˜I× (see [H86c, Corollary 4.2]). Then by (Gal), ̂λP = P ◦ ̂λ :

Gal(Q/M) → Q
×
p for an arithmetic P ∈ Spec(˜I)(Qp) is a locally algebraic p-adic

character, which is the p-adic avatar of a Hecke character λP : M×
A
/M× → C× of

type A0 of the quadratic field M/Q. Then by the characterization (Gal) of ρI, fP
is the theta series with q-expansion

∑

a
λP (a)q

N(a), where a runs over all integral
ideals of M . By k(P ) ≥ 2 (and (Gal)), M has to be an imaginary quadratic field in
which p is split (as the holomorphic binary theta series of real quadratic fields are
limited to weight 1; cf. [MFM, §4.8]). This shows that (CM1)⇒(CM2)⇒(CM3). If
(CM2) is satisfied, we have an identity

Tr(ρI(Frobl)) = a(l) = χ(l)a(l) = Tr(ρI ⊗ χ(Frobl))

with χ =
(

M/Q
)

for all primes l outside Np. By Chebotarev density, we have

Tr(ρI) = Tr(ρI ⊗ χ), and we get (CM1) from (CM2) as ρI is semi-simple. If a
component Spec(I) contains an arithmetic point P with theta series fP as above of
M/Q, either I is a CM component or otherwise P is in the intersection in Spec(h)
of a component Spec(I) not having CM by M and another component having CM
by M (as all families with CM by M are made up of theta series of M by the
construction of CM components in [H86a, §7]). The latter case cannot happen
as two distinct components never cross at an arithmetic point in Spec(h) (i.e.,
the reduced part of the localization hP is étale over ΛP for any arithmetic point
P ∈ Spec(Λ)(Qp); see [HMI, Proposition 3.78]). Thus (CM3) implies (CM2). We
call a binary theta series of the norm form of an imaginary quadratic field a CM
theta series.

2. Weil numbers

Since Q sits inside C, it has “the” complex conjugation c. For a prime l, a Weil
l-number α ∈ Q of integer weight k ≥ 0 is defined by the following two properties:

(1) α is an algebraic integer;
(2) |ασ| = lk/2 for all σ ∈ Gal(Q/Q) for the complex Archimedean absolute

value | · |.
Note that Q(α) is in a CM field finite over Q (e.g., [Ho, Proposition 4]).

Proposition 2.1. Let α be a Weil p-number of weight k. Write R (resp. R+) for
the integer ring of Q(α) (resp. of the maximal real subfield of Q(α)). Suppose that
one of the following two conditions holds:

(1) k = 1 and the prime p is unramified in Q(α)/Q,
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(2) k ≥ 1 and α generates over R+
p := R+ ⊗Z Zp the integral closure of Zp in

R⊗Z Qp.

If we have |α|p = |ip(α)|p = 1 for the embedding ip : Q ↪→ Cp (fixed in the introduc-
tion), then the set of all p-adic places of Q(α) splits into a disjoint union Σp�Σc

p for

the complex conjugation c such that P|(α) ⇔ P ∈ Σc
p; indeed, (α) =

∏

P∈Σc
p
Pe(P)k

for the ramification index e(P) of P/p.

Proof. Write K = Q(α), and take its Galois closure Kgal over Q inside Q. Since K
is a CM field, the complex conjugation c is in the center Z of G = Gal(Kgal/Q) (see
[IAT, Proposition 5.11]). Since decomposition groups of a prime in G are conjugate
to each other, c is either inside all of them or outside all of them. Let Σ := Σα =
{

σ : K ↪→ Cp

∣

∣|ασ|p = 1
}

and write Σp for the set of prime ideals P of K such that

Pc =
{

ξ ∈ K
∣

∣|σ(ξ)|p < 1
}

. By assumption, Σ �= ∅; so, no p-decomposition groups
in G contain c. Therefore, any prime factor of p in the maximal totally real field
K+ splits completely in K. Write the prime decomposition of the principal ideal
(α) as (α) =

∏

P|p P
ε(P). Since σ(α)cσ(α) = pk implies ε(P) + ε(Pc) = k, under

the assumption (1), unramifiedness of p tells us that 0 ≤ ε(P), ε(Pc) ≤ 1, and
hence one of them vanishes. Thus {P|p} = Σp � Σc

p, and (α) =
∏

P∈Σc
p
P.

Now assume (2). Decompose (α) =
∏

P|p P
ε(P). Write RP for the P-adic

completion of R. Then for p = P∩R+, Rp = RP×RPc . If ε(P) > 0 and ε(Pc) > 0,
α ≡ c(α) mod pRp inside Rp, which implies that R+

p [α] in Rp is contained in the
order of conductor p; so, α cannot span the integral closure Rp of Zp in Q(α)⊗ZZp.
In other words, under (2), ε(P)ε(Pc) = 0, which implies that {P|p} = Σp�Σc

p and

(α) =
∏

P∈Σc
p
Pe(P)k, as desired. �

Corollary 2.2. Let the notation and assumption be as in the above proposition.
Let V be a discrete valuation ring finite flat over Zp with residue field Fp. Let M be
a CM field containing Q(α), and let A/V be a polarized abelian scheme of dimension
[M : Q] with a ring embedding θ : M ↪→ End(A/V )⊗Z Q sending the identity to the

identity whose image is stable under the Rosati involution. Put ˜A = A×V Fp (the

reduction modulo p). If F k−θ(α) ∈ End( ˜A/Fp
) has kernel of positive dimension for

the relative p-power Frobenius endomorphism F of A×V Fp, then ˜A is an ordinary
abelian variety.

Proof. Take a prime l �= p. The l-adic Tate module Tl
˜A ⊗Zl

Ql is free of rank 2
over Ml = M ⊗Q Ql, and H(F k) = 0 for the polynomial H(T ) := T 2 − aT + p = 0
(a = θ(α + αc)) with coefficients in the maximal real subfield of M , as the Rosati
involution coincides with complex conjugation c onM . Replacing A by an isogenous
abelian scheme, we may assume that θ−1(End(A/V )) contains the integer ring O

of M (e.g., [IAT, (7.7.8)]). Thus by the above proposition, a mod p is a unit in

O/pO and hence ˜A is an ordinary abelian variety. �

We call two nonzero numbers a, b ∈ Q equivalent (written as a ∼ b) if a/b is a
root of unity.

Lemma 2.3. Let K be a finite field extension of Q(μp∞) inside Q. Then for a
given prime l and weight k ≥ 0, there are only finitely many Weil l-numbers of
weight k in K up to equivalence. If K = Q(μp∞) and there is only one prime in
Z[μp∞ ] above (l) (for example, if l = p), any Weil l-number of weight k is equivalent
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to (l∗)k/2 (as long as (l∗)k/2 is in K), where l∗ = (−1)(l−1)/2l if l is odd, and l∗ = 2
if l = 2.

A result of Loxton confirms that, up to equivalence, there are only finitely many
Weil l-numbers of a given weight in the maximal abelian extension Qab of Q (see
[Lo, Lemma 7]). Thus the finiteness result of the lemma follows from this analytic
result of Loxton. We will give an algebraic proof.

Proof. The decomposition group of each prime l is of finite index in Gal(Q[μp∞ ]/Q)
(identifying Gal(Q[μp∞ ]/Q) ∼= Z×

p by the p-adic cyclotomic character, the decom-
position group is generated by l if l �= p, and otherwise if l = p, then p is fully
ramified in Q[μp∞ ]; see [ICF, Chapter 2]); so, there are only finitely many primes L
of Z[μp∞ ] above (l). Thus for a Weil l-number α of weight k, there are only finitely
many possibilities of prime factorization of (α) if l �= p. If (α) = (β) for two Weil
l-numbers α, β, then α/β is a Weil number of weight 0; so, α ∼ β by Kronecker’s
theorem. If there is only one prime over l in Z[μp∞ ], any Weil l-number of weight

k is equivalent to (l∗)
k/2

, as long as (l∗)k/2 ∈ Q[μp∞ ]. Thus the result follows from
this if K = Q(μp∞).

Let W (l, k) (resp. WK(l, k)) be a complete set of representatives of Weil l-
numbers in Q(μp∞) (resp. in K) of weight k under the equivalence. By the above
argument, W (l, k) is a finite set, and we want to prove that WK(l, k) is finite.
Write d = [K : Q(μp∞)]. If α ∈ K is such a Weil l-number, then NK/Q(μp∞ )(α) is

equivalent to a number inW (l, kd). ThusNK/Q(μp∞ ) induces a mapN : WK(l, k) →
W (l, dk). Write L for the field generated by elements in W (l, dk). Then L/Q is a
finite abelian extension in Q(μp∞). Since no prime completely splits in Q(μp∞), the
decomposition subgroup D of l in Gal(K/Q) is an open subgroup of finite index.
Thus there are only finitely many valuations v of K with v(l) = 1. Let V be
the set of valuations v of K with v(l) = 1, which is a finite set. For v ∈ V and
α ∈ WK(l, k), v(α) ∈ [0, k] ∩ d−1v(L), because NK/Q(μp∞ )(α) is in W (l, dk) up to

roots of unity. Let V :=
∏

v∈V
(

[0, k] ∩ d−1v(L)
)

, which is a finite set. We have a
map ordl : WK(l, k) → V sending α to ordl(α) = (v(α))v∈V . If ordl(α) = ordl(β)
(α, β ∈ WK(l, k)), then α/β is an algebraic integer with complex absolute value
|(α/β)σ| = 1 for all σ ∈ Gal(Q/Q); so, by Kronecker’s theorem, α ∼ β. Thus ordl
is an injection, proving the finiteness of WK(l, k). �
Proposition 2.4. Let G be a finite group and l be a prime. Let KG be the set of all
Galois extensions of K := Q[μp∞ ] with Galois group G inside Q whose ramification
at l over K is tame. Then there are only finitely many Weil l-numbers of a given
weight in the set-theoretic union

⋃

L∈KG
L (in Q) up to equivalence.

The point of the proof is as follows (and we fill in the details after the outline).
WriteKl = K⊗QQl. By tameness, there are only finitely many isomorphism classes
of Kl-algebras Ll = L⊗Q Ql for L ∈ KG. Thus we only need to prove finiteness for
Weil numbers of a given weight contained in a fixed isomorphism class of Ll. We
look at the universal composite Ll ⊗Kl

Ll, which is a product of fields indexed by
l-adic nonequivalent valuations V1, . . . ,Vn normalized so that Vi(l) = 1. Consider
a tuple

ν(α) = (V1(α⊗ 1), . . . ,Vn(α⊗ 1),V1(1⊗ α), . . . ,Vn(1⊗ α)).

If α ∼ β, we have ν(α) = ν(β). The tuple ν(α) determines the prime factorization
of (α) in any possible composite K(α, β); so, if ν(α) = ν(β), (α) = (β) in K(α, β);
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so, by Kronecker’s theorem, α ∼ β. Since there are only finitely many possibilities
of ν(α), there are only finitely many classes.

Proof. Let V be the set of normalized l-adic valuations of K := Q[μp∞ ]. Write Fv

for the residue field of v ∈ V inside a fixed algebraic closure Fl. If l �= p, then
Fv is an infinite extension of Fl, and otherwise, Fv = Fp. As we have remarked,
V is a finite set. Let L ∈ KG; so, L/K is a finite extension of degree d = |G|
tamely ramified at l. We claim that there are only finitely many isomorphism
classes of Kl-algebras Ll = L ⊗Q Ql for L running through KG. To see this,
write Kl = K ⊗Q Ql =

∏

v∈V Kv for Kv = Ql[μp∞ ] inside the v-adic completion
of K. Let Kt

v/Kv (resp. Kur
v /Kv) be the maximal tamely l-ramified extension

(resp. the maximal unramified extension inside Kt
v). Then by class field theory,

Kt
v has the l-inertia group isomorphic to ̂Z(l)(1), where ̂Z(l)(1) = lim←−l�N

μN (Ql) as

Gal(Kur
v /Qp)-modules. Thus we have

(2.1) Gal(Kt
v/Kv) ∼=

{

̂Z(p) � ̂Z(l)(1) if l �= p,
̂Z � ̂Z(l)(1) if l = p

(a semi-direct product with Gal(Kt
v/Kv) � ̂Z(l)(1)), since

Gal(Kur
v /Kv) ∼=

{

Gal(Fl/Fv) ∼= ̂Z(p) if l �= p,
̂Z if l = p.

Thus there are finitely many open subgroups of Gal(Kt
v/Kv) with index ≤ d, and

hence there are finitely many isomorphism classes of tamely ramified extensions of
Kv of degree ≤ d. Thus the claim follows.

Consider the set Ξ of all isomorphism classes of Kl-algebras L ⊗Q Ql, where L
runs over KG. Thus Ξ is a finite set. Pick L ∈ Ξ and consider the set KL of all
L ∈ KG such that L ⊗Q Ql

∼= L as K-algebras. Then KG =
⊔

L∈Ξ KL. The set
KL is a countable set. Assume KL �= ∅. We just order its elements as L1, L2, . . . .
We fix a K-algebra isomorphism ιj : Lj ⊗Q Ql

∼= L. Thus Lj ⊂ L for every j.
We take the (set-theoretic) union ΩL :=

⋃∞
j=1 ιj(Lj) inside L. Since Lj/K is a

Galois extension, another choice of ιj is equal to ιj ◦ σ for σ ∈ Gal(Lj/K). Thus
Im(ιj : Lj → L) is independent of the choice of ιj , and we therefore forget about
ιj . Note that Kl = K⊗QQl is a product of the field Kv indexed by v ∈ V such that
Kv has a valuation inducing v on K. Similarly L is a product of finitely many fields
with l-adic valuation. Write L =

∏r
j=1 Lj for a simple component Lj , and write Vj

for the valuation giving the l-adic topology of Lj extending one of the members of
V . Write VL = {V1, . . . , Vr}, which is a finite set.

Let W(l, k) (resp. W(l, k,L)) be the set of Weil l-numbers of weight k in
⋃

L∈KG
L (resp. in ΩL). Thus for each α ∈ W(l, k,L), we find a Galois ex-

tension Lα/K containing L(α) over K inside KG with Galois group G such that
Lα ⊗Q Ql

∼= L. Thus we have

W(l, k) =
⋃

L∈Ξ

W(l, k,L).

The intersection W(l, k,L) ∩ W(l, k,L′) for L,L′ ∈ Ξ obviously contains all Weil
l-numbers of weight k in K (and possibly more). For each α ∈ W(l, k,L), we
define a tuple of nonnegative positive rational numbers S1(α) ∈ (Q≥0)

VL given by
S1(α) = (V (α))V ∈VL .
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If l �= p, l is unramified in K/Q; so, V (α) ∈ |G|−1Z and 0 ≤ V (α) ≤ k. Thus

S := {S1(α)|α ∈ W(l, k,L)}

is a finite set. If l = p, by the above lemma, there are only finitely many Weil
p-numbers (up to equivalence) in K of a given weight. Thus the set V ⊂ Q of valu-
ations of Weil numbers in K of weight k|G| is a finite set. For each α ∈ W(p, k,L),
take a Galois extension Lα/K (inside KG) with Gal(Lα/K) = G containing α
with Lα ⊗Q Ql

∼= L. Then
∑

V ∈VL
eV V (α) = v(NLα/K(α)) ∈ V for the (tame)

ramification index eV of V over K and V (α) ∈ |G|−1V. Again,

S := {S1(α)|α ∈ W(p, k,L)}

is a finite set. If α/β ∈ μp∞(K), we have K(α) = K(β) inside L and hence
S1(α) = S1(β). By Lemma 2.6 following this proposition, the group of roots of
unity in the composite L of L for all L ∈ KL in Q contains μp∞(K) as a subgroup
of finite index; so, S1(α) = S1(β) up to permutation of valuations in VL if α ∼ β.

We consider for each s ∈ S the set W(s) = {α ∈ W(l, k,L)|S1(α) = s}. By
definition, we have a decomposition

W(l, k,L) =
⊔

s∈S
W(s).

We want to show that W(s)/μp∞(K) is a finite set. Write O for the integral
closure of Zl in L (the l-adic integer ring of L). By definition, for α, β ∈ W(s), the
principal O-ideal (α) is equal to (β), because S1(α) = S1(β) = s determines the
prime factorization of (α) = (β) in L. Write L⊗Kl

L = L1⊕L2⊕· · ·⊕Ln for fields
Li and write Vi for the valuation of Li normalized so that it extends a member
of V . Then the possibilities of ν(α) = (Vi((α ⊗ 1),Vi(1 ⊗ α))i for α running over
W(s) are finitely many, and if ν(α) = ν(β), α/β is a Weil l-number of weight 0,
because the prime factorizations of (α) and (β) in Lα ⊗K Lβ are equal. Thus α/β
is a root of unity by Kronecker’s theorem, and hence α ∼ β. As already remarked,
{roots of unity in L} =

⋃

ζ∈Z ζ · μp∞(K) for a finite set Z of roots of unity. Thus

W(s)/μp∞(K) is finite, which implies that W(l, k)/{roots of unity} is finite. �

Corollary 2.5. Let d be a positive integer. Let Kd be the set of all finite extensions
of Q[μp∞ ] of degree d inside Q whose ramification at l is tame. Then there are only
finitely many Weil l-numbers of a given weight in the set-theoretic union

⋃

L∈Kd
L

(in Q) up to equivalence.

Proof. The Galois closure Lgal of L ∈ Kd over K = Q[μp∞ ] has Galois group which
is isomorphic to a subgroup of the permutation group Sd of d letters. Thus the
possible isomorphism classes of Gal(Lgal/K) are finite. Note that l tamely ramifies
in Lgal/K. Thus applying the above proposition for each G ⊂ Sd, we get the
desired result. �

Lemma 2.6. Let K? be one of KL, KG and Kd. Suppose K? �= ∅. Then the group
of roots of unity in the composite L of L for L ∈ K? in Q contains μp∞(K) as a
subgroup of finite index.

Proof. We first take K? = KL or KG. Let μ(p) ⊂ Q be the group of roots of unity
of order prime to p. We need to prove that the subgroup μ(p) ∩ L ⊂ μ(p) is finite.
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For any finite subset K ⊂ K?, the composite of L ∈ K in Q is a Galois extension of
K whose Galois group is a subgroup of

∏

L∈K G contained in

{(σL)L∈K|σL ∈ Gal(L/K), σL|L∩L′ = σL′ |L∩L′ for all pairs (L,L′) ∈ K2}.
Thus any σ ∈ Gal(L/K) has order a factor of |G|, so is bounded. Pick any infinite
subgroup ν ⊂ μ(p), and decompose it into a product of �-primary subgroups ν�
for primes � �= p. Let Ξ = {�|ν� �= 1}. If Ξ is finite, we have ν ⊃ μ�∞ for a
prime � ∈ Ξ, and Gal(K(ν)/K) surjects down to Gal(Q(μ�∞)/Q) = Z×

� ; so, the
elements of Gal(K(ν)/K) have unbounded order, and hence Q(ν) �⊂ L. If |Ξ| = ∞,
Gal(K(ν�)/K) for odd � is cyclic of order ≥ � − 1, and therefore, elements of
Gal(K(ν)/K) have unbounded order. Thus the subgroup μ(p) ∩L has to be finite.
As for K? = Kd, the Galois closure of L ∈ Kd over K has Galois group G realized
inside Sd, and the same proof works since what we used is only the boundedness
of |G| ≤ d!. �

3. Theorems and conjectures

Let f =
∑∞

n=1 a(n, f)q
n ∈ Sk(Γ0(Nprp), ψ) be a Hecke eigenform normalized so

that f |T (n) = a(n, f)f for all n. We write f |T (l) = (αl+βl)f and αlβl = ψ(l)lk−1 if
l � Npr+1 (αl, βl ∈ Q). If l|Npr+1, we put βl = 0 and define αl ∈ Q by f |U(l) = αlf .
Then the Hecke polynomial Hl(X) = (1 − αlX)(1 − βlX) gives the Euler l-factor
of L(s, f) =

∑∞
n=1 a(n, f)n

−s after replacing X by l−s and inverting the factor.
Let F = {fP }P∈Spec(I)(Cp) be a p-adic analytic family of p-ordinary Hecke eigen

cusp forms of slope 0. We write αl,P , βl,P for αl, βl for fP . We have the following
two versions of the conjecture:

Conjecture 3.1 (Vertical version).

(Weak form): The field QV,r(F) is a finite extension of Q for a fixed r < ∞ if and
only if fP is a CM theta series for some arithmetic P with k(P ) ≥ 2.

(Strong form): Let A be an infinite set of arithmetic points with bounded level
r(P ) ≤ r for a fixed r ≥ 0 (so, Im(εP ) ⊂ μpr for the fixed r). Let MV,A(F) be the
field generated over Q by {αp,P }P∈A, where P runs over all points in A. Then the
field MV,A(F) is a finite extension of Q for a fixed r < ∞ if and only if fP is a
CM theta series for some arithmetic P with k(P ) ≥ 2.

Pick a prime l different from p and write M
(l)
V,A(F) for the field generated by

{αl,P , βl,P }P∈A, where P runs over all points in A. Then we might speculate that

Vertical l-version of strong form. The field M
(l)
V,A(F) is a finite extension of

Q for a fixed r < ∞ if and only if for an arithmetic P with k(P ) ≥ 2, either fP
is a CM theta series or the automorphic representation generated by fP is square-
integrable at l.

What we can prove is as follows.

Theorem 3.2 (Strong vertical theorem). Let r be a nonnegative integer. Assume
p > 2 and that there exists an arithmetic point P0 ∈ Spec(I)(Cp) with k(P0) ≥ 2

such that α0 = a(p, fP0
) is a Weil number and Σα0

=
{

σ : Q(α0) ↪→ Q
∣

∣|ip(ασ
0 )| = 1

}

is a CM type of Q(α0). Pick an infinite set A of arithmetic points P with bounded
level r(P ) ≤ r. Then the field MV,A(F) is a finite extension of Q if and only if fP
is a CM theta series for an arithmetic P with k(P ) ≥ 2.
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See Proposition 2.1 for sufficient conditions which guarantee the truth of the
assumption of the theorem. Take the rank 2 motive M0 with coefficients in Q(fP0

)
(in [S]). Regarding M0 as having coefficients in Q, M0 is potentially crystalline at
p and ordinary if and only if Σα0

is a CM type of Q(α0). Here a motive is ordinary
if the Newton polygon of Frobenius at p (in our case, the Newton polygon of α0)
coincides with the Hodge polygon. We prove this theorem and the vertical theorem
(in the introduction) in Section 8. The horizontal theorem in the introduction
follows from the following version (and Corollary 6.3):

Theorem 3.3 (Strong horizontal theorem). Pick an infinite set A of arithmetic
points P with fixed k(P ) = k ≥ 2. Write MH,A(F) ⊂ Q for the field generated
over Q(μp∞) by {αp,P }P∈A, where P runs over all arithmetic points in A. Suppose
p > 2. Then the field MH,A(F) is a finite extension of Q(μp∞) if and only if fP is
a CM theta series for an arithmetic P with k(P ) ≥ 2.

We prove this theorem in Section 6. For a prime l �= p, we may conjecture the
l-version of the stronger form in the horizontal case also:

Conjecture 3.4 (Horizontal l-version). Write M
(l)
H,A(F) for the field generated

over Q(μp∞) by {αl,P }P∈A. Then M
(l)
H,A(F) is a finite extension of Q(μp∞) if and

only if for an arithmetic P with k(P ) ≥ 2, either fP is a CM theta series or the
automorphic representation generated by fP is square-integrable at l.

One can show that [M
(l)
H,A(F) : Q(μp∞)] < ∞ if fP0

is square-integrable at a

prime l �= p for one arithmetic P0 as follows: Let Spec(I) be the irreducible com-
ponent associated to the family F . If fP0

(or, more precisely, the automorphic
representation generated by fP0

) is super-cuspidal at l, then ρP0
|Il is absolutely

irreducible (by the local Langlands conjecture for GL(2) solved by Kutzko and
Carayol; e.g., [Ca]). Then the Galois representation ρI is absolutely irreducible
over the inertia group Il and ρI(Il) is finite by (2.1). Therefore, it is rigid; i.e., ρP |Il
is independent of points P ∈ Spec(I) with characteristic 0 residue field. Thus if fP0

is super-cuspidal for one arithmetic point P0, then ρP0
|Il is irreducible. Therefore,

ρI|Il is irreducible, which implies that ρP |Il is irreducible for all P with charac-
teristic 0 residue field. Hence fP is super-cuspidal for all arithmetic P . Then

αl = a(l) = 0 in I; so, M
(l)
H,A(F) = Q(μp∞) in this case. Suppose that the auto-

morphic representation πP0
generated by fP0

has its local factor at l isomorphic
to the Steinberg representation σ(α| · |l, α) for a character α : Q×

l → C×. If α is
unramified, fP0

is l-new of l-conductor l, and hence fP is Steinberg for all arith-
metic P because the outside p-conductor and the outside p central character are
constant in the family (the old/new theory at the level of families, e.g., [H88, The-
orem 3.6]). If α is ramified, taking a global Dirichlet character χ : A×/Q× → C×

with χ|
Z
×
l
= α−1|

Z
×
l
only ramified at l, {πP ⊗χ}P is associated to another analytic

family F ⊗ χ of slope 0. Replacing F by F ⊗ χ, we may assume α is unramified;
so, if one fP0

is Steinberg at l �= p, all members of F are Steinberg at l �= p. Using

this fact, we prove in Proposition 5.2 that M
(l)
H,A(F) is a finite extension of Q(μp∞)

if fP0
is Steinberg at l �= p at one arithmetic P0. A similar argument works also

for the vertical l-version, proving [M
(l)
V,A(F) : Q] < ∞ if fP0

is square-integrable at
l �= p for one arithmetic P0.
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We will prove the following weaker statements in the following section:

Proposition 3.5. (WV) Let ˜MV,r(F) be the field generated over Q by {α2
l,P ,

β2
l,P }l,P , where P runs over arithmetic points with Im(εP ) ⊂ μpr for a

fixed r > 0 and l runs over all primes. Then ˜MV,r(F) is a finite extension
of Q for a fixed r < ∞ if and only if fP is a CM theta series for some
arithmetic P with k(P ) ≥ 2.

(WH) Let ˜MH,k(F) be the field generated over Q by {α2
l,P , β

2
l,P }l,P , where P runs

over all arithmetic points with k(P ) = k for a fixed k ≥ 2 and l runs over

all primes. The field ˜MH,k(F) is a finite extension of Q(μp∞) for a fixed k
if and only if fP is a CM theta series for some arithmetic P with k(P ) ≥ 2.

The field ˜MV,r(F) or ˜MH,k(F) is defined to be generated by the squares α2
l,P

and β2
l,P for the following reason. Suppose F has CM. Then, fP is a theta series

of an imaginary quadratic field M with even weight k = k(P ); so, ρP = IndQM λP

for a character λP : Gal(Q/M) → Q
×
p . If l is inert in M , writing l for the unique

prime of M over l, we have

det(X − ρP (Frobl)) = det(X − IndQM λP (Frobl))

= X2 − λP (Frobl) = X2 + ψkεP (l)l
k−1.

Thus αl = ±
√

−ψkεP (l)lk−1. Since k − 1 is odd, Q(αl|l:inert) contains infinitely

many distinct quadratic extensions Q(
√
−l) for primes l with ψkεP (l) = 1. To

avoid this, we need to take the square α2
l in the vertical case and in the horizontal

case if k(P ) is even.

4. Hecke fields and their quadratic extensions

The “only if” part of Proposition 3.5 directly follows from the following lemma,
though we will give a detailed proof of the proposition after proving the lemma.

Lemma 4.1. Let f ∈ Sk(Γ0(N), ψ) be a Hecke eigenform for k ≥ 2. Let P be the
set of all prime ideals of Q(f) split over Q (which has density 1 in the total set
of prime ideals of Q(f)). If f does not have CM (that is, it is not a theta series
of an imaginary quadratic field), the field generated by the squares of Frobenius
eigenvalues αl and βl for l running through any density 1 subset P0 of P is an
infinite extension of Q(f). Here the density is computed in the set of all primes of
Q(f).

Proof. For a prime l of Q(f), write ρl for the l-adic Galois representation of f . Write
O ⊂ Q(f) for the integer ring of Q(f). Then we consider the adelic representation

ρ̂ =
∏

l
ρl : Gal(Q/Q) → GL2( ̂O) for ̂O =

∏

l
Ol. By a result of Ribet (see [R]),

Im(ρ̂) contains an open subgroup U of SL2(̂Z) for ̂Z =
∏

l Zl. Let S1 be the finite
set of primes l such that U ∩ SL2(Zl) �= SL2(Zl) and let S ⊂ P0 be a finite set
outside S1. Since l ∈ P0 for l ∈ S, we have Ol = Zl (for the residual characteristic
l = l(l) of l). Let S be the union of the set of residual characteristics of primes in
S, prime factors of Np and S1. Write ρS =

∏

l∈S ρl. Let OS =
∏

l∈S Ol and put

QS(f) = OS ⊗Z Q. Note that QS(f) =
∏

l∈S Ql(l). We consider H = Gal(Q/Q(f))

which is an open subgroup of finite index in Gal(Q/Q). Since ρS is unramified
outside S ∪ {∞}, we have well defined ρS(Frobl) for the Frobenius element Frobl
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in H for a prime ideal l of O outside S. Note that Frobl = Frobl(l) if Ol = Zl(l).
Consider the commutative subalgebra Q[ρS(Frobl)] ⊂ M2(QS(f)) generated over
Q by ρS(Frobl) for a prime ideal l outside S split in Q(f)/Q. Write Z[ρS(Frobl)]
for the subalgebra of Q[ρS(Frobl)] generated over Z by ρS(Frobl). Consider the
set A of tuples of (isomorphism classes of) commutative semi-simple quadratic
extensions A = {Al/Fl(l)}l∈S indexed by primes in S; so, Al is either a quadratic
field extension of Fl(l) or Fl(l) ⊕ Fl(l). Pick tl ∈ SL2(Zl(l)) for each l ∈ S such that

Zl(l)[t
2
l ]⊗Z Fl(l)

∼= Al.

Since P0 has density 1 among primes of Q(f), by Chebotarev density, we can find
a split prime ideal l = l(A) ∈ P0 outside S such that ρS(Frobl(A)) is sufficiently

close S-adically to tA = (tl)l∈S ∈ M2(QS(f)) so that Z[ρ(Frob2
l(A))] ⊗Z Fl(l)

∼= Al

for each prime l ∈ S. Note that QA := Q[ρS(Frob2
l(A))]

∼= Q(α2
l(A)), and for two

distinct A,A′ ∈ A, QA �∼= QA′ . Thus at least we have found primes l(A) indexed by
A such that all quadratic extensions in {Q(α2

l(A))}A∈A of Q(f) are nonisomorphic.

Making |S| → ∞, we can find an infinite set Ω ⊂ P0 of primes l such that Q(α2
l )

are distinct for all l ∈ Ω. This shows the result. �

Proof of (WV). Pick fP in F without complex multiplication for an arithmetic P .

Then by the above lemma, ˜MV,r(F) ⊃ Q(α2
l |l ∈ Ω) and Q(α2

l |l ∈ Ω) is an infinite
extension of Q, where Ω is as in the above proof of Lemma 4.1.

Suppose now that F has complex multiplication by an imaginary quadratic ex-
tension M/Q in Q as defined in (CM1). Let p be the prime of M induced by

ip|M : M ↪→ Qp. Then ρI ∼= IndQM λ as in (CM1), where λ : Gal(Q/M) → ˜I× is

a character unramified outside pN for the normalization Spec(˜I) of Spec(I). Write
O for the integer ring of M . We can forget about finitely many primes l in a finite
set S, as Q(αl|l ∈ S) is a finite extension of Q. Take S to be the set of ramified
primes of ρI (so, S includes ramified primes in M/Q). Thus for any prime l �∈ S,
it is either split or inert in M/Q. If (l) = ll in M for primes l �= l, αl is the value
of λP (Frobl) = λ(Frobl) mod P for a prime l in M over l. If (l) = l is inert in
M/Q, α2

l = λP (Frobl) as det(X − ρP (Frobl)) = X2 − λP (Frobl). Let F be the

residue field of ˜I (note that ˜I is a local ring with maximal ideal m, because it is
finite flat over Λ). Write W for the ring of Witt vectors of F; so, W is a finite

flat discrete valuation ring unramified over Zp. Let (R, ˜λ : Gal(Q/M) → R×) be
the universal couple with the universal character unramified outside pN deforming

(λ mod m) over W . This couple (R, ˜λ) is characterized by the following universal
property: For any local Artinian W -algebra A with residue field F and any char-
acter ϕ : Gal(Q/M) → A× unramified outside pN with ϕ mod mA = λ mod m

for the maximal ideal mA of A, there exists a unique W -algebra homomorphism

ι : R → A such that ϕ = ι ◦ ˜λ. The pair (A,ϕ) is called a deformation of λ (see
[M]).

Writing ˜Γ for the p-primary part of ClM (p∞N) = lim←−n
ClM (pnN) (for the ray

class groups ClM (pnN) modulo pnN of M), we have R ∼= W [[˜Γ]] by class field
theory. To see this, we pick a deformation ϕ : Gal(Q/M) → A× of λ unramified
outside pN ; thus, A is a local Aritinian W -algebra sharing the residual field with
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W and ϕ mod mA = λ mod m for the maximal ideal mA of A. Let λ0 be the
Teichmüller lift of λ mod m; so, ϕ′ = ϕλ−1

0 has p-power order. For a prime l|N ,
taking a prime factor l of l in M , by class field theory, the image Iabl of the inertia

group Il ⊂ Gal(Q/M) in the Galois group of the maximal abelian extension of M
over M is isomorphic to the multiplicative group O

×
l

of the l-adic integer ring of

Ml. Since ϕ
′ has p-power order and p �= l, ϕ′ must be trivial on 1+ lOl ⊂ O

×
l
. Thus

the l-conductor of ϕ′ is at most l, and hence ϕ = ϕ′λ0 factors through ClM (p∞N).

Thus ϕ′ factors through the maximal p-profinite quotient ˜Γ and extends to a unique

W -algebra homomorphism ι = ιϕ : W [[˜Γ]] → A such that ι|
˜Γ = ϕ′. Since ˜Γ is

the maximal p-profinite quotient of ClM (p∞N), by class field theory, we have the

corresponding subfield ˜M of the ray class field modulo p∞N with Gal(˜M/M) ∼= ˜Γ

by the Artin symbol. Writing the inclusion ˜Γ ⊂ W [[˜Γ]] as γ �→ [γ] and identifying

Gal(˜M/M) = ˜Γ, define a character ˜λ : Gal(Q/M) → W [[˜Γ]] by ˜λ(σ) = λ0(σ)[σ|˜M ].

Then by our construction ι ◦ ˜λ = ϕ; so, (W [[˜Γ]], ˜λ) satisfies the universal property

of (R, ˜λ) for deformations ϕ of λ.

Let Δ ⊂ ˜Γ be the maximal torsion subgroup of ˜Γ. Then Δ is finite, and we put

Γtf = ˜Γ/Δ. We fix a splitting ˜Γ ∼= Δ× Γtf ; so, R ∼= W [[Γtf ]][Δ]. Since Γtf is a p-
profinite cyclic group isomorphic to the additive group Zp, W [[Γtf ]] is isomorphic to
a one-variable power series ring W [[T ]]. Thus Spec(R) is equidimensional reduced,
and its irreducible components are isomorphic to Spec(W [[T ]]).

By universality, we have a W -algebra homomorphism π : R → ˜I such that

π ◦ ˜λ = λ. The image I′ of π is the I-subalgebra of ˜I topologically generated by
λ(σ) for all σ ∈ Gal(Q/M). Since Spec(I′) and Spec(R) has equal dimension,
Spec(I′) is isomorphic to one of the irreducible components of Spec(R); so, π in-

duces Spec(I′) ∼= Spec(W [[T ]]) = Spec(W [[Γtf ]]). Since Spec(˜I) is normalization of

Spec(I) and Spec(I′) ∼= Spec(W [[Γtf ]] is regular, we have ˜I = I′ ∼= W [[Γtf ]].
The inclusion Z×

p ↪→ O
×
p induces an inclusion Γ → ClM (p∞N). Composing this

inclusion with the projection: ClM (p∞N) � Γtf , we regard Γ as a subgroup of
˜Γtf of finite index. This W [[Γ]]-algebra structure of I = W [[Γtf ]] is equal to that
coming from the inclusion W [[Γ]] ↪→ I given by γ �→ (1+X) for the variable X not
x. This is because a Hecke character of infinity type k − 1 gives rise to its theta
series of weight k. Then for an arithmetic point P with r(P ) ≤ r, λP = P ◦ λ
has infinity type k(P ) − 1; that is, λP (α) = αk(P )−1 for α ∈ M congruent to 1
modulo Npr. Thus for the class number h of M , taking a generator α of lh, we
have λP (l) = α(1/h)(k(P )−1)ζ for ζ ∈ μprh. In other words, choosing a complete
representative set {aj}j=1,...,h of ideal classes of M , taking a generator αj of ahj

and writing Kr = Q(μprh)[α
1/h
j |j = 1, . . . , h], we find that Q(α2

l ) ⊂ Kr, which is a

finite extension of Q independent of P (as long as r(P ) ≤ r); so, ˜MV,r ⊂ Kr. This
finishes the proof. �

Proof of (WH). By the above proof of (WV), if F has complex multiplication,
˜MH,r(F) ⊂ K∞ =

⋃

r Kr = Q(μp∞ , μh)[α
1/h
j |j = 1, . . . , h], which is a finite exten-

sion of Q(μp∞).
In the proof of Lemma 4.1, for a non-CM form f , we constructed an infinite

set Ω of primes such that {Q(f)(α2
l(l))}l∈Ω is an infinite set of distinct quadratic

extensions of Q(f). Since L := Q(f)[μp∞ ] has only finitely many distinct quadratic
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extensions of Q(f) inside, the extension L(α2
l(l)|l ∈ Ω)/L still has infinite dimension

over Q[μp∞ ]. Thus the result follows, taking f = fP for an arithmetic member fP
(k(P ) = k) of a non-CM family F . �

We have the following corollary to the above proofs of (WV) and (WH):

Corollary 4.2. Let the notation be as in the previous section. If F is a CM family,
then

[MH,A(F) : Q(μp∞)] < ∞ and [MV,A(F) : Q] < ∞,

where A is an infinite set of arithmetic points for a fixed weight k ≥ 2 in the
horizontal case and of bounded p-power level prp in the vertical case.

Proof. The necessity of taking the square α2
l in the above proof of (WV) and (WH)

comes from the inertness of the prime l in M (and also the fact that we vary the
primes l in an infinite set). Since p is split in M , we have αp,P = λP (Frobp) for
a factor p of p in M , and under the notation of the proof of (WV), we find that
MV,A(F) ⊂ Kr, since the prime p splits in M . The horizontal case can be proven
similarly, because MH,A(F) ⊂ K∞. �

We add one more lemma:

Lemma 4.3. Let F be a slope 0 p-adic analytic family of Hecke eigenforms with
coefficients in I. Then we have:

(1) Fix 0 ≤ r < ∞. Then the degree [Q(fP ) : Q(a(p, fP ))] for arithmetic P
with r(P ) ≤ r is bounded independently of P .

(2) Let K = Q(μp∞) and fix k ≥ 2. Then the degree [K(fP ) : K(a(p, fP ))] for
arithmetic P with k(P ) = k is bounded independently of P .

Proof. Since the proof is basically the same, we prove (1). We prove that the
index [L(fP ) : L(a(p, fP ))] is bounded independently of P for L = Q(μpr ). Let
Γr = Γ1(Np) ∩ Γ0(p

rp). Then by the control theorem as in (C1–2) in Section 1,
dimCp

Sord
k (Γr, ε;Cp) is a constant d independent of k and r, where Sk(Γr, ε;A) is

the space of modular forms with coefficients in A with character ε : Γ/Γpr → A×.
Since ε has values in μpr (Cp), if σ ∈ Aut(Cp/L(a(p, fP ))), then fσ

P is another Hecke
eigenform within the same space Sord

k (Γr, εP ;Cp). Thus

[L(fP ) : L(a(p, fP ))] = #{fσ
P |σ ∈ Aut(Cp/L(a(p, fP )))} ≤ d,

as desired. �

5. Results towards the strong horizontal theorem

We start with

Lemma 5.1. Let W ⊂ Qp be a valuation ring finite flat over Zp with quotient field

F . Let Φ(T ) ∈ W [[T ]], and suppose that there is an infinite subset Ω ⊂ μp∞(Qp)

such that Φ(ζ − 1) ∈ μp∞(Qp) for all ζ ∈ Ω. Then there exists ζ0 ∈ μp∞(W ) and

s ∈ Zp such that ζ−1
0 Φ(T ) = (1 + T )s =

∑∞
n=0

(

s
n

)

Tn.

We shall give two proofs of the lemma. The second more elementary one is due
to Kiran Kedlaya.

First proof. We use the following lemma of Chai (see [Ch1, Theorem 4.2], [Ch2,
Theorem 6.6] and [H10, Theorem 3.6]), which in the simplest case can be stated as
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Rigidity Lemma. Let Z be an integral connected formal subscheme Z of codimen-

sion 1 containing the identity of ̂Gm× ̂Gm/Fp
= Spf( ̂Fp[t, t−1])×Spf( ̂Fp[t′, t′

−1]). If

Z is stable under the diagonal action (t, t′) �→ (tz, t′
z
) for all z in an open subgroup

U of Z×
p , then Z is a formal subtorus of codimension 1.

Making the variable change T �→ ζ−1
1 (T +1)−1 for a ζ1 ∈ Ω (replacing W by its

finite extension if necessary), we may replace Ω by ζ−1
1 Ω � 1; so, rewriting ζ−1

1 Ω
as Ω, we may assume that 1 ∈ Ω. Then Φ(0) = ζ0 ∈ μp∞ . Thus again replacing Φ

by ζ−1
0 Φ, we may assume that Φ(0) = 1.

For σ ∈ Gal(F (μp∞)/F ) with the quotient field F of W , Φ(ζσ − 1) = Φ(ζ − 1)σ.
Writing φ(ζ) = Φ(ζ − 1), the above identity yields φ(ζσ) = φ(ζ)σ. Identifying
Gal(F (μp∞)/F ) with an open subgroup Γ of Z×

p and writing σz ∈ Gal(F (μp∞)/F )
for the element corresponding to z ∈ Γ, we find that

Φ ◦ z(ζ − 1) = Φ(ζz − 1) = Φ(ζσz − 1) = Φ(ζ − 1)σz = z ◦ Φ(ζ − 1).

We find that z ◦ φ = φ ◦ z is valid on the Zariski dense subset Ω of Spec(W [[T ]]);

so, φ as a scheme endomorphism of ̂Gm commutes with the action of z.

Regard W [[T ]] as the affine ring of the formal torus ̂Gm/W = Spf(Ŵ [t, t−1]) (so

that T is given by t− 1). Note that z ∈ Z×
p acts on ̂Gm as a group automorphism

induced by a W -bialgebra automorphism of W [[T ]] sending t = (1 + T ) �→ tz =

(1 + T )z. Take φ ∈ EndW -SCH(̂Gm) sending 1 to 1. Put ̂G := ̂Gm × ̂Gm/W . We

consider the graph Γφ of φ, which is an irreducible formal subscheme Γφ ⊂ ̂Gm×̂Gm

smooth over W . Writing the variable on ̂G as (T, T ′), Γφ is the closed formal
subscheme defined by the principal ideal (t′ − φ(t)). If φ ◦ z = z ◦ φ for all z in an

open subgroup U of Autgp(̂Gm) = Z×
p , then Γφ is stable under the diagonal action

of U on ̂G. Then, extending the scalar from W to the composite ˜W of W and
the ring W (Fp) of Witt vectors with coefficients in the algebraic closure Fp of Fp,
by the rigidity lemma, we find that the reduction modulo m

˜W
of Γφ is a formal

subtorus of ̂G/Fp
.

We regard Φ as an endomorphism φ of W [[T ]] sending 1 + T to Φ(T ). In other
words, f(T )φ = f(Φ(T ) − 1). Applying the above argument to the morphism
φ, we find Φ(T ) ≡ (1 + T )s mod m

˜W
for some s ∈ Zp. The quotient Φ1(T ) =

Φ(T )/(1 + T )s ∈ W [[T ]] again satisfies Φ1(t
z) = Φ1(t)

z for z ∈ U and Φ1(0) = 1.
Then by the same argument as above, Φ1(T ) ≡ (1 + T )s1 mod m

˜W
for some

s1 ∈ Zp. On the other hand, (1 + T )s1 ≡ Φ1(T ) = 1 mod m
˜W

in Fp[[T ]], which
shows that s1 = 0. Since Φ(ζ − 1) ∈ μp∞ for ζ ∈ Ω, Φ1(ζ − 1) ≡ 1 mod mW . Since
there are only finitely many p-power roots of unity congruent to 1 modulo m

˜W
, Φ1

is constant. Since Φ1(0) = 1, we get Φ1 = 1, and Φ(T ) = (1+T )s, as desired. This
fact is mentioned in [Ch2, Remark 6.6.1 (iv) after Theorem 6.6].

Second proof (Kiran Kedlaya). As we have remarked above, we may assume that
1 ∈ Ω and Φ(0) = 1. Note that t = 1 ⇔ T = 0. Thus we are trying to show that
Φ(T ) = (1 + T )s for some s ∈ Zp. In this proof, the residue field F of W is a finite
extension of Fp.

Write the valuation of W as v (and use the same symbol v for an extension of v
to W [μp∞ ]). Normalize v so that v(p) = 1. Suppose that Φ(T ) �∈ W (nonconstant).
Write Φ(T )− 1 =

∑∞
i=1 aiT

i. Since W is a discrete valuation ring, there is a least
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index j > 0 for which v(aj) is minimized. For ε sufficiently small, if v(τ ) = ε,
then v(Φ(τ )− 1) = v(aj) + jε. In particular, for ζ a p-power root of unity, taking
τ = ζ − 1, we have v(ζ − 1) = p−m/(p − 1) for some nonnegative integer m, so
we have infinitely many relations of the form jp−m/(p− 1) + v(aj) = p−n/(p− 1).
Then, we have m → ∞ ⇒ n → ∞ (by continuity and nonconstancy of τ �→ Φ(τ ));
so, taking limits under m → ∞ yields v(aj) = 0. Also, j must be a power of p, say
j = ph, and for m large we have n = m− h.

Since v(aj) = 0, aj mod mW is in F×. For the moment, assume F = Fp. That
is, aj reduces to an integer b0 coprime to p in the residue field of W . We can thus
replace Φ(T ) by Φ1(T ) defined by Φ(T ) = Φ1(T ) × (1 + T )s for some s (namely
s = b0j = b0p

h0 for h0 := h) so as to increase the least index j for which v(aj) = 0.

Indeed, writing Φ(T ) =
∑j

n=0 anT
n + T j+1f(T ) with f(T ) ∈ W [[T ]], we have

j
∑

n=0

anT
n ≡ 1 + b0T

ph0 ≡ (1 + T ph0
)b0 ≡ (1 + T )s mod (mW + (T j+1)).

We have Φ1(T ) ≡ 1 + T j+1f(T )(1 + T )−s ≡ 1 mod (mW + (T j+1)). Thus if we
write j1 for the j for this new Φ1, then j1 > j, and j1 = ph1 with h1 > h0 and
aj1 ≡ b1 mod mW for b1 ∈ Z. Repeating this, for s =

∑∞
k=0 bkp

hk ∈ Zp,

Φ(T )

(1 + T )s
− 1 =

∑

n=1

anT
n

no longer has a least j with minimal v(aj); so, Φ(T )/(1 + T )s = 1, and we get
Φ(T ) = (1 + T )s.

Suppose now that F �= Fp. We have the Frobenius automorphism φ fixing
Zp[μp∞ ] ⊂ W [μp∞ ]. Letting φ acts on power series by (

∑

n anT
n)φ =

∑

n a
φ
nT

n, we
find Φφ(tφ) = Φ(t)φ. Since Φ(ζ − 1) is a p-power root of unity for ζ in an infinite
set Ω ⊂ μp∞ , we have Φφ(ζ − 1) = Φφ(ζφ − 1) = Φ(ζ − 1)φ = Φ(ζ − 1). Since

Ω ⊂ ̂Gm is Zariski dense, we find that Φφ = Φ, which shows that Φ ∈ Wφ[[T ]] for
the subring Wφ fixed by φ. Note that the residue field of Wφ is Fp, and the earlier
argument applies to Φ ∈ Wφ[[T ]]. �

Take a prime l with αl,P �= 0 for some P . If l|Np, put A = a(l) (the image of U(l)
in I), and otherwise, fix a root A of det(T −ρI(Frobl)) = 0. Replacing I by its finite
extension, we assume that A ∈ I. Recall that AP = P (A). Let X = γ−1(1+ x)− 1
be the variable of Λ = W [[Γ]] centered at weight 1. Let Q be the quotient field of
Λ and fix its algebraic closure Q. We embed I into Q and regard it as a subring
of Q. Take the pn-th root X1/pn

of X in Q and consider W [μpn ][[X]][X1/pn

] ⊂ Q

which is independent of the choice of X1/pn

.
Recall, as explained after Conjecture 3.4, that if a prime l is a factor of N (so

l �= p) and if fP (or more precisely the automorphic representation generated by
fP ) is Steinberg (resp. super-cuspidal) at l for an arithmetic point P , then all
members of F are Steinberg (resp. super-cuspidal) at l. Since αl,P �= 0 for some
P , fP is not super-cuspidal at l for any arithmetic P .

Proposition 5.2. Let the notation be as above and write K := Q[μp∞ ] and LP =
K(AP ) for each arithmetic point P with k(P ) = k. Fix a rational prime l. Suppose
that there exists an infinite set A of arithmetic points with k(P ) = k ≥ 2 satisfying
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one of the following two conditions:

(i) LP /K is a finite extension of bounded degree independently of P ∈ A, and
in LP /K, the prime l is at worst tamely ramified for all P ∈ A.

(ii) The composite of LP for all P ∈ A is a finite extension of Q[μp∞ ].

Then we have A ∈ W [μpn ][[X]][(1 +X)1/p
n

] ∩ I in Q for 0 ≤ n ∈ Z, and we have
the following two possibilities:

(1) There exist a Weil l-number α1 of weight 1 and a root of unity ζ0 such
that AP = αl,P = ζ0〈α1〉k(P )−1; in other words, A(X) = ζ0(1 + X)s for

s =
logp(α1)

logp(γ)
with the Iwasawa p-adic logarithm logp. This is the case where

the automorphic representation generated by fP for an arithmetic point P
with k(P ) > 2 or with εP �= 1 is in the principal series at l.

(2) We have l �= p, and there exists a root of unity ζ0 such that A(X) =

ζ0l
−1/2(1 + X)s for s =

logp(l)

2 logp(γ)
. This is the case where the automorphic

representation generated by fP for an arithmetic points P is Steinberg at
l �= p.

Proof. We give a proof assuming (i), since the proof of the other case is almost
identical using Lemma 2.3 in place of Corollary 2.5. By Corollary 2.5, we have only
a finite number of Weil l-numbers of weight k in

⋃

P∈A LP up to multiplication
by roots of unity, and hence AP for P ∈ A hits one of such Weil l-numbers α of
weight k − 1 infinitely many times, up to roots of unity, unless the automorphic
representation generated by fP is Steinberg at l �= p. If fP0

is Steinberg at l �= p
for one arithmetic P0, fP is Steinberg for all arithmetic P . This fact, as already ex-
plained, follows either from the Λ-adic version of the theory of new forms (cf. [H88,
Theorem 3.6]) or from the rigidity of local Galois deformations at l in characteristic
0 (cf. [HMI, Theorem 3.75]) or from the fact that we can shift the family F to
automorphic forms on a quaternion algebra ramified at l by the Jacquet-Langlands
correspondence (cf. [H00, Section 7]). Thus AP = l−1/2l(k(P )−1)/2 up to roots of
unity for all P ∈ A (see [MFM, Theorem 4.6.17]). In this case, we put α = l(k−2)/2.

Suppose for the moment that I = W [[X]] for a discrete valuation ring W finite
flat over Zp (for the variable X centered at weight 1); so, n = 0. After a variable
change X �→ Y = γ1−k(1 + X) − 1, we have A(Y )|Y=0 = A(X)|X=γk−1−1. Note
that |α|p = 1. Let Ω1 = {εP (γ)|P ∈ A}, which is an infinite set in μp∞(K). Let
Φ1(Y ) := α−1A(Y ) = A(γ1−k(1 + X) − 1) ∈ W [[Y ]] and L be the composite of
LP for P running through A. The subset Ω2 of Ω1 made up of ζ ∈ Ω1 such that
Φ1(ζ−1) is a root of unity in L is an infinite set. By Lemma 2.6, the group of roots
of unity of L contains μp∞(K) as a subgroup of finite index, and we find an infinite
subset Ω ⊂ Ω2 and a root of unity ζ1 such that {Φ1(ζ − 1)|ζ ∈ Ω} ⊂ ζ1μp∞(K).

Then Φ = ζ−1
1 Φ1 satisfies the assumption of Lemma 5.1, and for a root of unity ζ,

we have A(Y ) = ζα(1 + Y )s1 for s1 ∈ Zp, and A(X) = ζα(γ1−k(1 + X))s1 . Let

X = ζ ′γk′−1 − 1 for ζ ′ ∈ μp∞(K). Then A(ζ ′γk′−1 − 1) = ζα(ζ ′γ−k+k′
)s1 , which is

equal either to a Weil l-number of weight k′ − 1 (the case of principal series at l)

or to a root of unity ζ ′′ times l(k
′−2)/2 (the case of Steinberg representation at l).

In the latter case, taking the logarithm of ζα(γ−k+k′
)s1 = ζ ′′l(k

′−2)/2, we find

s1 =
logp(l)

2 logp(γ)
.
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This shows that l = p is impossible, since fP generates an automorphic represen-
tation principal at p if k(P ) > 2 by p-ordinarity. In the former case, take k′ > 2.
Then

α1 :=
A(γk′ − 1)

A(γk′−1 − 1)
=

ζα(ζ ′γ−k+k′+1)s1

ζα(ζ ′γ−k+k′)s1
= γs1 ,

which is an algebraic number α1 independent of k′. Note that for k′ > 2, α1 is a
ratio of Weil l-numbers of weight k′ − 1 and k′, and hence α1 is not a root of unity.

Thus we have s1 = log(α1)
logp(γ)

. We now equate

ζζαγ
logp(α)/ logp(γ)(γ1−k(1 +X))logp(α1)/ logp(γ) = ζ0(1 +X)logp(α1)/ logp(γ),

where α = ζαγ
logp(α)/ logp(γ) for roots ζα and ζ0 of unity. By putting X = 0, we get

ζζαγ
logp(α)/ logp(γ)+(1−k)(logp(α1)/ logp(γ)) = ζ0,

which shows that

ζ0 = ζζα and (k − 1)s1 = logp(α)/ logp(γ).

We conclude that α1 = k−1
√

〈α〉 for 〈α〉 = αζ−1
α , which is a Weil l-number of weight

1.
We now assume that A ∈ W [[X]][(1 +X)1/p

n

]. Since

Spf(W [[X]][(1 +X)1/p
n

]) ∼= ̂Gm
t
→tp

n

−−−−→ ̂Gm = Spf(W [[X]]),

by applying the same argument as above to W [[X]][(1 +X)1/p
n

], we get A(X) =

ζ0(1 +X)s1 for s1 = logp(α1)/ logp(γ), where α1 = k−1
√

〈α〉 for 〈α〉 = αζ−1
α .

We thus need to show that A ∈ W [μpn ][[X]][(1+X)1/p
n

] for sufficiently large n,
and then the result follows from the above argument. Again we make the variable
change X �→ Y that we have already done. Replacing A by α−1A for a suitable
Weil l-number α of weight k (up to μp∞(Qp)), we may assume that there exists an

infinite set A0 ⊂ Spec(I)(Qp) such that P ∩ Λ = (1 + Y − ζP ) for ζP ∈ μp∞(Qp)

and AP ∈ μp∞(Qp) for all P ∈ A0. By another variable change (1+Y ) �→ ζ(1+Y )

for a suitable ζ ∈ μp∞(Qp) (as explained in the beginning of the first proof of
Lemma 5.1), we may further assume that we have P0 ∈ A0 with ζP0

= 1 and
AP0

= 1 (specifying α well in α · μp∞(Qp)). We now write J for the subalgebra
of I topologically generated by A over Λ = W [[Y ]]. Then we have J = Λ[A] ⊂ I.
Replacing W by its finite extension, we may assume that W is integrally closed
in J. Since A is a unit in I, we may embed the irreducible formal scheme Spf(J)

into ̂Gm× ̂Gm = Spf( ̂W [t, t−1, t′, t′−1]) by the surjective W -algebra homomorphism

π : ̂W [t, t−1, t′, t′−1] � J sending (t, t′) to (1 + Y,A). Write Z ⊂ ̂Gm × ̂Gm for the

image of Spf(J). Thus we are identifying Λ with Ŵ [t, t−1] by t ↔ 1 + Y . Then

P0 ∈ Z is the identity element of (̂Gm × ̂Gm)(Qp). Since A is integral over Λ, it is

a root of a monic polynomial Φ(t′) = Φ(t, t′) = t′
d
+ a1(t)t

′d−1
+ · · ·+ ad(t) ∈ Λ[t′]

irreducible over the quotient field Q of Λ, and we have J ∼= Λ[t′]/(Φ(t, t′)). Thus

J is free of rank d over Λ; so, π : Z → ̂Gm = Spf(Λ) is a finite flat morphism of
degree d. We let σ ∈ Gal(Qp/Qp) act on Λ by

∑∞
n=0 anY

n �→
∑∞

n=0 a
σ
nY

n and on

Λ[t′] by
∑

j Aj(Y )t′
j �→

∑

j A
σ
j (Y )t′

j
for Aj(Y ) ∈ Λ. Note that Φ(ζP , AP ) = 0 for

P ∈ A0. Since AP ∈ μp∞(Qp), A
σ
P = A

χ(σ)
P for the p-adic cyclotomic character

χ : Gal(Qp/Qp) → Z×
p . Since W is a discrete valuation ring, for its quotient field



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

HECKE FIELDS OF ANALYTIC FAMILIES OF MODULAR FORMS 71

F , the image of χ on Gal(Qp/F ) is an open subgroup U of Z×
p . Thus we have

Φσ(ζ
χ(σ)
P , A

χ(σ)
P ) = Φ(ζP , AP )

σ = 0 for all σ ∈ Gal(Qp/Qp) and if σ ∈ Gal(Qp/F ),
Φσ = Φ. Thus we get

Φ(ζ
χ(σ)
P , A

χ(σ)
P ) = Φ(ζP , AP )

σ = 0 for all P ∈ A0.

In other words, for the integral closed formal subscheme Zs ⊂ ̂Gm× ̂Gm defined by
Φ(ts, t′

s
) = 0, we haveA0 ⊂ Z∩Zs if s ∈ U . Since Z and Zs are finite flat over Λ and

A0 is an infinite set, we conclude that Z = Zs. Thus Z ⊂ ̂Gm× ̂Gm is stable under
the diagonal action (t, t′) �→ (ts, t′

s
) for s ∈ U . We may assume that U = 1+ prZp

for r > 0. Since Z is flat of relative dimension 1 over W , replacing W by its finite

extension if necessary, we find in Z a W -point (t0, t
′
0) ∈ ̂G2

m(W ) of infinite order
(indeed, (t0, t

′
0) = (Q,A(Q)) for an arithmetic point Q with k(Q) �= k does the job).

Thus we have an infinite set Ξ =
{

(ts0, t
′s
0)
∣

∣s ∈ U
}

=
{

(t0t
pru
0 , t′0t

′pru
0 )

∣

∣u ∈ pnZp

}

inside Z. By translation τ : (t, t′) �→ (tt−1
0 , t′t′−1

0 ), we find that τ (Z) contains

Ξ0 =
{

(tp
ru

0 , t′
pru
0 )

∣

∣u ∈ pnZp

}

.

Since Z is integral of codimension 1 finite flat over Spf(Λ), τ (Z) is the Zariski

closure of the infinite subgroup Ξ0 of ̂G2
m. Then τ (Z) must be a formal subgroup of

̂G2
m of codimension 1, and Z is a coset (t0, t

′
0)τ (Z) in ̂Gm × ̂Gm. Since Z contains

the identity P0, we must have τ (Z) = Z. Since π : Z → Spf(Λ) = ̂Gm is finite flat

of degree d, π : Z → ̂Gm is an isogeny; so, Z is a formal multiplicative group and is

a formal subtorus of ̂G2
m. In particular, we obtain Z/Ker(pn : Z → Z)

π
= ̂Gm and

hence d = pn for n ≥ 0. Thus

J = Λ[A] ⊂ W [μpn ][[Y ]][(1 + Y )p
−n

] = W [μpn ][[X]][(1 +X)p
−n

],

as desired. This finishes the proof. �

Corollary 5.3. If a(p, fP ) for an arithmetic point P with k(P ) = 2 is a root of
unity (that is, the automorphic representation generated by fP is Steinberg at p),
then the extensions MH,A(F) and QH,k(F) are infinite extensions of Q(μp∞) for
any integer k ≥ 2.

Proof. Since QH,k(F) ⊃ MH,A(F), we prove infiniteness of [MH,A(F) : Q(μp∞)]. If
MH,A(F) is a finite extension of Q(μp∞), we are in Case (1) of the above proposition
for l = p. Then a(p, fP ) for a weight 2 arithmetic point P is a weight 1 Weil p-
number that is not a root of unity. Thus if we have one arithmetic point with a root
of unity a(p, fP ), then MH,A(F) has to be an infinite extension of Q(μp∞). �

6. Proof of the strong horizontal theorem

Let X be the variable of W [[Γ]] centered at weight 1. We start with a couple
of preliminary results. Consider the endomorphism σs : (1 + X) �→ (1 + X)s =
∑∞

n=0

(

s
n

)

Xn of a power series ring B[[X]] over B. Take B = W and write σ = σ2.
Let G be a group.

Lemma 6.1. Let the notation be as above. Let A be an integral domain over
W [[X]] of characteristic different from 2 with quotient field F . Assume that the
endomorphism σ2 on W [[X]] extends to an endomorphism σ of the field F . Let
ρ : G → GL2(F ) be a representation, and put ρσ := σ ◦ ρ. Let H ⊂ G be a



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

72 HARUZO HIDA

subgroup of G, and put ρH := ρ|H . Suppose we have a subgroup H of G such that
Tr(ρσH) = Tr(ρ2H). Then ρH is not absolutely irreducible.

Here ρ2H : H → GL2(F ) is the map sending h to the square of ρH(h).

Proof. We suppose that ρH is absolutely irreducible over F , and we try to get ab-
surdity. We have the identity Tr(ρσH) = Tr(ρ2H) = Tr(ρsym⊗2

H ) − det(ρH) for the

symmetric second tensor representation ρsym⊗2
H of ρH . Over F , by absolute irre-

ducibility, we have the identity of semi-simplification: (ρsym⊗2
H )ss ∼= ρσH ⊕ det(ρH).

Tensoring det(ρ)−1 and writing Ad(ρH) for ρsym⊗2
H ⊗ det(ρH)−1, we get

Ad(ρH)ss ∼= (ρσH ⊗ det(ρ)−1)⊕ 1.

The representation Ad(ρH) can be realized on the space

V := {x ∈ EndF (F
2)|Tr(x) = 0}

with the action Ad(ρH)(h)x = ρH(h)xρH(h)−1. Since ρσH is absolutely irreducible,
we have either 1 as a subrepresentation of Ad(ρH) or a quotient of Ad(ρH). Since
Ad(ρH) is self-dual under the trace pairing 〈x, y〉 = Tr(xy) for x, y ∈ V (as A is not
of characteristic 2), in the latter case of having 1 as a quotient, by duality, 1 is also
a subrepresentation of Ad(ρH). Thus we have 1 ↪→ Ad(ρH) as H-modules. In other
words, we have a nontrivial element 0 �= φ ∈ EndA[H](ρH) such that Tr(φ) = 0.

Since ρH is absolutely irreducible, φ has to be a scalar multiplication by z ∈ A×

by Schur’s lemma; so, Tr(φ) = 2z �= 0, a contradiction (unless A has characteristic
2). �

Suppose p > 2. Let Q be the quotient field of W [[X]]; so, σ := σ2 extends
to a field automorphism of Q uniquely, which we denote again by σ. Then by the
Steinitz theorem (e.g., [BAL, V.4.2]), σ extends to an automorphism of an algebraic
closure Q of Q. Let G := Gal(Q/Q). Taking A = Q and embedding I into Q as
the quotient field of I is a finite extension of Q, we can apply the above lemma to
ρI. Now we want to make a choice of the subgroup H. Let I be an open ideal of
the profinite ring I and put

H = HI =
{

h ∈ G
∣

∣Tr(ρI(hτ )) ≡ Tr(ρI(τ )) ≡ Tr(ρI(τh)) mod I for all τ ∈ G
}

.

This group is the stabilizer of the trace map modulo I (i.e., the kernel of the pseudo-
representation associated to Tr(ρ); see [MFG, §2.2]); so, it is a normal subgroup
of Gal(Q/Q), and Tr(h) mod I for h ∈ H only depends on the coset hH = Hh.
Since I is an open ideal of I, Tr(ρI) mod I has values in the finite ring I/I; so,
its stabilizer HI is an open subgroup of Gal(Q/Q). If ρI has values in GL2(I)
with absolutely irreducible ρI mod mI, then HI is equal to Ker(ρI mod I) (by
the theory of pseudo-representation; see [MFG, §2.1.7 and §2.2.1]). By the above
trace identity: Tr(ρI(hτ )) ≡ Tr(ρI(τ )) ≡ Tr(ρI(τh)) mod I, taking τ = hn, we
get Tr(ρI(h

n+1)) ≡ Tr(ρI(h
n)) mod I for all n ∈ Z, which implies Tr(ρI(h

n)) ≡ 2
mod I (for any n ∈ Z) if h ∈ HI . Since 2 · det(ρI(h)) = Tr(ρI(h

2)) − Tr(ρI(h))
2,

as p > 2, we have det(T − ρI(h)) ≡ (T − 1)2 mod I if h ∈ HI ; so, the eigenvalues
α of ρI(h) satisfy (α − 1)2 ≡ 0 mod I as long as h ∈ HI and p �= 2. We write
ρI = ρI|HI

.

Lemma 6.2. Let the notation be as above. Let F be a p-adic analytic family of slope
0 with coefficients in I with Galois representation ρ := ρI : Gal(Q/Q) → GL2(Q).
Write σ for an extension of σ2 on W [[X]] to the algebraic closure of the field of
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fractions of I. If Tr(ρσI ) = Tr(ρ2I) for an open ideal I � I, then there exists an

imaginary quadratic extension M/Q and a character ϕ : Gal(Q/M) → I× such that

ρ ∼= IndQM ϕ over Q.

Proof. By Lemma 6.1 applied to H = HI and ρI = ρ|HI
, ρI is reducible. Write

ρI = ( ε ∗
0 δ ), extending the scalar I if necessary. Since ρ extends ρI , g �→ ρhI (g) :=

ρI(hgh
−1) = ρ(h)ρI(g)ρ(h)

−1 is equivalent to ρI for all h ∈ Gal(Q/Q). Thus
G := Gal(Q/Q) acts on {δ, ε} by inner conjugation:

(6.1)
(

εh ∗
0 δh

)

= ρ(h) ( ε ∗
0 δ ) ρ(h)

−1.

Let Δ ⊂ G be the stabilizer of δ. Then M = Q
Δ
is at most a quadratic extension of

Q. If δ �= ε or ρI is nonsemisimple, by (6.1), ρΔ = ρ|Δ has to be upper triangular.
Thus the two characters extend to δ, ε : Δ → I×, and ρssΔ = δ ⊕ ε. Since ρ is
absolutely irreducible (over the quotient field Q of I), [G : Δ] = 2 and by Frobenius

reciprocity, ρ ∼= IndQM δ ∼= IndQM ε. As already remarked in (CM1) in Section 1, this
can happen only for imaginary M for Galois representations associated to a p-adic
analytic family of modular forms (of slope 0).

Suppose that δ = ε. Let D be the decomposition group at p. Then ρD := ρ|D is
reducible with two distinct diagonal characters (by (Gal)): one trivial and another
ε giving the W [[X]]-algebra structure (centered at weight 1) of I (see (Gal)). In
particular, ε is of infinite order. Thus we may assume that δ restricted toD is trivial
and ε restricted to D has infinite order agreeing with ε. Then it is impossible to
have δ = ε, because I/I is a finite ring. �

Proof of Theorem 3.3. Let K := Q(μp∞) and LP = K(αl,P ) for a prime l. By
Corollary 4.2, we need to prove that [MH,A(F) : K] < ∞ ⇒ F has CM. Suppose
[MH,A(F) : K] < ∞. For each arithmetic P with k(P ) = k, by Lemma 4.3,

[K(fP ) : K(a(p, fP ))] < d

for a positive integer d independent of P . Thus [LP : K] < 2d[MH,A(F) : K] for
each prime l. Therefore, any odd prime l > 2d[MH,A(F) : K] is at most tamely
ramified in LP /K. Take such an odd prime l > 2d[MH,A(F) : K] prime to Np. Let
ρ = ρI be the Galois representation associated to F . Thus by Proposition 5.2, we
have Tr(ρ(Frobl)) = ζ(1+X)a+ζ ′(1+X)a

′
for two roots of unity ζ, ζ ′ and a, a′ ∈ Qp

with denominator bounded independent of l (i.e., apB ∈ Zp and a′pB ∈ Zp for an
integer B ≥ 0 independent of l).

Take an arithmetic P0 ∈ Spec(I)(Qp) to see that the order of ζ is bounded

independent of l. Let α be a root of det(X − ρP0
(Frobl)) = 0 in Qp. Then

[Q(fP0
, α) : Q(fP0

)] ≤ 2. Write m = [Q(fP0
) : Q], ζ = ζpζ

(p) with ζp ∈ μp∞ and

ζ(p) of order prime to p. Since (1+X)s ≡ 1 mod mI, the order of ζ
(p) is bounded by

the degree of the residue fields modulo p of the integer ring of Qp(fP0
, α). Thus the

order of ζ(p) is bounded by p2m. Note that P0((1+X)a) = (1+X)a mod P0 is in a
finite extension L of Qp depending only on the denominator pn of a. For example,

if P0 contains (1 + X) − γk, L ⊂ Qp[γ
a] = Qp[

pn
√

(1 + p)] ⊂ Qp[
pB
√

(1 + p)] for
γ = 1 + p. We have ζp ∈ L[ζp] whose degree is bounded by 2m[L : Qp]; so, the
order of ζp is also bounded independent of l. Replacing W by its finite extension,
we may assume that all such roots of unity are in W .
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Let I = m2N
I

+(X) for a sufficiently large N and F be the fixed field of HI . Then

I/I ∼= W/m2N
W . We have Tr(ρ(Frobl)) = ζf (1 +X)fa + ζ ′

f
(1 +X)fa

′ ≡ ζf + ζ ′
f

mod I, and det(T − ρ(Frobl)) ≡ (T − 1)2 mod I for a prime l|l of F of residual
degree f . So (ζf − 1)2 ≡ 0 mod m2N

W . Since any square 0 element in W/m2N
W

is contained in mN
W /m2N

W , we have ζf ≡ 1 mod mN
W ; so, taking N large, we may

assume that ζf = ζ ′f = 1. This shows that Tr(σs(ρ(Frobl))) = Tr(ρ(Frobl)
s) for all

0 �= s ∈ Zp. Thus by the Chebotarev density theorem, we get Tr(σs(ρI)) = Tr(ρsI)

over Gal(Q/F ). In particular, we have Tr(σ2(ρI)) = Tr(ρ2I). Then by Lemma 6.2,

ρ = IndQM ϕ for an imaginary quadratic field M . Thus F has to be a CM family. �

Here is an obvious corollary of the above proof.

Corollary 6.3. Let K := Q[μp∞ ] and A ⊂ Spec(I)(Cp) be an infinite set of arith-
metic points P with fixed weight k(P ) = k ≥ 2. Unless F has complex multiplica-
tion, lim supP∈A[K(a(p, fP )) : K] = ∞.

Indeed, if lim supP [K(a(p, fP )) : K] < ∞, the index [LP : K] (P ∈ A) is bounded
for A ∈ I as in Proposition 5.2. We can still apply the above proof and conclude that
F has complex multiplication. We also conclude that lim supP [K(fP ) : K] = ∞ as
in the horizontal theorem in the introduction.

7. Results towards vertical conjectures

We start with

Lemma 7.1. Let f ∈ S2(Γ0(Npr+1), ψ) (p � N) be a p-ordinary Hecke eigenform
with exact level Npr+1 for r ≥ 0. Then, f is old at p if and only if r = 0,
ψ|(Z/pZ)× = 1 and f is associated to a Hecke eigenform of level N . Suppose either
that the p-component ψp := ψ|

Z
×
p

is nontrivial or that f is old at p. Then Q(f)

is a CM field, and a(p, f) is a Weil p-number of weight 1. Let R (resp. R+) be
the integer ring of Q(a(p, f)) (resp. the maximal real subfield of Q(a(p, f))). If
either p is unramified in Q(a(p, f))/Q or a(p, f) generates Rp over R+

p , there exists

a p-ordinary CM-type Σp = {P|p} of Q(f) such that (a(p, f)) =
∏

P∈Σc
p
Pe(P) for

the ramification index e(P) of P/(p).

Proof. Since f is ordinary at p, the p-component πp of the automorphic representa-
tion generated by f is either in principal series π(α, β) or a Steinberg representation
σ(| · |−1

p α, α) for an unramified character α of Q×
p (with α(p) = a(p, f)). As is well

known, f is old if and only if β is unramified (so, f comes from a primitive new
form of prime-to-p level). By the congruence relation (proved by Eichler, Shimura,
Igusa and Deligne/Rapoport; see [IAT] and [GME, Section 4.2]), a(p, f) is a Weil p-
number of weight 1. Then the rest of the assertions follow from Proposition 2.1. �

Write MV,r(F) = MV,Ar
(F) for the set Ar of all arithmetic points of Spec(I)(Cp)

with r(P ) ≤ r.

Proposition 7.2. Let F = {fP }P∈Spec(I)(Qp)
be a p-adic analytic family of classical

p-ordinary Hecke eigenforms and A ⊂ Spec(I)(Qp) be an infinite set of arithmetic
points P with r(P ) ≤ r for a fixed r ≥ 0 such that MV,A(F) is a finite extension
over Q. Assume that for P0 ∈ A,

(1) α0 = aP0
(p) is a Weil p-number of weight k(P0)− 1,
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(2) Σα0
=

{

σ : Q(α0) ↪→ Q
∣

∣|ip(ασ
0 )| = 1

}

is a CM type of Q(α0).

Then there exist a Weil p-number α of weight 1 with |ip(α)|p = 1 such that a(p)P =

ζ〈α〉k(P )−1 for a root of unity ζ for all arithmetic P with k(P ) ≥ 2, where 〈α〉 =
expp(logp(ip(α))) for the Iwasawa p-adic logarithm logp. In particular, MV,r(F) is
a finite CM extension of MV,A(F).

Proof. In order to give a simple sketch of the proof, suppose first that M :=
MV,A(F) is an imaginary quadratic field. Thus Σα0

is made of a single element
ι = ip|M , and for each k, there exists at most one Weil number αk ∈ M of weight

k (up to roots of unity in M) such that |αk|p = 1. In M , (αk) = p
k for the prime

ideal p of M corresponding to ip|M . Fix such a k. Taking a k-th root α = k
√
αk,

we have αl = αl up to roots of unity for all l as (αl) = p
l.

Since A is an infinite set, there exists an infinite sequence P1, P2, . . . , Pn, . . . in

A with increasing weight k(P1) < k(P2) < · · · such that (aPj
(p)) = p

k(Pj)−1 for all
j > 0. Put

〈α〉 = expp(
1

k(P0)− 1
logp(a(p, fP0

))) = expp(logp(α)).

Since (aPj
(p)) = p

(k(Pj)−1), aPj
(p)/〈α〉k(Pj)−1 is a Weil number of weight 0; that is,

it is an algebraic integer with all its conjugates having absolute value 1. Then by
Kronecker’s theorem, we find aPj

(p) = ζPj
〈α〉k(Pj)−1 for a root of unity ζPj

. Note
that 〈α〉 is contained in a finite extension M ′/M . Since there are finitely many
roots of unity in M ′, we have only finitely many possibilities for ζPj

. Therefore,
replacing {Pj}j by its subsequence, we find an infinite sequence P1, P2, . . . , Pn, . . .

of increasing weights such that aPj
(p) = ζ〈α〉k(Pj)−1 for all j = 1, 2, . . . for a fixed

root of unity ζ. We have a power series Φα(X) ∈ W [[X]][(1 + X)1/p
n

] (for a
suitable n ≥ 0) with coefficients in a discrete valuation ring W finite flat over Zp

such that Φα(γ
k − 1) = ζ〈α〉k for all integers k. Indeed, Φα(X) = ζ(1 + X)s for

s = logp(α)/ logp(γ). Since M is an imaginary quadratic field in which p splits into

(p) = pp, we have Mp = Qp and hence logp(α) =
log(aP0

(p))

k(P0)−1 ∈ Mp = Qp. Thus

s ∈ Qp, and pn is the denominator of s. Since F is an ordinary family, there exists
an element A ∈ I such that a(p, fP ) = (A mod P ) for all height 1 primes P of
I containing (1 + X − γk(P )). Thus we find A ≡ Φα mod Pj for infinitely many
distinct primes Pj ; so, A = Φα, as desired.

We now treat the general case where M may not be an imaginary quadratic
field. Let K ⊂ Q be a number field with integer ring O. Consider O ⊗Z K.
Then O ⊗Z K is a product of fields σ(O)K ⊂ Q indexed by a set of embeddings
S := {σ : O ↪→ Q}. Take the base ring W containing O. Then I ⊗Z K contains
O ⊗Z K, and I⊗Z K decomposes accordingly: I⊗Z K =

∏

σ∈S Iσ. Regard I⊗Z K

as a K-algebra from the right factor (and K is embedded in Qp by ip). Note that
I ⊗Z K = I ⊗Zp

Zp ⊗Z K = I ⊗Zp
Kp for Kp = Zp ⊗Z K. For an arithmetic prime

P , we have Z[fP ] := Z[aP (n)|n = 1, 2, . . . ] ⊂ I/P . Then Z[fP ] ⊗Z K ⊂ I/P ⊗Z K
as K is Z-flat. On the other hand,

Z[fP ]⊗Z K = Q(fP )⊗Z K ∼=
∏

τ :Q(fP )↪→Qp

ip(τ (Q(fP ))K).

The composite τ (Q(fP ))K is taken in Qp by sending it by ip inside Qp. For some
τ (for example, complex conjugation τ = c), we may have |ip(τ (aP (p)))|p < 1.
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Let us give more details why this strange phenomenon: |ip(τ (aP (p)))|p < 1 could
occur. Suppose K/Q is a Galois extension with O ⊂ W . Then writing V = K ∩W
(the valuation ring corresponding to ip : K ↪→ Qp), we have

V ⊗Z V ⊂
∏

σ∈Gal(K/Q)

σ(V )V.

Let eσ for the idempotent of σ(V )V . Writing DV ⊂ Gal(K/Q) for the decompo-
sition subgroup of V , unless σ ∈ DV (i.e., σ(V ) = V ), σ(V )V = K. Since V is
embedded in hk(P ),ψP

, we regard eσ ∈ hk(P ),ψP
⊗Z V . Since U(p) is invertible in

hk(P ),ψP
, the image of eσ(U(p)⊗ 1) is invertible in K = σ(V )V , but that does not

mean that eσ(U(p)⊗ 1) is a p-adic unit. Define

EP = lim
n→∞

(U(p)⊗ 1)n!

under the p-adic topology TP of hk(P ),ψP
⊗Z V inducing the natural topology on

1⊗ V ⊂ hk(P ),ψP
⊗Z V . Then EP is orthogonal to eσ if eσ(U(p)⊗ 1) is p-adically

nilpotent under the p-adic topology TP of hk(P ),ψP
⊗Z V . The idempotent eP =

limn→∞ U(p)n! in hk(P ),ψP
(for ψP = ψk(P )εP ) is only defined over Q; so, eP may

not commute with some σ. In other words, we could have eP ⊗ 1 �= EP , and

EP =
∑

τ :|ip(τ(aP (p)))|p=1

eτ .

We can embed h into
∏

P∈A hk(P ),ψP
⊂

∏

P∈A hk(P ),ψP
for any infinite set A of

arithmetic points P of W [[T ]] sending T (n) to diagonal T (n) in the product of the
right-hand side. The tensor product h⊗ZK is embedded in

∏

P (hk(P ),ψP
⊗ZK). We

write E =
∏

P EP , which is an idempotent of
∏

P (hk(P ),ψP
⊗Z K) but may not be

in (
∏

P hk(P ),ψP
)⊗Z K. The closure ĥ⊗Z K of h⊗Z K inside

∏

P (hk(P ),ψP
⊗Z K)

contains E (as E = limn→∞ U(p)n! ⊗ 1), and E(ĥ⊗Z K) is free of finite rank

over W [[T ]][ 1p ] (though ĥ⊗Z K could be huge). Each irreducible component of

E(ĥ⊗Z K) gives rise to another p-adic analytic family of slope 0.
Pick an arithmetic point P , and write α = aP (p). Take an irreducible component

Spec(I◦σ) of Spec(Iσ)∩Spec(E(ĥ⊗Z K)). Let Pτ be a factor of P ⊗ZK ⊂ I⊗ZK =
∏

σ∈S Iσ corresponding to I◦σ. Regarding Pτ : I◦σ → Qp, we have Pτ (α) = τ (α) and

fPτ
= fτ

P . Since Iσ ⊂ E(ĥ⊗Z K), we have |τ (α)|p = 1. The image aσ(p) of a(p)⊗1
in Iσ modulo Pτ gives the p-adic unit τ (aP (p)); so, aσ(p) is a unit in the integral
closure of W [[T ]] in Iσ.

Here is a more down-to-earth approach/proof of the fact that I◦σ above gives
rise to another analytic family Fσ containing fτ

P . Start with another arithmetic

(Q : I → Qp) ∈ Spec(I)(Qp), but regarding Q as a point of Spec(I)(Qp), I/Q has

a unique embedding I/Q ⊂ Qp induced by Q : I → Qp. Then I◦σ/Qτ ′ ⊂ I/Q⊗Z K

for the corresponding Qτ ′ ∈ Spec(I◦σ)(Qp). Indeed, tensoring K with the exact
sequence Ker(Q) ↪→ I � Im(Q), we get another exact sequence:

Ker(Q)⊗Z K ↪→
∏

σ

Iσ � Im(Q)⊗Z K,

and Im(Q)⊗ZK contains σ(K)K canonically and τ ′ coincides with σ on K∩Q(fQ)

and induces τ ′ = Qτ ′ |
Q∩W : Q ∩ W ↪→ Qp. Then we have fQτ′ = fτ ′

Q , which is

a classical modular form. It is slope 0 with respect to ip (i.e., with respect to the
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product topology
∏

P TP ) because of E · I◦σ = I◦σ. Thus Fσ = {fτ ′

Q }Q is another

slope 0 family. We rewrite σQ,σ for τ ′. Let πσ : I⊗Z K → I◦σ be the projection. We
have a commutative diagram

I/Q
πσ−−−−→ I◦p/Qτ ′

�

⏐

⏐
∪

�

⏐

⏐
∪

̂K −−−−−→
τ ′=σQ,σ

σ̂(K)K,

where ̂K is the closure of K in I/Q⊗Z Qp and σ̂(K)K is the closure of σ(K)K in
I◦σ/Qτ .

Take K to be the maximal real subfield of M (to avoid complex conjugation c
with |aP (p)c|p < 1). Let Σ be the CM type of M given by

Σ0 =
{

σ : M → Q
∣

∣σ|Q(α0) ∈ Σα0

}

.

Take the starting P to be P0. Then the set I of p-adic places of K is in bijection
to Σ0,p, and σP0,σ|M ∈ Σ0. By the assumption (2), any prime p|p in K splits as

p = PP in M and MP = Kp = M
P
; so, M ⊂ ̂K noncanonically. Since Σ0 is

a CM type of M and since {K ↪→ σ(K)K
∣

∣σ ∈ Σ0} covers all conjugates of K

inside Q, for any σ �= σ′ in I, we find P ∈ A such that σP,σ(αp,P ) �= σP,σ′(αp,P )
as M is generated by {αp,P }P∈A. On the other hand, |ip(σP,σ(αp,P0

))|p = 1 for
all σ ∈ Σ0. Since any two given components of h do not intersect each other at
any of arithmetic points (see [HMI, Proposition 3.78]), we have at least |I| distinct
families: {Fσ}σ∈I . In other words, the set ΣQ of p-adic places of M induced by
{σQ,σ}σ∈I for Q ∈ A is a p-adic CM type of M .

Since there are only finitely many p-adic CM types of M , replacing A by an
infinite subset, we may assume that ΣP is identical (independent of P ) for all
P ∈ A, and write Σp for the set of prime ideals/places over p in K induced by ip ◦σ
for σ ∈ ΣP . This forces (aP (p)) =

∏

p∈Σc
p
pe(p)(k(P )−1) for the absolute ramification

index e(p) of p/(p).
As before we choose an infinite sequence in A,

P1, P2, . . . , Pn, . . . ,

with increasing weight k(P1) < k(P2) < · · · such that

(aPj
(p)) =

∏

p∈Σc
p

pe(p)(k(Pj)−1)

for all j > 0. Then aPj
(p)/〈α〉k(Pj)−1 is a Weil number of weight 0; that is, it

is an algebraic integer with all its conjugates having absolute value 1. Then by
Kronecker’s theorem, we find aPj

(p) = ζPj
〈α〉k(Pj)−1 for a root of unity ζPj

. Note
that 〈α〉 is contained in a finite extension K ′/K. Since there are finitely many
roots of unity in K ′, we have only finitely many possibilities for ζPj

. Therefore,
replacing {Pj}j by its subsequence, we find an infinite sequence P1, P2, . . . , Pn, . . . of

increasing weights such that aPj
(p) = ζ〈α〉k(Pj)−1 for all j = 1, 2, . . . for a fixed root

of unity ζ. By the same argument as before, we conclude A = Φα, as desired. �
Remark 7.1. Let F be the quotient field of W . In the above proof, when M is not
an imaginary quadratic field, Φα is a convergent power series with coefficients in F
convergent over a closed disk Dε of radius 0 < ε ≤ 1 centered at an accumulation
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point P∞ of {Pj |j = 1, 2, . . . } (a priori, Φα is not necessarily in W [[X]] as we do not
know if ip(α) ∈ Z×

p ). Since r(Pj) ≤ r and the Pjs for all j are inside the closed disk
of radius 1 − (1/pr(p − 1)) centered at the origin, we have an accumulation point
P∞. Replacing {Pj}j by an infinite subsequence, we may assume that {Pj}j ⊂ Dε

and limj→∞ Pj = P∞ in Dε. Thus Φα is in the power series ring R = F{{t}}
convergent over Dε which is an affinoid ring over F . Here t = (1+X)−P∞(1+X),
and I is naturally embedded in F{{t}} regarding a ∈ I as an analytic function
on Dε. By the rigid analytic version of the Weierstrass preparation theorem (see
[NAA, §5.2.2 and §6.1.5]), ζΦα − A has finitely many zeros in the closed disk of
radius ε (i.e., the rigid analytic space of R), and hence A = Φα as APj

= Φα(Pj)
for infinitely many j. This then shows that Φα is in the finite extension I/Λ, and

hence Φα = ζ(1 +X)s with s =
logp(α)

logp(γ)
, which has to be in Q×

p (by the argument

in the last paragraph of the proof of Proposition 5.2).

The following corollary shows that MV,r(F) (r < ∞) is an infinite extension if
it is Steinberg (that is, its weight 2 member has abelian variety multiplicative at p;
see [DR, §V.3] and [La, Theorem 7.5]):

Corollary 7.3. Let F be a p-adic analytic family of classical p-ordinary Hecke
eigenforms satisfying the condition (2) of the above proposition. If F contains a
member f2 such that |a(p, f2)| = 1, then MV,r(F) for finite r > 0 is an infinite
extension of Q. More generally, if we find two arithmetic points P with r(P ) ≤
r such that in the maximal totally real subfield of Q(a(p, fP ))/Q the prime (p)
decomposes differently, then MV,r(F) is an infinite extension of Q.

Proof. By the above theorem, if K = MV,r(F) is a finite extension, then a(p, f2)
has to be a Weil number of weight 1, which is not the case if f2 has multiplicative
reduction. IfMV,r(F) is a finite extension, thenQ(a(p, fP )) is a subfield ofMV,r(F);
so, the splitting of the prime p in the real subfield of MV,r(F) is the same in
MV,r(F). Then the second assertion is obvious. �

8. Proof of vertical theorems

We first prove Theorem 3.2. Suppose that K := MV,A(F) is a finite extension
and assume the existence of an arithmetic point P0 as in the theorem. Therefore
the assumption (2) of Proposition 7.2 is met. By Proposition 7.2 (and the re-
mark following its proof), we find a Weil number α of weight 1 and a power series
Φα(X) ∈ W [μpn ][[X]][(1 + X)1/p

n

] such that aP (p) = Φα(εP (γ)γ
k(P )−1 − 1) =

ζ(εP (γ))
logp(α)/ logp(γ)〈α〉k(P )−1 for all arithmetic P , where ζ is a root of unity in-

dependent of P . Then, for any infinite set B of arithmetic points of weight 2, we
find MH,B(F) ⊂ Q(μp∞(p−1))(ζ, α), which is a finite extension of Q(μp∞). Then by
the strong horizontal theorem, F has complex multiplication. The converse follows
from Corollary 4.2. This finishes the proof of Theorem 3.2.

We now prove the vertical theorem in the introduction. We want to apply
Theorem 3.2 sinceMV,r(F) ⊂ QV,r(F). Thus we only need to verify the assumption
(2) of Proposition 7.2 to apply Theorem 3.2. Pick P of weight 2 such that AP has
good ordinary reduction modulo m for the maximal ideal m of Zp[μpr+1 ]. Since
˜A = AP ×Zp[μpr ]Fp is ordinary, by a theorem of Tate (cf. [ABV, Section 22]), ˜A has

complex multiplication by Q(F ) ⊂ End( ˜A/Fp) for the p-power relative Frobenius
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map F : ˜A → ˜A. Note that by the congruence relation (cf. [IAT, Theorem 7.9] or
[GME, Section 4.2]), F satisfies the characteristic polynomial

T 2 − apT + p = (T − F )(T − V )

for the dual V of F and ap = α + αc over Q(fP ) ⊂ End( ˜A/Fp) ⊗Z Q. Thus ˜A

is isogenous to ˜Bm (m = 2[Q(fP ) : Q(α)]) for an ordinary abelian variety ˜B/Fp

with complex multiplication by Q(α) with α giving F on ˜B (see [Ch, Lemmas 3

and 6]). Take the canonical lift B/W (Fp)
of ˜B over the ring of Witt vectors W (Fp)

with coefficients in Fp (e.g., [K]). Then the CM type of B is given by the action of
Q(α) on Lie(B), which is exactly Σ =

{

σ
∣

∣|σ(α)|p = 1
}

. Thus the assumption (2)
of Proposition 7.2 is satisfied by P0 = P , and therefore, Theorem 3.2 implies the
vertical theorem.

We could make the following conjecture, which is a vertical version of Corol-
lary 6.3:

Conjecture 8.1. Let A ⊂ Spec(I)(Cp) be an infinite set of arithmetic points P
with bounded level r(P ) ≤ r. Suppose that F does not have complex multiplication.
Then we have

lim sup
P∈A

[Q(a(p, fP )) : Q] = ∞ and lim sup
P∈A

[Q(a(p, f◦
P )) : Q] = ∞.
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Progress in Math. 63 (1986), 131–163. MR897346 (88i:11078)

[H88] H. Hida, On p-adic Hecke algebras for GL2 over totally real fields, Ann. of Math. (2)
128 (1988), 295–384. MR960949 (89m:11046)

http://www.ams.org/mathscinet-getitem?mr=2514037
http://www.ams.org/mathscinet-getitem?mr=2514037
http://www.ams.org/mathscinet-getitem?mr=1492449
http://www.ams.org/mathscinet-getitem?mr=1492449
http://www.ams.org/mathscinet-getitem?mr=772569
http://www.ams.org/mathscinet-getitem?mr=772569
http://www.ams.org/mathscinet-getitem?mr=0174550
http://www.ams.org/mathscinet-getitem?mr=0174550
http://www.ams.org/mathscinet-getitem?mr=870690
http://www.ams.org/mathscinet-getitem?mr=870690
http://www.ams.org/mathscinet-getitem?mr=1353306
http://www.ams.org/mathscinet-getitem?mr=1353306
http://www.ams.org/mathscinet-getitem?mr=2439259
http://www.ams.org/mathscinet-getitem?mr=2439259
http://www.ams.org/mathscinet-getitem?mr=0337993
http://www.ams.org/mathscinet-getitem?mr=0337993
http://www.ams.org/mathscinet-getitem?mr=2139691
http://www.ams.org/mathscinet-getitem?mr=2139691
http://www.ams.org/mathscinet-getitem?mr=1794402
http://www.ams.org/mathscinet-getitem?mr=1794402
http://www.ams.org/mathscinet-getitem?mr=868300
http://www.ams.org/mathscinet-getitem?mr=868300
http://www.ams.org/mathscinet-getitem?mr=848685
http://www.ams.org/mathscinet-getitem?mr=848685
http://www.ams.org/mathscinet-getitem?mr=897346
http://www.ams.org/mathscinet-getitem?mr=897346
http://www.ams.org/mathscinet-getitem?mr=960949
http://www.ams.org/mathscinet-getitem?mr=960949


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

80 HARUZO HIDA

[H00] H. Hida, Adjoint Selmer groups as Iwasawa modules, Israel Journal of Math. 120 (2000),
361–427. MR1809628 (2001k:11094)

[H10] H. Hida, The Iwasawa μ–invariant of p–adic Hecke L–functions, Ann. of Math. (2) 172
(2010), 41–137.

[HM] H. Hida and Y. Maeda, Non-abelian base change for totally real fields, Olga Taussky
Todd memorial issue, Pacific Journal of Math. (1997), 189–217. MR1610859 (99f:11068)

[HMI] H. Hida, Hilbert modular forms and Iwasawa theory, Oxford University Press, 2006.

MR2243770 (2007h:11055)
[Ho] T. Honda, Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan 20

(1968), 83–95. MR0229642 (37:5216)
[IAT] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Prince-

ton University Press, Princeton, NJ, and Iwanami Shoten, Tokyo, 1971. MR0314766
(47:3318)

[ICF] L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Mathematics,
83, Springer, New York, 1982. MR1421575 (97h:11130)

[K] N. M. Katz, Serre–Tate local moduli, in “Surfaces Algébriques”, Lecture Notes in Math.
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