Global Hecke equivariance

Haruzo Hida Department of Mathematics, UCLA, Lecture no. 8 at NCTS, May 7, 2024

Lecture 8: We describe how to extend the Weil representation w from $SL_2(F_{\mathbb{A}}) \times O_{D_{\sigma}}(\mathbb{A})$ to $(g,h) \in GL_2(F_{\mathbb{A}}) \times B_{\mathbb{A}}^{\times}$ so that $\theta(\phi)(g,h) = \sum_{\alpha \in D_{\sigma}} (L(h)w(g)\phi)(\alpha)$ is kept automorphic. The idea is that $g \in GL_2(F_{\mathfrak{p}_F})$ for primes \mathfrak{p}_F splitting in E together with $GL_2(F)$ generates almost the entire group $GL_2(F_{\mathbb{A}})$. We prove that $\theta(\phi)(g,h)|\mathbb{T}_{\mathfrak{p}}^* = \theta(\phi)(g,h)|\mathbb{T}_{\mathfrak{p}_F}^+$ for a prime \mathfrak{p} split in E/F as long as $\phi = \phi_{\mathfrak{p}_F}\phi^{(\mathfrak{p}_F)}$ with $\phi_{\mathfrak{p}_F}$ given by characteristic function of $M_2(O_{F_{\mathfrak{p}}})$. Details are in §4.7.5. §0. A set of density 1 split primes. Let S be a set of split primes $\mathfrak{p}|\mathfrak{p}_F$ of E for each prime \mathfrak{p}_F of F with $D_{\sigma,E\mathfrak{p}_F} \cong M_2(E\mathfrak{p})$. Suppose

(S) The set S has Chebotarev density 1 over E.

Choose an inert prime \mathfrak{p}' with $B_{\mathfrak{p}'} \cong M_2(E'_{\mathfrak{p}})$ and put $\mathbf{S}' = \mathbf{S} \sqcup \{\mathfrak{p}'\}$. Let $\mathbb{G} \subset \operatorname{GL}_2(F_{\mathbb{A}})$ (resp. $\mathbb{G}' \subset \operatorname{GL}_2(F_{\mathbb{A}})$) generated by $\operatorname{SL}_2(F_{\mathbb{A}})$, $\operatorname{GL}_2^+(F_{\infty})$ and $\{\operatorname{GL}_2(E_{\mathfrak{p}})\}_{\mathfrak{p}\in\mathbf{S}}$ (resp. $\{\operatorname{GL}_2(E_{\mathfrak{p}})\}_{\mathfrak{p}\in\mathbf{S}'}$). Chebotarev density 1 means that for each ray class modulo N of E for every integer N > 0, there is a prime $\mathfrak{p}|\mathfrak{p}_F \in \mathbf{S}$ in the class (cf. [CFN,V.6]).

For each \mathfrak{p}_F , we fix a choice of a prime ideal \mathfrak{p} of E such that $\mathfrak{p}|\mathfrak{p}_F$ and identify $F_{\mathfrak{p}_F} = E_{\mathfrak{p}}$. We identify \mathbf{S} with $\{\mathfrak{p}|\mathfrak{p}_F \in \mathbf{S}\}$. Since $\theta(\phi)(g,h) = \theta(g,\sigma \cdot h)$ by definition as $\sigma \in O_{D_{\sigma}}(\mathbb{Q})$, the choice of \mathfrak{p} does not matter. For $G = \mathbb{G}$ and \mathbb{G}' , we have the representation w extended to subgroup G of $GL_2(F_{\mathbb{A}})$.

§1. $B_{\mathbb{A}}^{\times}$ action on $\mathcal{S}(D_{\sigma,\mathbb{A}})$. Define a representation L of $B_{\mathbb{A}}^{\times}$ on $\mathcal{S}(D_{\sigma,\mathbb{A}})$ by $(L(h)\phi)(v) = \phi(h^{\iota}vh^{\sigma})$. Then the action L(h) of $B_{\mathbb{A}}^{\times}$ on the center factors through $N_{E/F}$. This is because the algebraic group B^{\times} is sent into $\mathrm{GO}_{D_{\sigma}}$ by the action $v \mapsto h^{\iota}vh^{\sigma}$ and the similitude map $N_{D_{\sigma}}: \mathrm{GO} \to \mathbb{G}_{m/F}$ is given by $N_{D_{\sigma}}(h) = N(hh^{\sigma}) = N_{E/F}(N(h))$. For the Weil representation w_b with respect to $x \mapsto \mathrm{e}_v(bx)$, Jacquet–Langlands [AFG, Chapter I] extended w to a representation $w_{\mathfrak{p}}$ of $\mathrm{GL}_2(F_{\mathfrak{p}})$ by $w_{\mathfrak{p}}(g \operatorname{diag}[b,1])\phi(v) = |b|_{\mathfrak{p}}w_{h-1}(g)$ for $g \in \mathrm{SL}_2(F_{\mathfrak{p}})$.

Consider $\theta(\phi)(g,h)$: $GL_2(F) \setminus GL_2(F)SL_2(F_A) \times B^{\times} \setminus B^{\times}_A \to \mathbb{C}$ so that

 $\theta(\phi)(\gamma g, \delta h) = \theta(L(h)\mathbf{w}(g)\phi) = \theta(\phi)(g, h)$ for $\gamma \in GL_2(F)$, $g \in SL_2(F_A)$, $\delta \in B^{\times}$ and $h \in B_A^{\times}$ with $L(h)\phi(v) = \phi(h^{\iota}vh^{\sigma})$. §2. Legitimacy of extension in §1. If $\gamma g = \gamma' g'$ for $g, g' \in$ SL₂(F_A) and $\gamma, \gamma' \in$ GL₂(F), then $g = \gamma^{-1} \gamma' g'$ and $\theta(\phi)(g, h) =$ $\theta(\phi)(g', h)$ because of $\gamma^{-1} \gamma' \in$ SL₂(F), and hence the value $\theta(\phi)(\gamma g, \delta h)$ is independent of the choice of $g, g' \in$ SL₂(F_A) and $\gamma, \gamma' \in$ GL₂(F) as long as $\gamma g = \gamma' g'$. For an element $\delta \in B^{\times}$, $\theta(\phi)(g, \delta h) = \theta(\phi)(g, \delta h)$ as the theta series is an average of the terms over D_{σ} and $\alpha \mapsto \delta^{\iota} \alpha \delta$ preserves D_{σ} . For a pair ψ_{∞} and ϕ_{∞} as in Lemma 4 in Lecture 7, we may define $\mathbf{w}(zg)\phi(v) =$ $\psi_{\infty}(z)\mathbf{w}(g)\phi(v)$ for $g \in$ SL₂(F_{∞}).

For $G = \mathbb{G}$ or \mathbb{G}' , we extend further θ to $GL_2(F)SL_2(F_{\mathbb{A}}) \cdot G \times B_{\mathbb{A}}^{\times}$ by

(E) $\theta(\phi)(\gamma g \mathbf{g}, h) := \theta(\phi)(g \mathbf{g}, h)$

for $\gamma \in GL_2(F)$, $g \in SL_2(F_A)$, $g \in G$.

§3. Legitimacy of extension adding G.

Lemma 1. The extension (E) of $\theta(\phi)$ to $GL_2(F)SL_2(F_{\mathbb{A}}) \cdot G \times B_{\mathbb{A}}^{\times}$ is well defined and is left invariant under $GL_2(F) \times B^{\times}$.

Proof. If gg = g'g' with $g, g' \in SL_2(F_{\mathbb{A}})$ and $g, g' \in G$, then

 $w(g'^{-1})w(g) = w(g'g^{-1}) = w(g')w(g)^{-1}$

as the extension of w to $SL_2(F_{\mathbb{A}})G$ coincides with the original Weil representation w of $SL_2(F_{\mathbb{A}})$. Thus w(gg) = w(g'g') and hence $\theta(\phi)(gg,h) = \theta(\phi)(g'g',h)$.

For $\gamma, \gamma' \in GL_2(F)$, if $\gamma gg = \gamma' g'g'$, $\gamma'^{-1}\gamma = g'g'g^{-1}g^{-1}$. Taking a prime \mathfrak{l} of F non-split in E outside S', we find $\gamma'^{-1}\gamma = g'_{\mathfrak{l}}g_{\mathfrak{l}}^{-1}$, and hence $\det(\gamma_{\mathfrak{l}}'^{-1}\gamma_{\mathfrak{l}}) = 1 \Rightarrow \det(\gamma'^{-1}\gamma) = 1$. This implies $\theta(gg, h) = \theta(g'g', h)$, and therefore, $\theta(gg, h)$ factors through $GL_2(F) \setminus GL_2(F) SL_2(F_{\mathbb{A}})G \times B_{\mathbb{A}}^{\times}$. Since $L(\xi)$ for $\xi \in B^{\times}$ permutes elements of D_{σ} , plainly as a function of $h \in B_{\mathbb{A}}^{\times}$, $\theta(\phi)(g, h)$ factors through $B^{\times} \setminus B_{\mathbb{A}}^{\times}$.

\S 4. Norm subgroup.

Lemma 2. For a quadratic field extension $E_{/F}$, inside the idele group $F_{\mathbb{A}}^{\times}$, the closed subgroup H topologically generated by $\{F_{\mathbb{I}}^{\times}\}_{\mathbb{I}\in\mathbf{S}}$, F^{\times} , $F_{\infty+}^{\times}$, and $N_{E/F}(E_{\mathbb{A}}^{\times})$ has index 2 and is open, and Artin symbol induces $F_{\mathbb{A}}^{\times}/H \cong \operatorname{Gal}(E/F)$. Here $F_{\infty+}^{\times}$ is the identity connected component of $F_{\mathbb{R}}^{\times}$.

Proof: We show that $E_{\mathbb{A}}^{\times}$ is generated topologically by

$$E^{\times}, \{E_{\mathfrak{p}}^{\times}\}_{\mathfrak{p}|\mathfrak{p}_{F}\in\mathbf{S}} \text{ and } E_{\infty+}^{\times},$$

where S is identified with subset of prime ideals of E. Let $U(N) := \{x \in \hat{O}_E^{\times} | x \equiv 1 \mod N\}$ for a positive integer N. Then the finite group $Cl_N := E_A^{\times}/E^{\times}U(N)E_{\infty+}^{\times}$ is the strict ray class group modulo N of E. Thus it is canonically isomorphic to the Galois group H_N of ray class field modulo N over E by class field theory.

$\S5.$ Proof continues.

Since $E_{\mathbb{A}}^{\times}/E^{\times}E_{\infty+}^{\times} = \varprojlim_{N}Cl_{N}$, we need to prove that Cl_{N} is generated by totally split primes in E. Since totally split primes of $E_{/\mathbb{Q}}$ has density one among primes of E, by Chebotarev density theorem, $E_{\mathbb{A}}^{\times}$ is generated topologically by E^{\times} , $\{E_{\mathfrak{p}}^{\times}\}_{\mathfrak{p}|\mathfrak{p}_{F}\in\mathbf{S}}$ and $E_{\infty+}^{\times}$.

Now by global class field theory,

 $\operatorname{Coker}(N_{E/F}: E_{\mathbb{A}}^{\times}/\overline{E^{\times}E_{\infty+}^{\times}} \to F_{\mathbb{A}}^{\times}/\overline{F^{\times}F_{\infty+}^{\times}}) \cong \operatorname{Gal}(E/F).$

Since $N_{E/F} : E_{\mathbb{A}}^{\times} \to F_{\mathbb{A}}^{\times}$ is an open map, the assertion follows.

 \S **6.** GL(2)-version.

Corollary 1. Write χ_E^G for the composite of det : $\operatorname{GL}_2(F_{\mathbb{A}}) \to F_{\mathbb{A}}^{\times}$ with $\chi_E = \left(\frac{E/F}{F}\right) : F_{\mathbb{A}}^{\times} \to \{\pm 1\}$, and define $G_{E/F}(\mathbb{A}) := \operatorname{Ker}(\chi_E^G)$. Then $G_{E/F}(\mathbb{A})$ is an open-closed subgroup of $\operatorname{GL}_2(F_{\mathbb{A}})$ of index 2 containing $\operatorname{GL}_2(F)$, $\operatorname{GL}_2(F_{\infty})$ and the center $F_{\mathbb{A}}^{\times}$.

Proof. Since χ_E^G is a continuous open character of order 2, its kernel $G_{E/F}(\mathbb{A})$ is an open subgroup of index 2 containing $(F_{\mathbb{A}}^{\times})^2$ which is the image of the center under det. Since χ_E factors through the idele class group $F_{\mathbb{A}}^{\times}/F^{\times}N_{E/F}(E_{\mathbb{A}}^{\times})$, $G_{E/F}(\mathbb{A})$ contains $GL_2(F)$ and $GL_2(F_{\infty})$.

Since $G_{E/F}(\mathbb{A})$ contains $GL_2(F_{\infty})$ and projects surjectively to $GL_2(F_{\infty})$, writing $G_{E/F}(\mathbb{A}^{(\infty)})$ for $Ker(G_{E/F}(\mathbb{A}) \to GL_2(F_{\infty}))$,

 $G_{E/F}(\mathbb{A}) = G_{E/F}(\mathbb{A}^{(\infty)}) \times \mathrm{GL}_2(F_{\infty}).$

$\S7$. Extension Theorem.

Theorem 1. The theta function

 $\theta(\phi)(g,h) : \operatorname{GL}_2(F) \setminus \operatorname{GL}_2(F) \operatorname{SL}_2(F_{\mathbb{A}}) \cdot \mathbb{G} \times B^{\times} \setminus B_{\mathbb{A}}^{\times} \to \mathbb{C}$ extends to an automorphic form on $\operatorname{GL}_2(F) \setminus G_{E/F}(\mathbb{A}) \times B^{\times} \setminus B_{\mathbb{A}}^{\times}$ independent of the choice of \mathbf{S} .

Here "automorphic form" means analytic on the infinite component and right invariant under an open subgroup of $G_{E/F}(\mathbb{A}^{(\infty)}) \times B_{\mathbb{A}^{(\infty)}}^{\times}$. Since $\theta'(\phi)(g,h) = \theta(\phi)(g,h^{-\iota})$, the twisted one $\theta'(\phi)$ is also well defined over $\operatorname{GL}_2(F) \setminus G_{E/F}(\mathbb{A}) \times B^{\times} \setminus B_{\mathbb{A}}^{\times}$. Since $G_{E/F}(\mathbb{A})$ is independent of the choice of \mathbf{S} , the theta function is also independent of the choice of \mathbf{S} .

§8. **Proof.** We need to show that $\theta(g,h)$ extends to $G_{E/F}(\mathbb{A})$ from the subset $\operatorname{GL}_2(F) \operatorname{\mathbb{G}GL}_2^+(F_\infty)$. For $\phi = \phi^{(\infty)} \phi_\infty \in \mathcal{S}(D_{\sigma,F_{\mathbb{A}}})$, $\phi^{(\infty)}$ is a finite linear combination of factorizable Bruhat functions in $\mathcal{S}(D_{\sigma,F_{\star}^{(\infty)}})$. Thus we may assume that $\phi^{(\infty)}$ is factorizable to prove the extension property of $\theta(g,h) = \theta(\phi)(g,h)$. By Chebotarev density Lemma 2, for $F_{\mathbf{S}}^{\times} := \prod_{\mathfrak{p}_F \in \mathbf{S}} F_{\mathfrak{p}}^{\times} \cap F_{\mathbb{A}(\infty)}^{\times}$, $F^{\times}F_{\mathbf{S}}^{\times}F_{\infty+}^{\times}$ is dense in $F^{\times}N_{E/F}(E_{\mathbb{A}}^{\times})$, and hence its pull-back $GL_2(F)$ G $L_2^+(F_\infty)$ in $GL_2(F_A)$ by the determinant map is dense in $G_{E/F}(\mathbb{A})$. Thus for any open subgroup U of $G_{E/F}(\mathbb{A})$, we have $\operatorname{GL}_2(F)\operatorname{GUGL}_2^+(F_\infty) = G_{E/F}(\mathbb{A})$. As we saw, $U^{\phi} = \prod_{\mathfrak{p}_F} U_{\mathfrak{p}}^{\phi}$ is an open subgroup of the finite part $G_{E/F}(\mathbb{A}^{(\infty)})$ and $\theta(\phi)(g,h)$ extends to $GL_2(F) \mathbb{G}U^{\phi} GL_2^+(F_{\infty}) = G_{E/F}(\mathbb{A})$ left invariant under $GL_2(F)$ and right invariant under U^{ϕ} .

By the same proof using \mathbb{G}' , we have an extension of $\theta(g,h)$ to $\mathsf{GL}_2(F)\backslash\mathsf{GL}_2(F_{\mathbb{A}})\times B^{\times}\backslash B^{\times}_{\mathbb{A}}$.

§9. Induction from $G_{E/F}(\mathbb{A})$ to $\operatorname{GL}_2(F_{\mathbb{A}})$. Choose a pair $(\psi_{\infty}, \phi_{\infty})$ with $\psi_{\infty}|_{F_{\infty+}^{\times}} = 1$ as in §10 of the last lecture. Then by all the extension lemmas combined, this newly extended $\theta(\phi)(g,h)$ is an automorphic form on $\operatorname{GL}_2(F) \setminus \operatorname{GL}_2(F_{\mathbb{A}}) \times B^{\times} \setminus B_{\mathbb{A}}^{\times}$. Since $\psi_{\infty}|_{F_{\infty+}^{\times}} = 1$, we have

$$\theta(\phi)(zg,h) = \theta(\phi)(g,h)$$
 for $z \in F_{\infty+}^{\times}$.

Since $\operatorname{GL}_2(\mathbb{Q})\backslash\operatorname{GL}_2(F_{\mathbb{A}})/F_{\infty}^{\times}$ has finite volume, we can project $\theta(\phi)$ to the cuspidal subspace, which is written as $\theta_{cusp}(\phi)$. Here is an obvious corollary

Corollary 2. Writing Θ (resp. Θ_0) for the representation of $\operatorname{GL}_2(F_{\mathbb{A}}) \times B_{\mathbb{A}}^{\times}$ (resp. $G_{E/F}(\mathbb{A}) \times B_{\mathbb{A}}^{\times}$) generated by $\theta_{cusp}(\phi)$ (i.e., $\Theta(g,h)(\theta_{cusp}(\phi)(g',h')) = \theta_{cusp}(\phi)(g'g,h'h))$, Θ is isomorphic to the induction $\operatorname{Ind}_{G_{E/F}(\mathbb{A})}^{\operatorname{GL}_2(F_{\mathbb{A}})} \Theta_0$.

§10. Quaternion subalgebras of *B*. For each $\alpha \in D_{\sigma} \cap B^{\times}$, define the α -twist σ_{α} of σ by $v \mapsto \alpha v^{\sigma} \alpha^{-1} =: v^{\sigma_{\alpha}}$. Then σ_{α} is another action of $\text{Gal}(E/\mathbb{Q})$ on *B*, and $D_{\alpha} = H^{0}(E/F, B)$ under this twisted action is a quaternion subalgebra of *B*.

- All quaternion \mathbb{Q} -subalgebras of B are realized as D_{α} for some $\alpha \in D_{\sigma}$, and $D_z = D \Leftrightarrow z \in Z$;
- $\alpha = \xi^{-1}\beta\xi^{-\iota\sigma}$ for $\xi \in B^{\times} \Leftrightarrow D_{\alpha} \cong D_{\beta}$ with $\xi D_{\alpha}\xi^{-1} = D_{\beta}$;
- $D_{\alpha} \cong D_{\beta}$ by an inner automorphism of B if $N(\alpha) = N(\beta)$ and $B_{\infty} \cong M_2(E_{\infty})$ (strong approximation);
- The even Clifford group G_{α} of $D_{\alpha,0} = \{v \in D_{\sigma_{\alpha}} | \text{Tr}(v) = 0\}$ is D_{α}^{\times} and B^{\times} is a covering of the similitude group $\text{GO}_{D_{\sigma}}$ of D_{σ} .

Let $\widehat{\Gamma}_{\phi} = \{h \in B_{\mathbb{A}(\infty)}^{\times} | \phi^{(\infty)}(h^{-1}vh^{-\iota\sigma}) = \phi^{(\infty)}(v), \forall v \in D_{\sigma,\mathbb{A}(\infty)}\}$ for each Schwartz-Bruhat function ϕ on $D_{\sigma,\mathbb{A}(\infty)}$.

Let $Sh_B = B^{\times} \setminus B^{\times}_{\mathbb{A}} / E^{\times}_{\mathbb{A}} \widehat{\Gamma}_{\phi} C_{\infty}$ be the Shimura variety for B^{\times} of level $\widehat{\Gamma}_{\phi}$, and Sh_{α} be the image of $D^{\times}_{\alpha,\mathbb{A}}$ in Sh_B for $\alpha \in D_{\sigma}$. Regard $Sh_{\alpha} \in H_2(Sh_B,\mathbb{Z})$ and write $(\cdot, \cdot) : H^2 \times H_2 \to \mathbb{C}$ for the Poincaré duality.