Local Hecke equivariance

Haruzo Hida

Department of Mathematics, UCLA,
Lecture no. 7 at NCTS, April 30, 2024

Lecture 7: We describe how to extend the Weil representation \mathbf{w} from $\mathrm{SL}_{2}\left(F_{\mathfrak{p}_{F}}\right) \times \mathrm{O}_{D_{\sigma}}(\mathbb{A})$ to $\mathrm{GL}_{2}\left(F_{\mathfrak{p}_{F}}\right) \times B_{\mathfrak{p}_{F}}^{\times}$for each prime \mathfrak{p}_{F} of F splitting in $E\left(\mathfrak{p}_{F}=\mathfrak{p p}^{\sigma}\right)$. Then we define the local (dual) Hecke operator action $\mathbb{T}_{\mathfrak{p}}^{*}$ through $B_{\mathfrak{p}}^{\times}$-action and $\mathbb{T}_{\mathfrak{p}_{F}}^{+}$action through the metaplectic $\mathrm{GL}_{2}\left(F_{\mathfrak{p}_{F}}\right)$-action on $\mathcal{S}\left(D_{\sigma, \mathfrak{p}_{F}}\right)$. For split prime \mathfrak{p}_{F}, note that $D_{\sigma, \mathfrak{p}_{F}} \subset B_{\mathfrak{p}_{F}}=D_{\mathfrak{p}_{F}} \times D_{\mathfrak{p}_{F}}$ and by the left projection $D_{\sigma, \mathfrak{p}_{F}} \cong D_{\mathfrak{p}_{F}}$. Then assuming $D_{\mathfrak{p}_{F}} \cong M_{2}\left(F_{\mathfrak{p}_{F}}\right)$, for the characteristic function 1 of $M_{2}\left(O_{F_{\mathfrak{p}_{F}}}\right)$, we show $1\left|\mathbb{T}_{\mathfrak{p}}^{*}=1\right| \mathbb{T}_{\mathfrak{p}_{F}}^{+}$ (local Hecke equivariance). We simply write F for $F_{\mathfrak{p}_{F}}$ and E for $E_{\mathfrak{p}_{F}}=F \times F$. Write $O=O_{E_{\mathfrak{p}}}=O_{{F_{\mathfrak{p}}}}$ (integer rings) with uniformizer ϖ. Details are in Section 4.7.
§0. Double coset decomposition. For $S=\mathrm{SL}_{2}(O)$ or $\mathrm{GL}_{2}(O)$, we have for a complete representative set U_{j} of $O /(\varpi)^{j}$

$$
S \text { diag }[\varpi, 1] S=\bigsqcup_{\xi \in \mathbb{T}_{\mathfrak{p}}} \xi S \text { with } \mathbb{T}_{\mathfrak{p}}=\left\{\left.\left(\begin{array}{cc}
\varpi & u \\
0 & 1
\end{array}\right) \right\rvert\, u \in U_{1}\right\} \sqcup\left\{\left(\begin{array}{cc}
1 & 0 \\
0 & \varpi
\end{array}\right)\right\} .
$$

We write $X^{*}=\left\{\xi^{-1} \mid \xi \in X\right\}$ for a subset X in $\mathrm{GL}_{2}(F)$. We let act $\mathrm{GL}_{2}(F)$ on the column vector space $V:=M_{2, n}(F)$ by $v \mapsto \xi v$ and $g \in \mathrm{GL}_{2}(O)$ act on $\phi \in \mathcal{S}(V)$ by $g \cdot \phi(v)=\phi\left(g^{-1} v\right)$. Particularly, if ϕ is S-invariant, we write $\phi \mid \mathfrak{p}=\varpi \cdot \phi$. Let 1 be the characteristic function of $M_{2, n}(O) \subset V$. Then
Lemma 1. We have for $\mathbf{p}:=|\varpi|_{\mathfrak{p}}^{-1}=\left|O_{F} / \mathfrak{p}_{F}\right|$

$$
\begin{aligned}
& 1\left|\mathbb{T}_{\mathfrak{p}}=1+\mathrm{p} 1\right| \mathfrak{p}, 1\left|\mathbb{T}_{\mathfrak{p}}^{*}=1\right| \mathfrak{p}^{-1}+\mathrm{p} 1 \\
& \quad \text { and } 1\left|T_{\mathfrak{p}^{2}}=1\right| T_{\mathfrak{p}^{2}}^{*}=1\left|\mathfrak{p}^{-1}+(\mathrm{p}-1) 1+\mathrm{p}^{2} 1\right| \mathfrak{p} .
\end{aligned}
$$

$\S 1$. Proof, Case $n=1$:

We only prove the formula for $\mathbb{T}_{\mathfrak{p}}$. The formula for $\mathbb{T}_{\mathfrak{p}}^{*}$ follows from $\mathbb{T}_{\mathfrak{p}}^{*}=\mathbb{T}_{\mathfrak{p}} \circ \mathfrak{p}^{-1}$. We want to compute

$$
\mathbf{1} \mid \mathbb{T}_{\mathfrak{p}}=\sum_{\xi \in \mathbb{T}_{\mathfrak{p}}} \mathbf{1}\left(\xi^{-1} v\right)=\sum_{\xi \in \mathbb{T}_{\mathfrak{p}}} \mathbf{1}_{\xi O_{E_{\mathfrak{p}}}^{2}}
$$

For $v \in p O_{E_{\mathfrak{p}}}^{2}, v \in \operatorname{Supp}\left(\mathbf{1}_{\xi O_{E_{\mathfrak{p}}}^{2}}\right)$ for all $\xi \in \mathbb{T}_{\mathfrak{p}}$. Thus $1 \mid \mathbb{T}_{\mathfrak{p}}(v)=\mathrm{p}+1$ if $v \in \mathfrak{p} O_{E_{\mathfrak{p}}}^{2}$ as $\left|\mathbb{T}_{\mathfrak{p}}\right|=\mathbf{p}+1$. If $v \in O_{E_{\mathfrak{p}}}^{2}-\mathfrak{p} O_{E_{\mathfrak{p}}}^{2}$, then $v O_{E_{\mathfrak{p}}}+\mathfrak{p} O_{E_{\mathfrak{p}}}^{2}=$ $\xi O_{E_{\mathfrak{p}}}^{2}$ for a unique $\xi \in \mathbb{T}_{\mathfrak{p}}$. Thus

$$
\mathbf{1}\left|\mathbb{T}_{\mathfrak{p}}=1+\mathbf{p} 1\right| \mathfrak{p}
$$

The first remark to deal with the case $n>1$ is:
The vector space $M_{2, n}\left(E_{\mathfrak{p}}\right)$ is a left module over $D_{E_{\mathfrak{p}}}=M_{2}\left(E_{\mathfrak{p}}\right)$ and a right module over $M_{n}\left(E_{\mathfrak{p}}\right)$ via left and right matrix multiplication.
§2. Case $n>1$. Write $L:=M_{2, n}(O) \subset V$. Pick a representative set \mathbb{T} for S diag $[\varpi, 1] S / S$ So, $\mathbb{T} \cong \mathbb{T}_{\mathfrak{p}}$, and elements of \mathbb{T} act from the left on L. Write $\mathbb{F}:=O / \mathfrak{p}$. Then for $\xi \in \mathbb{T}$, consider the set $\mathcal{M}:=\left\{(\xi L) / \mathfrak{p} L \subset M_{2, n}(\mathbb{F})\right\}$ of $M_{n}\left(O_{E_{\mathfrak{p}}}\right)$-right submodules of $M_{2, n}(\mathbb{F})=L \otimes_{O_{E_{\mathfrak{p}}}} \mathbb{F}=L / \mathfrak{p} L$. Each element of \mathcal{M} is a simple (and irreducible) right $M_{n}\left(O_{E_{\mathfrak{p}}}\right)$-module, and each such module appears once in \mathcal{M}; so, \mathcal{M} is independent of the choice of \mathbb{T} (so, we may assume $\mathbb{T}=\mathbb{T}_{\mathfrak{p}}$. The set $\mathcal{M} \cup\{0\} \cup\{L / \mathfrak{p} L\}$ exhausts all right $M_{n}\left(O_{E_{\mathrm{p}}}\right)$-submodules in $M_{2, n}(\mathbb{F})=L / \mathfrak{p} L$. Therefore $\cap_{\xi \in \mathbb{T}} \xi L=\mathfrak{p} L$. Writing $\phi \mid \xi(v)=\phi\left(\xi^{-1} v\right)$ for $v \in M_{2, n}\left(E_{\mathfrak{p}}\right)$ and a left-S-invariant function ϕ on $M_{2, n}\left(E_{\mathfrak{p}}\right)$, define $1\left|\mathbb{T}=\sum_{\xi \in \mathbb{T}} \mathbf{1}\right| \xi$ for $v \in L$, which is independent of the choice of \mathbb{T}. Since $1 \mid \xi=1_{\xi L}$,

$$
\mathbf{1} \left\lvert\, \mathbb{T}_{\mathfrak{p}}= \begin{cases}|\mathbb{T}|=\mathbf{p}+1 & \text { if } v \in \cap_{\xi \in \mathbb{T}} \xi L=\mathfrak{p} L \\ 1 & \text { if } v \in L \text { but } v \notin \mathfrak{p} L\end{cases}\right.
$$

The formula is the same as in the case of $n=1$, and writing $X_{1}:=\left\{v \in M_{2}\left(O_{E_{\mathfrak{p}}}\right) \mid N(v) \in \mathfrak{p} O_{E_{\mathfrak{p}}}\right\}$ with its characteristic function $\mathbf{1}_{X_{1}}$,

$$
1_{X_{1}}=1\left|\mathbb{T}_{\mathfrak{p}}-\mathrm{p} 1\right| \mathfrak{p} .
$$

§3. $\mathrm{GL}(2) \rightarrow \mathrm{GL}(2)$ covering $\widetilde{\mathrm{SL}}(2) \rightarrow \mathrm{SL}(2)$. Let K be a local field. For $y \in K^{\times}$and $s=\left(\begin{array}{c}* \\ c \\ c\end{array}\right) \in \mathrm{SL}_{2}(K)$, we define

$$
v(y, s)= \begin{cases}1 & \text { if } c \neq 0 \\ (y, d) & \text { if } c=0\end{cases}
$$

where $(., \cdot)$ is the quadratic Hilbert symbol for K. Then write $s^{y}:=\operatorname{diag}[1, y]^{-1} s \operatorname{diag}[1, y]$ and $T:=\left\{\operatorname{diag}[1, y] \mid y \in K^{\times}\right\}$. By a tedious computation of Kubota's cocycle, Kubota verified the following fact [WRS, Proposition 2.6] essentially:

Proposition 1. The association $\widetilde{\mathrm{SL}}_{2}(K) \ni(s, \zeta) \mapsto\left(s^{y}, \zeta v(y, s)\right) \in$ $\widetilde{\mathrm{SL}}_{2}(K)$ induces an automorphism of $\widetilde{\mathrm{SL}}_{2}(K)$, and hence defining a semi-direct product $\widetilde{\mathrm{GL}}_{2}(K):=T \ltimes \widetilde{\mathrm{SL}}_{2}(K)$ under this action of T, we get an extension $\mu_{2} \hookrightarrow \widetilde{\mathrm{GL}}_{2}(K) \rightarrow \mathrm{GL}_{2}(K)$.
§4. Extension to $\mathrm{GL}(2)$ from $\mathrm{SL}(2)$. The Weil representation depends on the identification of $X \cong X^{*}$ for $X=D_{\sigma, F_{v}}, D_{\sigma, F_{\mathbb{A}}}$. So far we have used the standard additive character \mathbf{e}_{F} and its local factor to do this by using the pairing $\left\langle x, x^{*}\right\rangle=\mathbf{e}_{F}(s(x, y))$ or its local version. We can replace \mathbf{e}_{F} by $\mathbf{e}_{F, \beta}:=\mathbf{e}_{F} \circ \beta$ composing any element $\beta \in \operatorname{Aut}(X)$. Then we write \mathbf{w}_{β} for the Weil representation associated to $\mathbf{e}_{F, \beta}$ or its local factor; so, \mathbf{w}_{1} is the original representation with respect to \mathbf{e}_{F}.

By [AFG, Proposition 1.3] and $\mathrm{GL}_{2}=T \ltimes \mathrm{SL}_{2}$, we can descend \mathbf{w}_{β} to $\mathrm{SL}_{2}\left(F_{\mathfrak{p}}\right)$ for $V=D_{\sigma, \mathfrak{p}}$ for all prime \mathfrak{p} : The formula is $\mathrm{w}_{\beta}\left(\operatorname{diag}\left[a, a^{-1}\right]\right) \phi(v)=\chi_{E}(a)|a|_{\mathcal{p}}^{2} \phi(a v)$ and $\mathrm{w}_{\beta}(J) \phi(v)=\gamma \widehat{\phi}\left(v^{l}\right)$ for an 8 -th root of unity γ and $\gamma=1$ if $\mathfrak{p} \nmid \partial \Delta_{E / F}$. If $\mathfrak{p}_{F}=\mathfrak{p p}^{\sigma}$ $\left(\mathfrak{p} \neq \mathfrak{p}^{\sigma}\right)$ in E with $D_{\sigma, E_{\mathfrak{p}_{F}}} \cong M_{2}\left(E_{\mathfrak{p}}\right)$ by the projection to the \mathfrak{p}-component, we identify $D_{\sigma, E_{\mathfrak{p}_{F}}}$ and $M_{2}\left(E_{\mathfrak{p}}\right)$.

Since $\operatorname{diag}[\beta, 1] v(u)=v(\beta u) \operatorname{diag}[\beta, 1]$, we add the action of $\operatorname{diag}[\beta, 1]$ intertwining w_{1} to $\mathrm{w}_{\beta^{-1}}$. Namely we extend w to GL_{2} combining all $\left\{\mathbf{w}_{\beta}\right\}_{\beta}$.
§5. An explicit extension to $\mathrm{GL}(2)$ from $\mathrm{SL}(2)$. We define locally $\mathbf{w}(g$ diag $[b, 1]):=|b|_{\mathfrak{p}} \mathbf{w}_{b^{-1}}(g)$ as operators; in other words,

$$
\mathbf{w}(g \operatorname{diag}[b, 1]) \phi(v)=|b|_{\mathfrak{p}} \mathbf{w}_{b^{-1}}(g) \phi(v)
$$

for $g \in \mathrm{SL}_{2}\left(F_{\mathfrak{p}_{F}}\right)$ and $b \in F_{\mathfrak{p}_{F}}^{\times}$. The following is [AFG, 1.3 and 1.4] and [WRS, Proposition 2.27]:

Lemma 2. Assume that $\mathfrak{p}_{F}=\mathfrak{p p}^{\sigma}\left(\mathfrak{p} \neq \mathfrak{p}^{\sigma}\right)$ in E with $D_{\sigma, \mathfrak{p}_{F}} \cong$ $M_{2}\left(E_{\mathfrak{p}}\right)$ by the projection to the \mathfrak{p}-component. Identify $D_{\sigma, \mathfrak{p}_{F}}$ and $M_{2}\left(E_{\mathfrak{p}}\right)$. The above extension \mathbf{w} is a well defined representation, and for a given $\phi \in \mathcal{S}\left(D_{\sigma, \mathfrak{p}_{F}}\right)\left(\right.$ for $\left.D_{\sigma, \mathfrak{p}_{F}}:=D_{\sigma, F_{\mathfrak{p}_{F}}}\right)$,
(1) the stabilizer $U_{\mathfrak{p}_{F}}^{\phi}$ of ϕ in $\mathrm{GL}_{2}\left(F_{\mathfrak{p}_{F}}\right)$ under the extended action is an open subgroup of $\mathrm{GL}_{2}\left(F_{\mathfrak{p}_{F}}\right)$;
(2) $U_{\mathfrak{p}_{F}}^{\phi}$ contains $\mathrm{GL}_{2}\left(O_{\mathfrak{p}_{F}}\right)$ if ϕ is a characteristic function of $D_{\sigma, \mathfrak{p}_{F}} \cap R_{\mathfrak{p}_{F}}$ for a maximal order $R_{\mathfrak{p}_{F}}$ of $D_{E_{\mathfrak{p}_{F}}}$ and \mathfrak{p}_{F} is prime to 2∂.
\S 6. A corollary. Define $L(h) \phi(v):=\phi\left(h^{\iota} v h^{\sigma}\right)$ and $L^{\prime}(h) \phi(v):=$ $\phi\left(h^{-1} v h^{\sigma}\right)$ for $h \in B_{\mathfrak{p}_{F}}^{\times}$and $\phi \in \mathcal{S}\left(D_{\sigma, F_{\mathfrak{p}_{F}}}\right)$.

Corollary 1. Let the notation and assumption be as in Lemma 2. Then we have $1\left|\mathbb{T}_{\mathfrak{p}_{F}}^{+}=1\right| \mathbb{T}_{\mathfrak{p}}$ and $1\left|\mathbb{T}_{\mathfrak{p}_{F}}^{+}=1\right| \mathbb{T}_{\mathfrak{p}}$ under the action L^{\prime} of $D_{E_{\mathfrak{p}}}^{\times}$and $1\left|\mathbb{T}_{\mathfrak{p}_{F}}^{+}=1\right| \mathbb{T}_{\mathfrak{p}}^{*}$ and $1\left|\mathbb{T}_{\mathfrak{p}_{F}}^{+, *}=1\right| \mathbb{T}_{\mathfrak{p}}$ under the action L of $D_{E_{\mathfrak{p}}}^{\times}$, where we let $\mathrm{GL}_{2}\left(E_{\mathfrak{p}}\right)$ act on $\mathcal{S}\left(D_{\sigma, E_{\mathbb{A}}}\right)$ as in Lemma 2 .

Proof. Chnaging L^{\prime} to L brings $\mathbb{T}_{\mathfrak{p}}$ to $\mathbb{T}_{\mathfrak{p}}^{*}$, we prove the assertion for $\mathbb{T}=\mathbb{T}_{\mathfrak{p}}$. Recall $1\left|\mathbb{T}_{\mathfrak{p}}=1+\mathbf{p} 1\right| \mathfrak{p}$. By the way of extending the Weil representation to $\mathrm{GL}_{2}\left(F_{\mathfrak{p}_{F}}\right)$ in Lemma 2, writing ($\left.\begin{array}{c}\varpi \\ 0 \\ 1\end{array}\right)=$ $v(u) \operatorname{diag}[\varpi, 1]$ and $\operatorname{diag}[1, \varpi]=\operatorname{diag}\left[\varpi^{-1}, \varpi\right] \operatorname{diag}[\varpi, 1]$, by the extension of the Weil representation w in Lemma 2, we have

$$
1 \mid \mathbb{T}_{\mathfrak{p}_{F}}^{+}(v)=T_{1}(v)+\mathbf{p} 1\left(\varpi^{-1} v\right)
$$

for

$$
T_{1}(v):=\mathbf{p}^{-1} \sum_{\bmod \mathfrak{p}} \mathbf{e}\left(u \varpi^{-1} N(v)\right) \mathbf{1}(v)
$$

$\S 7$. Proof continues.

Note

$$
T_{1}(v)= \begin{cases}0 & \text { if } v \notin M_{2}\left(O_{E_{\mathfrak{p}}}\right) \text { or } N(v) \in O_{E_{\mathfrak{p}}}^{\times} \\ 1 & \text { if } v \in M_{2}\left(O_{E_{\mathfrak{p}}}\right) \text { and } N(v) \in \mathfrak{p} O_{E_{\mathfrak{p}}}\end{cases}
$$

Recall $X_{1}:=\left\{v \in M_{2}\left(O_{E_{\mathfrak{p}}}\right) \mid N(v) \in \mathfrak{p} O_{E_{\mathfrak{p}}}\right\}$. Thus, $T_{1}(v)=1_{X_{1}}$. Since $1_{X_{1}}=1\left|\mathbb{T}_{\mathfrak{p}}-\mathrm{p} 1\right| \mathfrak{p}$ as in $\S 2$, and $1 \mid \mathfrak{p}(v)=1\left(\varpi^{-1} v\right)$,

$$
1\left|\mathbb{T}_{\mathfrak{p}_{F}}^{+}(v)=\left(1 \mid \mathbb{T}_{\mathfrak{p}}\right)(v)-\mathrm{p} \mathbf{1}\left(\varpi^{-1} v\right)+\mathrm{p} \mathbf{1}\left(\varpi^{-1} v\right)=1\right| \mathbb{T}_{\mathfrak{p}}(v)
$$

as desired.
\S 8. Non-split primes. Here is a version of Lemma 2 for nonsplit primes:
Lemma 3. Let \mathfrak{p}_{F} be non-split in E or ramified in D, and write $\Delta_{E / F}$ for the discriminant of $E_{/ F}$. Then for $\phi \in \mathcal{S}\left(D_{\sigma, \mathfrak{p}_{F}}\right)$, there exists an open subgroup $U_{\mathfrak{p}_{F}}^{\phi}$ of $\mathrm{GL}_{2}\left(F_{\mathfrak{p}_{F}}\right)$ such that O. $\chi_{E} \circ$ det is trivial on U^{ϕ};

1. the action of $\mathrm{SL}_{2}\left(F_{\mathfrak{p}_{F}}\right)$ via \mathbf{w} extends to $\mathrm{SL}_{2}\left(F_{\mathfrak{p}_{F}}\right) U_{\mathfrak{p}_{F}}^{\phi}$ and $\mathrm{w}(u) \phi=\phi$ for all $u \in U_{\mathfrak{p}_{F}}^{\phi}$;
2. If \mathfrak{p}_{F} is prime to $2 \partial \Delta_{E / F}$ and ϕ is a characteristic function of $D_{\sigma, \mathfrak{p}_{F}} \cap R_{\mathfrak{p}_{F}}$ for a maximal order $R_{\mathfrak{p}_{F}}$ of $D_{E_{\mathfrak{p}_{F}}}$, then $U_{\mathfrak{p}_{F}}^{\phi}$ contains $\mathrm{GL}_{2}\left(O_{\mathfrak{p}_{F}}\right)$.

Consider $\mathcal{U}^{\phi}:=\left\{u \in O_{\mathfrak{p}_{F}}^{\times} \mid \phi(u v)=\phi(v)\right.$ for all $\left.v \in D_{\sigma, F_{\mathfrak{p}_{F}}}\right\}$, and let S^{ϕ} be an open subgroup of $\left\{s \in \mathrm{SL}_{2}\left(O_{\mathfrak{p}_{F}}\right) \mid \mathbf{w}(s) \phi=\phi\right\}$. By the smoothness of \mathbf{w}, we may assume that S^{ϕ} is normalized by $\delta_{u}:=$ $\operatorname{diag}[1, u]$ for $u \in O_{\mathfrak{p}_{F}}^{\times}$(i.e., a principal congruence subgroup).
\S 9. Proof continues. Then

$$
U=U^{\phi}:=\left\{s \delta_{u} \mid u \in \mathcal{U}^{\phi}, s \in S^{\phi}\right\}
$$

is an open subgroup of $\mathrm{GL}_{2}\left(O_{\mathfrak{p}_{F}}\right)$ and can be taken to contain $\mathrm{GL}_{2}\left(O_{\mathfrak{p}_{F}}\right)$ if \mathfrak{p}_{F} is prime to $2 \boldsymbol{\partial} \Delta_{E / F}$ and ϕ is a characteristic function of $D_{\sigma, \mathfrak{p}_{F}} \cap R_{\mathfrak{p}_{F}}$ for a maximal order $R_{\mathfrak{p}_{F}}$ of $D_{E_{\mathfrak{p}_{F}}}$. Let $\mathbf{w}=\mathbf{w}_{D_{\sigma, \mathfrak{p}_{F}}}\left(\right.$ the local Weil representation on $\mathcal{S}\left(D_{\sigma, F_{\mathfrak{p}_{F}}}\right)$). We extend \mathbf{w} to U by $\mathbf{w}\left(\delta_{u}\right) \phi=\phi$ for $u \in U^{\phi}$. For this identity, we need $\chi_{E}(u)=1$ as $r\left(\operatorname{diag}\left[u, u^{-1}\right]\right) \phi(v)=\chi_{E}(u) \phi(u v)$.

By the computation in the books [AFG, Lemma 1.4] and [WRS, Proposition 2.27], the conjugation by δ_{u} induces an automorphism of $\widetilde{S L}_{2}\left(F_{\mathfrak{p}_{F}}\right)$ without changing the center if $\chi_{E}(u)=1$ and \mathfrak{p}_{F} is odd (if $\mathfrak{p}_{F} \mid 2$, we need to assume that u is square), and therefore, this extension is consistent.

§10. Archimedean primes.

Lemma 4. Write $\mathrm{GL}_{2}^{+}\left(F_{\infty}\right)$ for the identity connected component of $\mathrm{GL}_{2}\left(F_{\infty}\right)$. For a character $\psi_{\infty}: F_{\infty}^{\times} \rightarrow \mathbb{C}^{\times}$and $\phi_{\infty} \in$ $\mathcal{S}\left(D_{\sigma, F_{\infty}}\right)$ with $\phi_{\infty}(\epsilon v)=\psi_{\infty}(\epsilon) \phi_{\infty}(v)$ for all $v \in D_{\sigma, F_{\infty}}$ and $\epsilon \in \mu_{2}\left(F_{\infty}\right)$, we can extend w defined on $\mathrm{SL}_{2}\left(F_{\infty}\right)$ to $\mathrm{GL}_{2}^{+}\left(F_{\infty}\right)$ so that the central character of w at infinity is given by ψ_{∞}.

Proof. $\mathrm{By} \mathrm{GL} 2_{2}\left(F_{\infty}\right)=\mathrm{SL}_{2}\left(F_{\infty}\right) F_{\infty}^{\times}$with $\mathrm{SL}_{2}\left(F_{\infty}\right) \cap F_{\infty}^{\times}=\mu_{2}\left(F_{\infty}\right)$, we require for ϕ_{∞} to satisfy $\mathrm{w}(g z) \phi_{\infty}=\psi_{\infty}^{-1}(z) \phi_{\infty}$ for $z \in F_{\infty}^{\times}$. This gives the extension.

