Local Hecke equivariance

Haruzo Hida Department of Mathematics, UCLA, Lecture no. 7 at NCTS, April 30, 2024

Lecture 7: We describe how to extend the Weil representation w from $SL_2(F_{\mathfrak{p}_F}) \times O_{D_{\sigma}}(\mathbb{A})$ to $GL_2(F_{\mathfrak{p}_F}) \times B_{\mathfrak{p}_F}^{\times}$ for each prime \mathfrak{p}_F of F splitting in E ($\mathfrak{p}_F = \mathfrak{p}\mathfrak{p}^{\sigma}$). Then we define the local (dual) Hecke operator action $\mathbb{T}_{\mathfrak{p}}^*$ through $B_{\mathfrak{p}}^{\times}$ -action and $\mathbb{T}_{\mathfrak{p}_F}^+$ action through the metaplectic $GL_2(F_{\mathfrak{p}_F})$ -action on $S(D_{\sigma,\mathfrak{p}_F})$. For split prime \mathfrak{p}_F , note that $D_{\sigma,\mathfrak{p}_F} \subset B_{\mathfrak{p}_F} = D_{\mathfrak{p}_F} \times D_{\mathfrak{p}_F}$ and by the left projection $D_{\sigma,\mathfrak{p}_F} \cong D_{\mathfrak{p}_F}$. Then assuming $D_{\mathfrak{p}_F} \cong M_2(F_{\mathfrak{p}_F})$, for the characteristic function 1 of $M_2(O_{F_{\mathfrak{p}_F}})$, we show $1|\mathbb{T}_{\mathfrak{p}}^* = 1|\mathbb{T}_{\mathfrak{p}_F}^+$ (local Hecke equivariance). We simply write F for $F_{\mathfrak{p}_F}$ and Efor $E_{\mathfrak{p}_F} = F \times F$. Write $O = O_{E\mathfrak{p}} = O_{F\mathfrak{p}_F}$ (integer rings) with uniformizer ϖ . Details are in Section 4.7. §0. Double coset decomposition. For $S = SL_2(O)$ or $GL_2(O)$, we have for a complete representative set U_j of $O/(\varpi)^j$

$$S \operatorname{diag}[\varpi, 1]S = \bigsqcup_{\xi \in \mathbb{T}_{\mathfrak{p}}} \xi S \quad \text{with} \quad \mathbb{T}_{\mathfrak{p}} = \left\{ \left(\begin{smallmatrix} \varpi & u \\ 0 & 1 \end{smallmatrix} \right) \middle| u \in U_1 \right\} \sqcup \left\{ \left(\begin{smallmatrix} 1 & 0 \\ 0 & \varpi \end{smallmatrix} \right) \right\}.$$

We write $X^* = \{\xi^{-1} | \xi \in X\}$ for a subset X in $GL_2(F)$. We let act $GL_2(F)$ on the column vector space $V := M_{2,n}(F)$ by $v \mapsto \xi v$ and $g \in GL_2(O)$ act on $\phi \in S(V)$ by $g \cdot \phi(v) = \phi(g^{-1}v)$. Particularly, if ϕ is S-invariant, we write $\phi | \mathfrak{p} = \varpi \cdot \phi$. Let 1 be the characteristic function of $M_{2,n}(O) \subset V$. Then

Lemma 1. We have for $\mathbf{p} := |\varpi|_{\mathfrak{p}}^{-1} = |O_F/\mathfrak{p}_F|$

$$\begin{split} 1|\mathbb{T}_{\mathfrak{p}} &= 1 + \mathrm{p1}|\mathfrak{p}, 1|\mathbb{T}_{\mathfrak{p}}^* = 1|\mathfrak{p}^{-1} + \mathrm{p1}\\ & \text{and} \quad 1|T_{\mathfrak{p}^2} = 1|T_{\mathfrak{p}^2}^* = 1|\mathfrak{p}^{-1} + (\mathrm{p}-1)\mathbf{1} + \mathrm{p}^2\mathbf{1}|\mathfrak{p}. \end{split}$$

§1. Proof, Case n = 1:

We only prove the formula for $\mathbb{T}_{\mathfrak{p}}$. The formula for $\mathbb{T}_{\mathfrak{p}}^*$ follows from $\mathbb{T}_{\mathfrak{p}}^* = \mathbb{T}_{\mathfrak{p}} \circ \mathfrak{p}^{-1}$. We want to compute

$$1|\mathbb{T}_{\mathfrak{p}} = \sum_{\xi \in \mathbb{T}_{\mathfrak{p}}} 1(\xi^{-1}v) = \sum_{\xi \in \mathbb{T}_{\mathfrak{p}}} 1_{\xi O_{E_{\mathfrak{p}}}^2}.$$

For $v \in pO_{E_{\mathfrak{p}}}^2$, $v \in \text{Supp}(1_{\xi O_{E_{\mathfrak{p}}}^2})$ for all $\xi \in \mathbb{T}_{\mathfrak{p}}$. Thus $1|\mathbb{T}_{\mathfrak{p}}(v) = \mathfrak{p}+1$ if $v \in \mathfrak{p}O_{E_{\mathfrak{p}}}^2$ as $|\mathbb{T}_{\mathfrak{p}}| = \mathfrak{p}+1$. If $v \in O_{E_{\mathfrak{p}}}^2 - \mathfrak{p}O_{E_{\mathfrak{p}}}^2$, then $vO_{E_{\mathfrak{p}}} + \mathfrak{p}O_{E_{\mathfrak{p}}}^2 = \xi O_{E_{\mathfrak{p}}}^2$ for a unique $\xi \in \mathbb{T}_{\mathfrak{p}}$. Thus

$$1|\mathbb{T}_{\mathfrak{p}}=1+\mathbf{p}1|\mathfrak{p}.$$

The first remark to deal with the case n > 1 is:

The vector space $M_{2,n}(E_{\mathfrak{p}})$ is a left module over $D_{E_{\mathfrak{p}}} = M_2(E_{\mathfrak{p}})$ and a right module over $M_n(E_{\mathfrak{p}})$ via left and right matrix multiplication. §2. Case n > 1. Write $L := M_{2,n}(O) \subset V$. Pick a representative set \mathbb{T} for $S \operatorname{diag}[\varpi, 1]S/S$ So, $\mathbb{T} \cong \mathbb{T}_p$, and elements of \mathbb{T} act from the left on L. Write $\mathbb{F} := O/\mathfrak{p}$. Then for $\xi \in \mathbb{T}$, consider the set $\mathcal{M} := \{(\xi L)/\mathfrak{p}L \subset M_{2,n}(\mathbb{F})\}$ of $M_n(O_{E_\mathfrak{p}})$ -right submodules of $M_{2,n}(\mathbb{F}) = L \otimes_{O_{E_\mathfrak{p}}} \mathbb{F} = L/\mathfrak{p}L$. Each element of \mathcal{M} is a simple (and irreducible) right $M_n(O_{E_\mathfrak{p}})$ -module, and each such module appears once in \mathcal{M} ; so, \mathcal{M} is independent of the choice of \mathbb{T} (so, we may assume $\mathbb{T} = \mathbb{T}_\mathfrak{p}$). The set $\mathcal{M} \cup \{0\} \cup \{L/\mathfrak{p}L\}$ exhausts all right $M_n(O_{E_\mathfrak{p}})$ -submodules in $M_{2,n}(\mathbb{F}) = L/\mathfrak{p}L$. Therefore $\bigcap_{\xi \in \mathbb{T}} \xi L = \mathfrak{p}L$. Writing $\phi|\xi(v) = \phi(\xi^{-1}v)$ for $v \in M_{2,n}(E_\mathfrak{p})$ and a left-S-invariant function ϕ on $M_{2,n}(E_\mathfrak{p})$, define $1|\mathbb{T} = \sum_{\xi \in \mathbb{T}} 1|\xi$ for $v \in L$, which is independent of the choice of \mathbb{T} . Since $1|\xi = 1_{\xi L}$,

$$1|\mathbb{T}_{\mathfrak{p}} = \begin{cases} |\mathbb{T}| = \mathbf{p} + 1 & \text{if } v \in \bigcap_{\xi \in \mathbb{T}} \xi L = \mathfrak{p}L, \\ 1 & \text{if } v \in L \text{ but } v \notin \mathfrak{p}L. \end{cases}$$

The formula is the same as in the case of n = 1, and writing $X_1 := \{v \in M_2(O_{E_p}) | N(v) \in \mathfrak{p}O_{E_p}\}$ with its characteristic function 1_{X_1} ,

$$\mathbf{1}_{X_1} = \mathbf{1} | \mathbb{T}_{\mathfrak{p}} - \mathbf{p} \mathbf{1} | \mathfrak{p}.$$

§3. $\widetilde{GL(2)} \rightarrow GL(2)$ covering $\widetilde{SL}(2) \rightarrow SL(2)$. Let K be a local field. For $y \in K^{\times}$ and $s = \begin{pmatrix} * & * \\ c & d \end{pmatrix} \in SL_2(K)$, we define

$$v(y,s) = \begin{cases} 1 & \text{if } c \neq 0, \\ (y,d) & \text{if } c = 0, \end{cases}$$

where (\cdot, \cdot) is the quadratic Hilbert symbol for K. Then write $s^y := \text{diag}[1, y]^{-1}s \text{diag}[1, y]$ and $T := \{\text{diag}[1, y] | y \in K^{\times}\}$. By a tedious computation of Kubota's cocycle, Kubota verified the following fact [WRS, Proposition 2.6] essentially:

Proposition 1. The association $\widetilde{SL}_2(K) \ni (s,\zeta) \mapsto (s^y,\zeta v(y,s)) \in \widetilde{SL}_2(K)$ induces an automorphism of $\widetilde{SL}_2(K)$, and hence defining a semi-direct product $\widetilde{GL}_2(K) := T \ltimes \widetilde{SL}_2(K)$ under this action of T, we get an extension $\mu_2 \hookrightarrow \widetilde{GL}_2(K) \twoheadrightarrow GL_2(K)$.

§4. Extension to GL(2) from SL(2). The Weil representation depends on the identification of $X \cong X^*$ for $X = D_{\sigma,F_v}, D_{\sigma,F_A}$. So far we have used the standard additive character \mathbf{e}_F and its local factor to do this by using the pairing $\langle x, x^* \rangle = \mathbf{e}_F(s(x,y))$ or its local version. We can replace \mathbf{e}_F by $\mathbf{e}_{F,\beta} := \mathbf{e}_F \circ \beta$ composing any element $\beta \in \operatorname{Aut}(X)$. Then we write \mathbf{w}_β for the Weil representation associated to $\mathbf{e}_{F,\beta}$ or its local factor; so, \mathbf{w}_1 is the original representation with respect to \mathbf{e}_F .

By [AFG, Proposition 1.3] and $GL_2 = T \ltimes SL_2$, we can descend \mathbf{w}_{β} to $SL_2(F_{\mathfrak{p}})$ for $V = D_{\sigma,\mathfrak{p}}$ for all prime \mathfrak{p} : The formula is $\mathbf{w}_{\beta}(\operatorname{diag}[a, a^{-1}])\phi(v) = \chi_E(a)|a|_{\mathfrak{p}}^2\phi(av)$ and $\mathbf{w}_{\beta}(J)\phi(v) = \gamma \widehat{\phi}(v^{\iota})$ for an 8-th root of unity γ and $\gamma = 1$ if $\mathfrak{p} \nmid \partial \Delta_{E/F}$. If $\mathfrak{p}_F = \mathfrak{p}\mathfrak{p}^{\sigma}$ $(\mathfrak{p} \neq \mathfrak{p}^{\sigma})$ in E with $D_{\sigma, E_{\mathfrak{p}_F}} \cong M_2(E_{\mathfrak{p}})$ by the projection to the \mathfrak{p} -component, we identify $D_{\sigma, E_{\mathfrak{p}_F}}$ and $M_2(E_{\mathfrak{p}})$.

Since diag[β , 1] $v(u) = v(\beta u)$ diag[β , 1], we add the action of diag[β , 1] intertwining w_1 to $w_{\beta^{-1}}$. Namely we extend w to GL₂ combining all $\{w_{\beta}\}_{\beta}$.

§5. An explicit extension to GL(2) from SL(2). We define locally $w(g \operatorname{diag}[b, 1]) := |b|_{\mathfrak{p}} w_{b^{-1}}(g)$ as operators; in other words,

 $\mathbf{w}(g \operatorname{diag}[b, 1])\phi(v) = |b|_{\mathfrak{p}}\mathbf{w}_{b^{-1}}(g)\phi(v)$

for $g \in SL_2(F_{\mathfrak{p}_F})$ and $b \in F_{\mathfrak{p}_F}^{\times}$. The following is [AFG, 1.3 and 1.4] and [WRS, Proposition 2.27]:

Lemma 2. Assume that $\mathfrak{p}_F = \mathfrak{p}\mathfrak{p}^{\sigma}$ ($\mathfrak{p} \neq \mathfrak{p}^{\sigma}$) in E with $D_{\sigma,\mathfrak{p}_F} \cong M_2(E_{\mathfrak{p}})$ by the projection to the \mathfrak{p} -component. Identify $D_{\sigma,\mathfrak{p}_F}$ and $M_2(E_{\mathfrak{p}})$. The above extension \mathbf{w} is a well defined representation, and for a given $\phi \in \mathcal{S}(D_{\sigma,\mathfrak{p}_F})$ (for $D_{\sigma,\mathfrak{p}_F} := D_{\sigma,F\mathfrak{p}_F}$),

(1) the stabilizer $U_{\mathfrak{p}_F}^{\phi}$ of ϕ in $\operatorname{GL}_2(F_{\mathfrak{p}_F})$ under the extended action is an open subgroup of $\operatorname{GL}_2(F_{\mathfrak{p}_F})$;

(2) $U_{\mathfrak{p}_F}^{\phi}$ contains $\operatorname{GL}_2(O_{\mathfrak{p}_F})$ if ϕ is a characteristic function of $D_{\sigma,\mathfrak{p}_F} \cap R_{\mathfrak{p}_F}$ for a maximal order $R_{\mathfrak{p}_F}$ of $D_{E_{\mathfrak{p}_F}}$ and \mathfrak{p}_F is prime to 2∂ .

§6. A corollary. Define $L(h)\phi(v) := \phi(h^{\iota}vh^{\sigma})$ and $L'(h)\phi(v) := \phi(h^{-1}vh^{\sigma})$ for $h \in B_{\mathfrak{p}_{F}}^{\times}$ and $\phi \in \mathcal{S}(D_{\sigma,F\mathfrak{p}_{F}})$.

Corollary 1. Let the notation and assumption be as in Lemma 2. Then we have $1|\mathbb{T}_{\mathfrak{p}_F}^+ = 1|\mathbb{T}_{\mathfrak{p}}$ and $1|\mathbb{T}_{\mathfrak{p}_F}^+ = 1|\mathbb{T}_{\mathfrak{p}}$ under the action L'of $D_{E_{\mathfrak{p}}}^{\times}$ and $1|\mathbb{T}_{\mathfrak{p}_F}^+ = 1|\mathbb{T}_{\mathfrak{p}}^*$ and $1|\mathbb{T}_{\mathfrak{p}_F}^{+,*} = 1|\mathbb{T}_{\mathfrak{p}}$ under the action L of $D_{E_{\mathfrak{p}}}^{\times}$, where we let $\mathsf{GL}_2(E_{\mathfrak{p}})$ act on $\mathcal{S}(D_{\sigma,E_{\mathbb{A}}})$ as in Lemma 2.

Proof. Chnaging L' to L brings \mathbb{T}_p to \mathbb{T}_p^* , we prove the assertion for $\mathbb{T} = \mathbb{T}_p$. Recall $1|\mathbb{T}_p = 1 + p1|p$. By the way of extending the Weil representation to $GL_2(F_{p_F})$ in Lemma 2, writing $\begin{pmatrix} \varpi & u \\ 0 & 1 \end{pmatrix} = v(u) \operatorname{diag}[\varpi, 1]$ and $\operatorname{diag}[1, \varpi] = \operatorname{diag}[\varpi^{-1}, \varpi] \operatorname{diag}[\varpi, 1]$, by the extension of the Weil representation w in Lemma 2, we have

$$1|\mathbb{T}_{\mathfrak{p}_F}^+(v) = T_1(v) + \mathbf{p}\mathbf{1}(\varpi^{-1}v)$$

for

$$T_1(v) := \mathbf{p}^{-1} \sum_{u \mod \mathfrak{p}} \mathbf{e}(u\varpi^{-1}N(v))\mathbf{1}(v).$$

$\S7.$ **Proof continues**.

Note

$$T_{1}(v) = \begin{cases} 0 & \text{if } v \notin M_{2}(O_{E_{\mathfrak{p}}}) \text{ or } N(v) \in O_{E_{\mathfrak{p}}}^{\times}, \\ 1 & \text{if } v \in M_{2}(O_{E_{\mathfrak{p}}}) \text{ and } N(v) \in \mathfrak{p}O_{E_{\mathfrak{p}}}. \end{cases}$$

Recall $X_{1} := \{v \in M_{2}(O_{E_{\mathfrak{p}}}) | N(v) \in \mathfrak{p}O_{E_{\mathfrak{p}}}\}.$ Thus, $T_{1}(v) = \mathbf{1}_{X_{1}}.$
Since $\mathbf{1}_{X_{1}} = \mathbf{1} | \mathbb{T}_{\mathfrak{p}} - \mathfrak{p}\mathbf{1} | \mathfrak{p}$ as in §2, and $\mathbf{1} | \mathfrak{p}(v) = \mathbf{1}(\varpi^{-1}v),$
 $\mathbf{1} | \mathbb{T}_{\mathfrak{p}_{F}}^{+}(v) = (\mathbf{1} | \mathbb{T}_{\mathfrak{p}})(v) - \mathfrak{p}\mathbf{1}(\varpi^{-1}v) + \mathfrak{p}\mathbf{1}(\varpi^{-1}v) = \mathbf{1} | \mathbb{T}_{\mathfrak{p}}(v)$
as desired. \Box

§8. Non-split primes. Here is a version of Lemma 2 for non-split primes:

Lemma 3. Let \mathfrak{p}_F be non-split in E or ramified in D, and write $\Delta_{E/F}$ for the discriminant of $E_{/F}$. Then for $\phi \in \mathcal{S}(D_{\sigma,\mathfrak{p}_F})$, there exists an open subgroup $U_{\mathfrak{p}_F}^{\phi}$ of $\mathsf{GL}_2(F_{\mathfrak{p}_F})$ such that 0. $\chi_E \circ \det$ is trivial on U^{ϕ} ; 1. the action of $\mathsf{SL}_2(F_{\mathfrak{p}_F})$ via \mathfrak{w} extends to $\mathsf{SL}_2(F_{\mathfrak{p}_F})U_{\mathfrak{p}_F}^{\phi}$ and $\mathfrak{w}(u)\phi = \phi$ for all $u \in U_{\mathfrak{p}_F}^{\phi}$; 2. If \mathfrak{p}_F is prime to $2\partial \Delta_{E/F}$ and ϕ is a characteristic function of $D_{\sigma,\mathfrak{p}_F} \cap R_{\mathfrak{p}_F}$ for a maximal order $R_{\mathfrak{p}_F}$ of $D_{E_{\mathfrak{p}_F}}$, then $U_{\mathfrak{p}_F}^{\phi}$ contains $\mathsf{GL}_2(O_{\mathfrak{p}_F})$.

Consider $\mathcal{U}^{\phi} := \{u \in O_{\mathfrak{p}_{F}}^{\times} | \phi(uv) = \phi(v) \text{ for all } v \in D_{\sigma,F_{\mathfrak{p}_{F}}} \}$, and let S^{ϕ} be an open subgroup of $\{s \in SL_{2}(O_{\mathfrak{p}_{F}}) | \mathbf{w}(s)\phi = \phi\}$. By the smoothness of \mathbf{w} , we may assume that S^{ϕ} is normalized by $\delta_{u} :=$ diag[1, u] for $u \in O_{\mathfrak{p}_{F}}^{\times}$ (i.e., a principal congruence subgroup).

$\S 9.$ **Proof continues.** Then

$$U = U^{\phi} := \{s\delta_u | u \in \mathcal{U}^{\phi}, s \in S^{\phi}\}$$

is an open subgroup of $\operatorname{GL}_2(O_{\mathfrak{p}_F})$ and can be taken to contain $\operatorname{GL}_2(O_{\mathfrak{p}_F})$ if \mathfrak{p}_F is prime to $2\partial \Delta_{E/F}$ and ϕ is a characteristic function of $D_{\sigma,\mathfrak{p}_F} \cap R_{\mathfrak{p}_F}$ for a maximal order $R_{\mathfrak{p}_F}$ of $D_{E_{\mathfrak{p}_F}}$. Let $\mathbf{w} = \mathbf{w}_{D_{\sigma},\mathfrak{p}_F}$ (the local Weil representation on $\mathcal{S}(D_{\sigma,F_{\mathfrak{p}_F}})$). We extend \mathbf{w} to U by $\mathbf{w}(\delta_u)\phi = \phi$ for $u \in U^{\phi}$. For this identity, we need $\chi_E(u) = 1$ as $r(\operatorname{diag}[u, u^{-1}])\phi(v) = \chi_E(u)\phi(uv)$.

By the computation in the books [AFG, Lemma 1.4] and [WRS, Proposition 2.27], the conjugation by δ_u induces an automorphism of $\widetilde{SL}_2(F_{\mathfrak{p}_F})$ without changing the center if $\chi_E(u) = 1$ and \mathfrak{p}_F is odd (if $\mathfrak{p}_F|_2$, we need to assume that u is square), and therefore, this extension is consistent.

$\S10.$ Archimedean primes.

Lemma 4. Write $\operatorname{GL}_2^+(F_\infty)$ for the identity connected component of $\operatorname{GL}_2(F_\infty)$. For a character $\psi_\infty : F_\infty^{\times} \to \mathbb{C}^{\times}$ and $\phi_\infty \in \mathcal{S}(D_{\sigma,F_\infty})$ with $\phi_\infty(\epsilon v) = \psi_\infty(\epsilon)\phi_\infty(v)$ for all $v \in D_{\sigma,F_\infty}$ and $\epsilon \in \mu_2(F_\infty)$, we can extend w defined on $\operatorname{SL}_2(F_\infty)$ to $\operatorname{GL}_2^+(F_\infty)$ so that the central character of w at infinity is given by ψ_∞ .

Proof. By $GL_2(F_\infty) = SL_2(F_\infty)F_\infty^{\times}$ with $SL_2(F_\infty)\cap F_\infty^{\times} = \mu_2(F_\infty)$, we require for ϕ_∞ to satisfy $w(gz)\phi_\infty = \psi_\infty^{-1}(z)\phi_\infty$ for $z \in F_\infty^{\times}$. This gives the extension.