L-value formula

Haruzo Hida
Department of Mathematics, UCLA,
Lecture no. 4 at NCTS, April 9, 2024

Lecture 4: We sketch the proof of the L-value formula for a division quaternion algebra $D_{/ \mathbb{Q}}$. The algebra D can be definite or indefinite, though we describe mainly the details only for the indefinite case. Let $B=D \otimes_{\mathbb{Q}} E$ for a real semi-simple quadratic extension E. The non-trivial automorphism $\sigma \in \operatorname{Gal}(E / \mathbb{Q})$ acts on B through the factor E. Since the case $E=\mathbb{Q} \times \mathbb{Q}$ is easier, we mainly assume that E is a field. A key point is the use of the see-saw principle for the decomposition $D_{\sigma}=Z \oplus D_{0}$, where $D_{\sigma}:=\left\{v \in B \mid v^{\iota}=v^{\sigma}\right\}$ with the reduced norm $N: D_{\sigma} \rightarrow \mathbb{Q}$ and $Z=D_{\sigma} \cap E$ and $D_{0}=\left\{v \in D_{\sigma} \mid \operatorname{Tr}(v)=0\right\}$. We need to use the Siegel-Weil formula for D_{0}. For simplicity, we assume $M=\partial$. The details are in Chapter 5 , and the case $M=M_{2}(\mathbb{Q})$ is dealt with in Section 5.5 of the notes.
§0. An idea of Waldspurger. For an elliptic cusp form f, an idea of Waldspurger of computing the period of a theta lift of f for a quadratic space $V=W \oplus W^{\perp}$ over an orthogonal Shimura subvariety $S_{W} \times S_{W^{\perp}} \subset S_{V}$ is two-folds:
(S) Split $\theta\left(\phi^{\prime}\right)\left(\tau, h, h^{\perp}\right)=\theta(\phi)(\tau, h) \cdot \theta\left(\tau, \phi^{\perp}\right)\left(h^{\perp}\right)\left(h^{?} \in \mathrm{O}_{W^{?}}(\mathbb{A})\right)$ for a decomposition $\phi^{\prime}=\phi \otimes \phi^{\perp}$ (ϕ and ϕ^{\perp} Schwartz-Bruhat functions on $W_{\mathbb{A}}$ and $W_{\mathbb{A}}^{\perp}$);
(R) For the theta lift $\theta^{*}(\phi)(f)(h)=\int_{X} f(\tau) \theta(\phi)(\tau, h) d \mu$ with an SL(2)-Shimura curve X, the period P over the Shimura subvariety $S \times S^{\perp}\left(S\right.$ for $\mathrm{O}(W)$ and S^{\perp} for $\mathrm{O}\left(W^{\perp}\right)$) is given by:

$$
\begin{aligned}
& \int_{S \times S^{\perp}} \int_{X} f(\tau) \theta(\phi)(\tau ; h) d \mu d h \quad\left(d \mu=\eta^{-2} d \xi d \eta\right) \\
& \quad=\int_{X} f(\tau)\left(\int_{S^{\perp}} \theta\left(\phi^{\perp}\right)\left(\tau ; h^{\perp}\right) d h^{\perp}\right) \cdot\left(\int_{S} \theta\left(\phi_{0}\right)\left(\tau ; h_{0}\right) d h\right) d \mu .
\end{aligned}
$$

Then invoke the Siegel-Weil formula to convert inner integrals into the Siegel-Weil Eisenstein series $E(\phi)$ and $E\left(\phi^{\perp}\right)$, reaching Rankin-Selberg integral

$$
P=\int_{X} f(\tau) E\left(\phi^{\perp}\right) E\left(\phi_{0}\right) d \mu=L \text {-value }
$$

§1. Choice of V : For a \mathbb{Q}-vector space V and a \mathbb{Q}-algebra A, write $V_{A}:=V \otimes_{\mathbb{Q}} A$. Let $E:=\mathbb{Q}[\sqrt{\Delta}]$ be a quadratic extension of \mathbb{Q} with discriminant Δ. Pick a quaternion algebra D over \mathbb{Q} and put $B:=D \otimes_{\mathbb{Q}} E$. We let $1 \neq \sigma \in \operatorname{Gal}(E / \mathbb{Q})$ act on D through the factor E. Recall

$$
V=D_{\sigma}:=\left\{v \in B \mid v^{\sigma}=v^{\iota}\right\} \text { for } v^{\iota}=\operatorname{Tr}_{B / E}(v)-v .
$$

The quadratic form is given by $Q(v)=v v^{\sigma}=N(v) \in \mathbb{Q}$. We have two cases of isomorphism classes of $\left(D_{\mathbb{R}}, E_{\mathbb{R}}\right)$. Note $E_{\mathbb{R}}=\mathbb{R} \times \mathbb{R}$; so, we have two cases Case I and Case H . The symbol " I " (resp. " H ") indicate D is indefinite (resp. definite). The decomposition we take is

$$
\begin{aligned}
& V=Z \oplus D_{0} \quad Z=\mathbb{Q} \text { with quadratic form } Q_{Z}(z)=z^{2}, \text { and } \\
& D_{0}:=\left\{v_{0} \in \sqrt{\triangle} D \mid \operatorname{Tr}_{D / \mathbb{Q}}(v)=0\right\} \text { with } Q_{0}(v)=v v^{\sigma}=N(v)
\end{aligned}
$$

Signature of D_{0} is $(1,2)$ in Case I and $(3,0)$ in Case $H, O_{D_{0}}$ is almost D^{\times}and the same for $O_{D_{\sigma}}$ and B^{\times}.
§2. Bruhat functions and majorant. On $Z=\mathbb{Q}$, for a Dirichlet character ψ modulo N, we regard ψ as a function supported on $\widehat{\mathbb{Z}} \subset Z_{\mathbb{A}(\infty)}=\mathbb{A}^{(\infty)}$. This ψ produces theta series $\sum_{n \in \mathbb{Z}} \psi(n) n^{j} \mathbf{e}\left(n^{2} \tau\right)$ on $\Gamma_{0}\left(4 N^{2}\right)$ of character $\psi(\underline{-1})$ and of weight $j+\frac{1}{2}$.

Take a maximal order R of D and take the characteristic function ϕ_{0} of $D_{0, \mathbb{A}} \cap \sqrt{\Delta} \widehat{R}$. Here for any lattice $L, \widehat{L}=L \otimes_{\mathbb{Z}} \widehat{\mathbb{Z}}$. This ϕ_{0} produces theta series on $\Gamma_{0}(4 \partial \Delta)$ of character $(\underline{-\Delta})$.

The theta series for D_{σ} of $\psi \otimes \phi_{0}$ has level $M=\left[4 N^{2}, 4 \partial \Delta\right]$. We choose M so that $C \mid M$ for the conductor C of F.

A positive definite symmetric matrix $P \in M_{n}(\mathbb{R})$ (or the symmetric bilinear form on $V_{\mathbb{R}}$ associated to P) is a positive majorant of a symmetric matrix S if $P S^{-1}=S P^{-1}\left(\Leftrightarrow S^{-1} P=P^{-1} S\right)$.
§3. Schwartz function Ψ on $D_{\sigma, \mathbb{R}}$ in Case I. The recipe of Hecke-Siegel is to put $\Psi(v)=H(v) \mathbf{e}(\xi N(v)+P(v) \eta \sqrt{-1})$ for $\mathrm{e}(x)=\exp (2 \pi \sqrt{-1} x)$ and a harmonic polynomial H, where $P(v)=$ $\frac{1}{2} p(v, v)$ with a positive majorant p of $s\left(v, v^{\prime}\right)=\operatorname{Tr}_{B / E}\left(v^{l} v^{\prime}\right)$. All positive majorants form the symmetric space \mathfrak{S} of $\mathrm{O}_{D_{\sigma}}$.

We identify $\left(D_{\sigma, \mathbb{R}}, N\right)=\left(M_{2}(\mathbb{R})\right.$, det) by $M_{2}(\mathbb{R}) \ni v \mapsto\left(v, v^{\iota}\right) \in$ $D_{\sigma, \mathbb{R}} \subset D_{\mathbb{R}} \times D_{\mathbb{R}}$ and put for $(z, w) \in \mathfrak{H} \times \mathfrak{H}$ on which $B^{\times} \sim \mathrm{GO}_{D_{\sigma}}$ acts by $\alpha(z, w)=\left(\alpha(z), \alpha^{\sigma}(w)\right)$. For $(z, w) \in \mathfrak{H} \times \mathfrak{H}$, a standard harmonic polynomial of $v \in D_{\sigma}$ of degree k is given by $[v ; z, w]^{k}=s(v, p(z, w))^{k}$ for $p(z, w)=\binom{z}{1}(w, 1) J$. For $0<k \in \mathbb{Z}$, $\psi(v ; \tau, z, w)=\operatorname{Im}(\tau) \frac{[v ; z, \bar{w}]^{k}}{(z-\bar{z})^{k}(w-\bar{w})^{k}} \mathrm{e}\left(N(v) \bar{\tau}+i \frac{\operatorname{Im}(\tau)}{2|\operatorname{Im}(z) \operatorname{Im}(w)|}|[v ; z, \bar{w}]|^{2}\right)$, for $(\alpha, \beta) \in G L_{2}(\mathbb{R}) \times G L_{2}(\mathbb{R})$ (see $\S 3.2 .3$),

$$
\alpha p(z, w) \beta^{\iota}=p(\alpha(z), \beta(w)) j(\alpha, z) j(\beta, w) .
$$

This formula is due to Shimura. This function is not a tensor product of functions on $Z_{\mathbb{R}}$ and $D_{0, \mathbb{R}}$ which causes some difficulty later. For simplicity, we assume $k=2$. See Section 3.2 for ψ.
§4. Theta kernel. Let ϕ be a Schwartz-Bruhat function on $D_{\sigma, \mathbb{A}}$. Let $\mathrm{Mp}(\mathbb{A}) \rightarrow \mathrm{SL}_{2}(\mathbb{A})$ be the metaplectic cover constructed by Weil, and $\phi \mapsto \mathrm{w}(g) \phi$ the Weil representation. Noting $B^{\times} \rightarrow$ $\mathrm{GO}_{D_{\sigma}}$ by $v \mapsto h^{\iota} v h^{\sigma}$, Siegel-Weil theta series $\theta(g ; h)$ is

$$
\sum_{\alpha \in D_{\sigma}}(\mathbf{w}(g) \phi)\left(h^{\iota} \alpha h^{\sigma}\right): \mathrm{SL}_{2}(\mathbb{Q}) \backslash \mathrm{Mp}(\mathbb{A}) \times B^{\times} \backslash B_{\mathbb{A}}^{\times} \rightarrow \mathbb{C}
$$

Write $\hat{\Gamma}=\hat{\Gamma}_{\phi}=\left\{u \in B_{\mathbb{A}(\infty)}^{\times} \mid \theta\left(g, u^{\iota} h u^{\sigma}\right)=\theta(g, h)\right\}$.
In Case I, choose $\phi=\left(\psi \otimes \phi_{0}\right) \Psi(v ; \sqrt{-1}, \sqrt{-1}, \sqrt{-1})$ and for $g_{\tau}=\eta^{-1 / 2}\left(\begin{array}{cc}\eta & \xi \\ 0 & 1\end{array}\right)(\tau=\xi+\eta \sqrt{-1} \in \mathfrak{H})$, we specialize g to g_{τ} and h to $\left(g_{z}, g_{w}\right)$ for $(\tau, z, w) \in \mathfrak{H} \times \mathfrak{H} \times \mathfrak{H}$. Then

$$
\theta(\tau ; z, w):=\theta\left(g_{\tau} ; g_{z}, g_{w}\right)=\sum_{\alpha \in D_{\sigma}}\left(\psi \otimes \phi_{0}\right)(\alpha) \Psi(\alpha ; \tau, z, w) .
$$

Set $\theta^{*}(\phi)(f):=\int_{X_{0}(M)} f(\tau) \theta(\phi)(\tau ; z, w) \eta^{k-2} d \xi d \eta(k=2)$. Then $\theta^{*}(\phi)(f)$ is a weight 2 quaternionic modular form on B^{\times}holomorphic in z and anti-holomorphic in w for $f \in S_{2}^{-}\left(\Gamma_{0}(M), \psi^{-1}(\underline{\Delta})\right)$.
§5. Theta differential form. To compute the period on $S h_{D}=D_{+}^{\times} \backslash\left(D_{\mathbb{A}(\infty)}^{\times} \times \mathfrak{H}\right) \subset S h_{B}=B^{\times} \backslash\left(B_{\mathbb{A}}^{\times}(\infty) \times \mathfrak{Z}_{B}\right)$, we convert $\theta(\tau ; z, w)$ into a sheaf valued differential 2 -form. If $n=k-2>0$, the sheaf comes from the B^{\times}-module

$$
L_{E}(n ; A)=\sum_{0 \leq i, j \leq n} A X^{n-j} Y^{j} X^{\prime n-i} Y^{\prime i}
$$

with B^{\times}-action $\gamma P\left(X, Y ; X^{\prime}, Y^{\prime}\right)=P\left((X, Y)^{t} \gamma^{\iota} ;\left(X^{\prime}, Y^{\prime}\right)^{t} \gamma^{\sigma \iota}\right)$. As we assumed $k=2$ (i.e., $n=0$), we have $L(n ; A)=A$.

By putting $\Theta=\theta(\phi)(\tau ; z, w) d z \wedge d \bar{w}$ for $n=k-2$, we get \mathbb{C}-valued Γ_{ϕ}-invariant differential form. The period we like to compute is

$$
P=P_{1}\left(\theta^{*}(\phi)(f)\right)=\int_{S h_{D}} \int_{X_{0}(M)} f(-\bar{\tau}) \Theta(\tau ; z, z) d \xi d \eta .
$$

We integrate over $S h_{D}$ by a measure $d \mu$ given by $y^{-2} d x d y$ over \mathfrak{H} and $\int_{\widehat{\digamma}} d \mu=1$.
\S 6. Siegel-Weil Eisenstein series; $\S 4.4$. 2 . Recall the explicit section $\mathbf{r}: B \hookrightarrow \mathrm{Mp}$ of the representation \mathbf{w} as follows:

$$
\mathbf{r}\left(\operatorname{diag}\left[a, a^{-1}\right]\right) \phi(v)=|a|_{\mathbb{A}}^{3 / 2} \phi(a v), \quad \mathbf{r}\left(\begin{array}{ll}
1 & u \\
0 & 1
\end{array}\right) \phi(v)=\mathbf{e}(u N(v)) \phi(v)
$$

For the standard Borel subgroup $B \subset \mathrm{SL}_{2}$, the function $g \mapsto$ $(\mathbf{r}(g) \phi)(0)$ is left $B(\mathbb{Q})$ invariant. Siegel-Weil Eisenstein series is

$$
E(\phi)(g ; s)=\sum_{\gamma \in B(\mathbb{Q}) \backslash \mathrm{SL}_{2}(\mathbb{Q})}(\mathbf{w}(\gamma g) \phi)(0)|a(\gamma g)|_{\mathbb{A}}^{s}
$$

where $g=\operatorname{diag}\left[a(g), a(g)^{-1}\right]\left(\begin{array}{cc}1 & u \\ 0 & 1\end{array}\right) c$ for an element c in the maximal compact subgroup by Iwasawa decomposition.

The Siegel-Weil formula by Kudla-Rallis and Sweet is

$$
E(\phi)(g ; 0)=\int_{S} \theta(\phi)(g, h) d \omega \text { for the Tamagawa measure } d \omega
$$

The ratio $\mathfrak{m}=\mathfrak{m}(\hat{\Gamma})=d \mu / d \omega$ is the mass of Siegel-Shimura, which is an arithmetic rational number times $\zeta(2) / \pi$ in Case I and $\zeta(2) / \pi^{2}$ in Case H. Later we describe the Tamagawa measure, the metaplectic group and Weil representation in more details.
§7. Conclusion in Case I; §5.3. Decomposing $v=a \oplus v_{0}$ in $D_{\sigma}=Z \oplus D_{0}$, we have for $k=2$
$\left[a+v_{0} ; z, \bar{z}\right]^{k}=\left([a ; z, \bar{z}]+\left[v_{0} ; z, \bar{z}\right]\right)^{k}=\sum_{j=0}^{k}\binom{k}{j}(a(z-\bar{z}))^{k-j}\left[v_{0} ; z, \bar{z}\right]^{j}$.
Thus we have $\phi=\sum_{j=0}^{k}\binom{k}{j} \phi_{k-j}^{Z} \phi_{j}^{D_{0}}$ with infinity part $\Psi_{j}^{?}$ of $\phi_{j}^{?}$ given by
$\Psi_{j}^{D_{0}}:=(z-\bar{z})^{-j}\left[v_{0} ; z, \bar{z}\right]^{j} \mathbf{e}\left(N(\mathfrak{x}) \bar{\tau}+\frac{i \operatorname{Im}(\tau)\left|\left[v_{0} ; z, \bar{z}\right]\right|^{2}}{2 \operatorname{Im}(z)^{2}}\right), \Psi_{j}^{Z}:=a^{j} \mathbf{e}\left(a^{2} \tau\right)$ with $\left(\mathrm{w}(b) \phi_{j}^{D_{0}}\right)(0)=0$ and $\left.E\left(\phi_{j}^{D_{0}}\right)\right|_{B(\mathbb{A})}=0$ unless $j=0$, and we reach Rankin convolution of $\theta\left(\phi_{k}^{Z}\right)=\sum_{n \in \mathbb{Z}} \psi(n) n^{k} \mathbf{e}\left(n^{2} z\right)$ and f over $B(\mathbb{Q}) \backslash B(\mathbb{A}) / B(\widehat{\mathbb{Z}}) \cong[0,1) \times \mathbb{R}_{+}^{\times}$, which produces (see [Sh75])

$$
\zeta(2) P=\mathfrak{m} 2^{-2 k} *(2 \pi)^{-k} \Gamma(k) L^{(s)}\left(1, A d\left(\rho_{f}\right) \otimes\left(\frac{\triangle}{}\right)\right)
$$

with a simple constant $*$. Here $L^{(s)}$ means we remove Euler factors at $p \mid C$ with either $f \mid U(p)=0$ or $\psi(p)=0$.
§8. Conclusion in Case H; §5.2. The choice of the Bruhat function ϕ is the same as in Case I. As a \mathbb{C}-valued function, set

$$
\Psi(\tau ; v ; \mathbf{x})=\mathrm{e}(N(v) \tau)
$$

Again in exactly the same way, for

$$
\theta^{*}(\phi)(f):=\int_{X_{0}(M)} \theta(\phi)(\tau ; g) f(\tau) \eta^{k-2} d \xi d \eta \quad(k=2)
$$

and $P=\int_{S} \theta^{*}(\phi)(f) d \mu$, we conclude for a simple constant c^{\prime}

$$
\zeta(2) P=2 \mathfrak{m} *^{\prime}(2 \pi)^{-k+1} \Gamma(k) L^{(s)}\left(1, \operatorname{Ad}\left(\rho_{f}\right) \otimes(\underline{\Delta})\right) .
$$

Writing the point set $S=\{x\}_{x \in S h_{R}}, \mathfrak{m}(\hat{\Gamma})=\sum_{x \in S h_{R}} e_{x}^{-1} \doteqdot \zeta(2)$ for $e_{x}=\left|\hat{\Gamma} \cap \mathrm{O}_{D_{0}}(\mathbb{Q})\right|$ and $P \doteqdot \sum_{x \in S h_{R}} e_{x}^{-1} \theta^{*}(\phi)(f)(x)$.

Thus the period formula is an adjoint analogue of the mass formula of Siegel-Shimura. The determination of $\mathfrak{m}(\hat{\Gamma})$ was finished by Shimura in 1999 for an arbitrary quadratic space over a totally real field (see $\S 5.2 .8$ for the explicit formula for the mass).
\S 9. Schwartz-Bruhat functions; \S 3.1.3. For a \mathbb{Q}-vector space V, write $V_{p}:=V \otimes_{\mathbb{Z}} \mathbb{Z}_{p}$ (which is a vector space over a local field \mathbb{Q}_{p}). A Bruhat function on V_{p} is a locally constant compactly supported function with values in \mathbb{C}. Write $\mathcal{S}\left(V_{p}\right)$ for the space of Bruhat functions on V_{p}. For a real vector space V_{∞}, we define $\mathcal{S}\left(V_{\infty}\right)$ to be the Schwartz space of functions on V_{∞}. Thus $\mathcal{S}\left(V_{\infty}\right)$ is made of C^{∞}-class functions with all derivatives rapidly decreasing as Euclidean norm of $v \in V_{\infty}$ grows. In other words, $\phi \in \mathcal{S}\left(V_{\infty}\right)$ if and only if ϕ is of C^{∞}-class and for any polynomial $P(v)$ and any m-th derivative Φ of $\phi,|P(v) \Phi(v)|$ goes to 0 as $|x| \rightarrow \infty$. Writing $V_{\mathbb{A}}$ for the adelization. We pick a lattice L of V and put $\widehat{L}=\Pi_{p} L_{p} \subset V_{\mathbb{A}(\infty)}$ with $L_{p}=L \otimes_{\mathbb{Z}} \mathbb{Z}_{p}$. A Schwartz-Bruhat function on $V_{\mathbb{A}}$ is a finite linear combination of the function of the form $\phi(x)=\Pi_{v} \phi_{v}\left(x_{v}\right)$ with $\phi_{v} \in \mathcal{S}\left(V_{v}\right)$ and ϕ_{p} is the characteristic function of L_{p} for almost all p.
§10. Weil representation. Let $v(u)=\left(\begin{array}{ll}1 & u \\ 0 & 1\end{array}\right), \operatorname{diag}[a, b]=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$ and $J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. Let $\mathbf{e}: \mathbb{A} / \mathbb{Q} \rightarrow S^{1}$ be the additive character with $\mathbf{e}\left(x_{\infty}\right):=\exp \left(2 \pi \sqrt{-1} x_{\infty}\right)$. We put $\mathbf{e}_{v}:=\left.\mathbf{e}\right|_{\mathbb{Q}_{v}}$ and for a number field F, we write $\mathbf{e}_{F}=\mathbf{e} \circ \operatorname{Tr}_{F / \mathbb{Q}}$ and $\mathbf{e}_{F_{v}}=\mathbf{e}_{v} \circ \operatorname{Tr}_{F_{v}} / \mathbb{Q}_{v}$. Let $Q: V \rightarrow F$ be a non-degenerate quadratic form with symmetric bilinear form $s(v, w)=Q(v+w)-Q(v)-Q(w)$ over a number field F. We have the following operator $\mathrm{r}(g) \in \operatorname{Aut}\left(\mathcal{S}\left(V_{\text {? }}\right)\right)$ for $m=\operatorname{dim}_{F} V, ?=v, \mathbb{A}$ with $u \in F_{v}$ or $F_{\mathbb{A}}$ and $a \in F_{v}^{\times}$:
$\mathrm{r}(v(u))=\mathbf{e}_{F}(u Q(v)) \phi(v), \mathrm{r}\left(\operatorname{diag}\left[a, a^{-1}\right] \phi(v)=|a|_{F_{\mathrm{A}}}^{m / 2} \phi(a v)\right.$ and $\mathrm{r}(J) \phi(v)=\widehat{\phi}(-v):=\int_{V_{?}} \mathbf{e}_{F}(s(w,-v)) \phi(w) d w$ (Fourier transform), where $d w$ is normalized so that $\widehat{\hat{\phi}}(v)=\phi(-v)$. If $b, b^{\prime} \in B\left(F_{\mathbb{A}}\right)$ (upper triangular Borel subgroup), we extend \mathbf{r} to $\Omega=B\left(F_{\mathbb{A}}\right) J B\left(F_{\mathbb{A}}\right)$ by $\mathrm{r}\left(b J b^{\prime}\right):=\mathrm{r}(b) \mathrm{r}(J) \mathrm{r}\left(b^{\prime}\right)$. Then if $g, h \in \mathrm{SL}_{2}\left(F_{\text {? }}\right)$ either unipotent, diagonal or $J, \mathbf{r}(g h)=\kappa(g, h) \mathbf{r}(g) \mathbf{r}(h)$ for a 2 -cocycle κ on SL_{2} with values in S^{1}. Write $\mathrm{Mp}\left(F_{\text {? }}\right) \subset \operatorname{Aut}\left(\mathcal{S}\left(V_{\text {? }}\right)\right)$ for the group generated by these operators. We have an extension (*) $1 \rightarrow S^{1} \rightarrow \mathrm{Mp}\left(F_{?}\right) \xrightarrow{\pi ?} \mathrm{SL}_{2}\left(F_{?}\right) \rightarrow 1$ with $\mathrm{Mp} \ni \mathrm{w}(g) \mapsto g \in \mathrm{SL}_{2}$. Therefore, the group Mp acts on $\mathcal{S}\left(V_{\text {? }}\right)$ by a representation w .
§11. Weil's theta series. The extension (*) is split in the following cases:

1. $\operatorname{dim}_{F} V$ is even (the section is unique and if $V=D_{\sigma, F}$?
$b \mapsto \chi_{V}(a) \mathbf{r}(b)$ over $B\left(F_{\mathbb{A}}\right)$ if $\left.b=v(u) \operatorname{diag}\left[a, a^{-1}\right]\right)$;
2. $b \mapsto \mathbf{r}(b)$ and also $b \mapsto \chi_{V}(a) \mathbf{r}(b)$ as above over $B\left(F_{\mathbb{A}}\right)$;
3. Over $\hat{\Gamma}_{0}(4)$ (canonical);
4. Over $\mathrm{SL}_{2}(F)$ (canonical and coincides with $b \mapsto \mathbf{r}(b)$ over $B(F)$.

For the orthogonal group \bigcirc_{V} for V and $\phi \in \mathcal{S}\left(V_{\mathbb{A}}\right)$, we define a function on $\operatorname{Mp}\left(F_{\mathbb{A}}\right) \times \bigcirc_{V}\left(F_{\mathbb{A}}\right)$ by $\theta(\phi)(g, h)=\sum_{\alpha \in V} \mathbf{w}(g) L(h) \phi(\alpha)$, where $(L(h) \phi)(v)=\phi(v h)$ (as usual, $O\left(F_{\mathbb{A}}\right)$ acts on $V_{F_{\mathbb{A}}}$ from the right). Weil showed that $\theta(\phi)(g, h)$ is real analytic on $\mathrm{Mp}\left(F_{\infty}\right) \times$ $\bigcirc_{V}\left(F_{\infty}\right)$, left invariant under $\mathrm{SL}_{2}(F) \times \mathrm{O}_{V}(F)$ and right invariant under an open subgroup of $\mathrm{Mp}\left(F_{\mathbb{A}(\infty)}\right) \times \mathrm{O}_{V}\left(F_{\mathbb{A}(\infty)}\right)$; in short, an automorphic form on $\mathrm{Mp} \times \mathrm{O}_{V}$.

All the details are in Chapter 4.

