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*We give a sketch of the proof of the non-vanishing theorem. To study Zariski
density in G¢ (Q,), we consider a discrete valuation ring W, c C, finite over
W (F,). Recall X = X, := {x]| [, x¢dps # 0 for some n, v(x) = v} and
the sequence n := {min(m)|x factors through I, for x € X} defines = =
{s(A)I|[A] € L, Ker(I', — ;)} for some j > r. We show that n contains an

arithmetic progression if dim X < d for the Zariski closure X in G¢ .



§0. Case dimX =0 (and ' £ Z,). We can take j := r for r
given by £7 || |Fplf, A, 0, pg] *|. If the Zariski closure X has dimen-
sion 0, it is a finite set stable under t — t&' (Fp = Fp[f, X\, ¥, po]);
so, there exists an integer N such that if the order of x is larger
than ¢, we have Joy- xwdpp = 0 for all n. Let 0 < mg € Z
be the minimal integer such that [0 = (pp°) with o € R. Thus
there exists a positive integer N’ such that n D {n € mgZ|n > N'},
which is an arithmetic progression; so, the assertion follows from
Density theorem if I = Z,.

Assume 0 < dimX < d; so, Oy # Zy, and dimX < d. We have
Yo =P ex if ye Xx;ie., X is o-stable.

1. we may not have lower bound ¢V of the order of y € X,

2. the Galois action x — xI m € Z only covers 1-dimensional
segment starting with x. In other words, Trg 1,15 ,0X Only factor
through Ker(x|r, ) '»[¢"] whose order grows dependent on n (not
a finite bounded sum of fla(u/w{)([A]) over u € O/I").

These are two points of difficulty which have to be addressed.



§1. Rigidity of torus.

Let W, be a discrete valuation ring finite flat over W (IF,). We
state the following theorem, which is a key to show that n con-
tains arithmetic progression.

Rigidity Theorem. [et X = Spf(7) be a closed formal sub-
scheme of G = @%/Wg flat geometrically irreducible over W, (i.e.,
T NQy = Wy). Suppose there exists an open subgroup U of Zg
such that X is stable under the action G > t+— t% € G forallu € U.
If X contains a Zariski dense subset 2 C X(Cy) N uj(Cy), then

there exist w € 2 and a formal subtorus T’ such that X = Tw.

If time permits, we describe a sketch of the proof at the end (see
my papers: JAMS 24 (2011) Rigidity lemma and Contemporary
Math. 614 (2014) Lemma 4.1).



§2. Use of rigidity. Let, for a class v € O/[j for j > r,

X = Xy = {x € Hom(T', pgeo)| Jy— xpdpy 7 0 3n,v(x) = v}

Z = Zy = {x € Hom(T", pyoo)| Jy- xtpdpy = 0 Vn,v(x) = v}

Write X for the formal Zariski closure of X in G¢ m/ Wy Assume
dimWe)( < d which leads to absurdity. Note dimWEX = dimX.

Overcoming reducibility: Since y ¢ X = x? € X for o = Frob €
Gal(F/F,r), o permutes irreducible components of X. Thus each
irreducible component is fixed by some 7 := ol for 7 > 0. Note
o(z) =zt for P=1p", and put P = PJ. Since P=1 mod ¢ with
r >0, we have P=1 mod ¢. Since each irreducible component
is formal, it is stable under 7Z¢ which is an open subgroup of Z;-
By Rigidity Theorem, each irreducible component of X is of the
form wT for a subtorus T. Then X = |J,.;w;T; for a finite index
set J with w; € €2 and subtori T;. The argument has been given
if dlmWEX = dim X = 0; so, assume 0 < dlmWEX < d.



§3. Tubular neighborhood. Replacing G¢, by @%/(wﬁj, we may
assume that w; = 1 for all <. Let V; be the Qy-span of the Tate
module of T; as a subspace of V .= Qg(l)d. Since 0 <dimV; < d,
we claim to find a basis B := {eq,...,e4} of Z,(1)? such that
B' := BU{e := Y ;e;} is outside |J;V;. Since d > 1, the set
{B e GL4(Z,)|B'NnY;V; # 0} is a proper closed subset of GL ;(Z;)
of dimension d2 — max;(dimV;) < d2 = dim GL(d). This shows a
plenty of the choice B.

Let Mp = P%. Then U := Mpey + --- 4+ [pey is an open tubular
neighborhood of the line Z,-e. By replacing P by its power (i.e.,
shrinking U), the image Cone(U) of Uyep Qp-u in (Qp(1)/Zy(1))¢
is disjoint from X[¢NX = x[¢N'] — x[¢N'~1] for all sufficiently
large N’ > 0.



84. Proof of non-vanishing theorem.

Let Cone(U)[¢M]* be the set of order ¢M elements in Cone(U)
and y; be the order ¢M element corresponding to EiMez-. Write
P =9/ (j > r) and define Z = 2, for v € O/U. Then for M > N’,
writing m = dimg, Fp[u,m]

Cone(U)[¢M]* = { H X;u; € Tp} —{H Xi ‘|0 <m;<m-1}C Z.
1 =1 1 =1

d

2. X = H TrFP[MgM]/FP(Xi
xECone(U)[¢M]X 1=1

Trace rel.
) [FP[NgM] IErP] X

where x, = 0 outside M,[W]. This j depends on [ and = contains
n={n €Zln> N'}. Thus if a(¢&, f) # 0 for (¢ mod V) = —v, we
get the contradiction. [ ]



§5. Preliminary to the proof of Rigidity Theorem. The
regular locus of X° is open dense in the generic fiber Spec(T)/K
(for the field K = Frac(W) for W = W),). Then Q° := X°NQ
is Zariski dense in Spec(T) . Write X* 1= Spec(7),x — X°
(the singular locus). The stabilizer U of ¢ € €2 in U is an open
subgroup of U. By t — tg’—l, we assume that the identity 1 € 2°.

By adding subscript an, Xqn denotes the rigid analytic spaces
associated to X. Then X7, = Xan— X;,, IS an open rigid analytic
subspace of Xun. Apply the logarithm log : G (Cy) — C? =
Lz’e(@%e) sending (t;); € G (Cy) to (logy(t;));) € C} for the /-
adic logarithm map logy : (CE< — Cy. Then for each smooth point
x € X°(W), taking a small analytic open ball G, centered at x
in Gan SO that Vi = Gz N X°(W) for a d-dimensional open ball in
X°(W) centered at z € X°(W). Then log(X°(W)) contains the
origin O € C?. Take ¢ € Q2°. Write T for the Tangent space at
¢ of X. Then X =2 W for d = dimy, X. The space T; @y Cy is
canonically isomorphic to the tangent space Ty of Iog(VC) at 0.



§6. Proof in case: dimyy X = 1. If dimy, X = 1, there exists
an infinite order element t; € X(W). We write U = (1 + {MZy)
for 0 < m € Z. Then X is the (formal) Zariski closure t{ of

1 Em m
tY = {17972 € Zp} = t1{t§ ?|z € Zy},

which is a coset of a formal subgroup Z. Since tg] IS an infinite
set, we have dimy, Z > 0. From irreducibility and dimy, X = 1,
we conclude X = t1Z and Z = Gm. Since X contains roots of
unity ¢ € 2 C upo (W), we confirm that X = ¢Z for ¢ € 2 ﬂu?m,

for m’ > 0. Replacing t1 by t‘im for m as above if necessary, we
have the translation Z; > s — (tﬁ € Z of one parameter subgroup

Zy > s — t. Thus we have log(ty) = %B:o € Ty, which is sent
by “log : G — C}" to log(ty1) € Tp. This implies that log(t1) € Tg
and hence log(t1) € Ty for any ¢ € £2° (under the identification
of the tangent space at any x € G with Lie(G)). Therefore T;'s
over ¢ € 2° can be identified canonically.



§7. Proof in case dimyy X > 1. Consider the Zariski closure
Y of tV for an infinite order element t € Ve (for ¢ € ©°). Since
U permutes finitely many geometrically irreducible components,
each component of Y is stable under an open subgroup of U.
Therefore Y = U, ¢;T; is a union of formal subtori T, of dimen-
sion < 1, where ¢, runs over a finite set inside uj.(Cp) N X(Cy).
Since dimy, Y = 1, we can pick Tj of dimension 1 which we
denote simply by T. Then T contains t% for some v € U. Ap-
plying the argument in the case of dimy X = 1 to T, we find
ulog(t) = log(t*) € T¢; so, log(t) € Ty for any ¢ € Q2° and t € V.
Summarizing our argument, we have found

(T) The Zariski closure of tV in X for an element t € Ve of in-
finite order contains a coset £T of one dimensional subtorus T,
gﬁm/ —1 and ™ €T for some m’ > 0;

(D) Under the notation as above, we have log(t) € T¢.
Moreover, the image V of V in G/T is isomorphic to (d — 1)-
dimensional open ball.



§8. Induction on d. If d > 1, therefore, we can find ' € V of in-
finite order. Pulling back ' to t' € V;, we find log(t),log(t') € T,
and log(t) and log(t") are linearly independent in T¢. Inductively
arguing this way, we find infinite order elements ¢q,...,t4 in VC
such that log(¢;) span over the quotient field K of W the tan-
gent space Ty /i = Tr Qw K — Tp (for any ¢ € ©2°). We identify
11,k C Tp with T/ C Tp. Thus the tangent bundle over X7K
is constant as it is constant over the Zariski dense subset 2°.
Therefore X° is close to an open dense subscheme of a coset of

a formal subgroup.

See Contemporary Math. 614 (2014) Lemma 4.1 for more de-
tails to conclude that X° is indeed an open dense subscheme of
a coset of a formal subgroup.



