NON-VANISHING OF INTEGRALS OF A MOD p MODULAR FORM.

HARUZO HIDA

ABSTRACT. The proof of [H04, Theorem 3.2], [HO7, Theorem 4.3] and [EAI, Theorem 8.31] is based
on the assertion claiming that the Zariski closure in the Hilbert modular Shimura variety of an
infinite set of CM points stable under the action of a CM torus contains an irreducible component
of positive dimension with a CM point in the starting infinite set. A few years ago, Akshay
Venkatesh pointed me out that this fact might not be true for a non-noetherian pro-variety like
Shimura variety. I would like to present an argument proving this fact under an extra requirement
on the starting infinite set of CM points. Thereby the assertion of [H04, Theorem 3.3], [H07,
Theorem 4.3] and [EAI, Theorem 8.31] on non-vanishing modulo p of Hecke L-values is valid for
“Zariski dense” characters in the sense of these articles. In some special cases, non-vanishing is
claimed for except finitely many characters in these articles, which is still an open question.
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Recall from [H04] the base totally real field F with integer ring O and the CM quadratic extension
M/, p with integer ring R. We fix a prime p > 2 unramified in F'/Q each of whose prime factor in O
splits in M/F and a prime ideal [ of O prime to p with residual characteristic ¢. Let R,, = O + "R
(the order of conductor [") and put Cl,, = Pic(R,,). Since O C R,,, we have a natural map Clp :=
Pic(O) — Cl,,. We write Cl,; := Coker(Clp — Cl,). Let Cls = lim Cl, and Cl, :=lim Cl;
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under natural projections. The group of fractional R-ideals prime to [ is naturally embedded into
Cls whose image in Cly, (resp. Cl) we write as C1%9 C Cly, (resp, C*9 C Cl7). Decompose
Cl, = A~ xT for the maximal finite group A~ and Z,-free I'. Since Cl is finite, I' can be identified
with the torsion-free part of Cl,,, and we have a decomposition Cl,, = T' x A with A surjecting
down to A~ under the projection Clo, — Cl7. Write d = rankgz, I and choose a basis 71, ...,y of
T over Zy. Let F (resp. Q,) be an algebraic closure of F,, (resp. Q). We identify ppo (F) = g0 (Qy)
as an (-divisible group, and write it just as figes.

For each projective fractional R,-ideal A, we defined in [H04, §2.1 and §3.1] a CM abelian variety
X (A) of ordinary CM type ¥ and the associated CM point z(A) = xx(A) of the Shimura variety
Sh for G = Resp/gGL(2), which only depends on the ideal A and a chosen p-ordinary CM type
3. Choose suitably an irreducible component V' of the Shimura variety of prime-to-p level defined
over an algebraic closure F = F,, of F,,. We just fix a finite extension W of W (F) inside C, and put
W =W, = WnNQ for the algebraic closure Q C C,. We embed Q into C. We take a U (I)-eigenform

Ko
g/w and put f = 6% f for the Ramanujan differential operator 6* given by [], (qg%) with

ko > 0 for the g-expansion variables ¢, = exp(2miz,). We use the same symbol f also for f/r := f
mod my defined over F.

Write I, for the image of T in Cl (for small n, it can be just {1}). We fix a character ¢ : A~ —
F* to project the measure originally defined on Ci to T, (see Lemma 4.2 in the text). To define
the measure, we need to replace f(x(A)) by f([A]) :== A1 (A)f(z(A)) choosing a Hecke character of
infinity type kX + k(1 — ¢) and of conductor € prime to pf so that f([.A]) only depends on the class
[A] € Cl;; for all n (see §4.1 for more details of the choice of A). This allows us to define a “measure”
dys = doyn on the finite group CI;; by fcz; ddpsn = Z[A]ecz; o([AD f([A]). If fIU(I) = af with
a # 0, (A)N()a=")"dpy,, patches into a unique measure dps on Cly, but if f|U(l) = 0, this is
just a collection of measures {dyy.r, }n.

Let Fq be the field of rationality of f/p, ¢ and A modulo myy, and define an integer 7 > 0 such that
¢-Sylow subgroup of Fq[e]* has order ¢ (i.e., fupoo (Fq[pe]) = per (Fglpee]) and €7]|(q — 1)). Though
the measure is defined in the earlier papers for f with non-zero eigenvalue for U([), in this paper
we define a measure on Cl, for each finite n even for f with f|U(I) = 0, and the argument goes
through even for f killed by U(l). The non-vanishing of the U([)-eigenvalue is necessary to patch
the measure on C!;; for each n to get a measure on Cl__, but this patching argument is not essential
in the proof of non-vanishing results. Also if flU(l) = 0, [,,- x¥dpsn # 0 can happen only for
the minimal n for which the integral is well defined. To projegt the measure dyy,, to I'y,, we need
to modify f into a modular form f; and further to a function ff : U, Cl,, — F which involve a
transcendental operation depending on a choice of a finite subset Q of Cl7 /C%9 (see (4.7)) so that
Ir, Xd‘%’ff,n = Jeq, x¥depy,, for all n and all characters x : I', — F*. Indeed, we embed | |, Cl;;

into the product V< of Q-copies of V, choose an infinite subset = of the disjoint union L, Cl,, and
study the Zariski density in V< of the embedded image = «— V<.

We regard the set of continuous characters Hom(T', juy=) as a subset of G, (Q,) by sending a
character x to (x(71), ..., xX(7a)) € ule(Qp) C G (Qy). A subset X of Hom(T, jup) is said to be
Zariski dense if X is Zariski dense in G¢, over Q,. This notion of density is independent of the choice
of the basis {v;};. Write cond(x) for the conductor of x which is a power of [.

Here is a new version of [H04, Theorem 3.3] and (a part of) [H07, Theorem 4.3]:

Theorem 0.1. Suppose that there exists ¢ € F N Oy in each class v € (O/VO\)* for a sufficiently
large 5 > r (for a specific r > 0 defined in (4.16)) only dependent on [ (not v) such that the
g-expansion coefficient a(, fy) # 0 in F at an infinity cusp of V.. Then the set of characters
x € Hom(T, pyoe (F)) such that fcz; XYdpysn # 0 for n given by cond(x) = " is Zariski dense in

d
Gm/@z ’
For the Eisenstein series g we took in [H04] and [HO07], for any v € O/ and any j > r, the
assumption of the theorem is satisfied except for a very rare case which satisfies conditions (M1-3)
in [HO7, Theorem 4.3]. For cusp forms, things are more complicated, and Hsieh [Hs14] uses Galois
representations of the given cusp form as its traces is basically g-expansion coefficients. Of course,
one needs to assume that the root number is not —1 in addition to some extra assumptions (as the
square of the integral is the central critical values by Waldspurger).

Ifranky, I' =1, j can be taken to be equal to r.
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Geometrically irreducible components of the Shimura variety of the level group T'o(9) are indexed
by polarization (strict) ideal classes of F. Then infinity cusps of a component V are indexed by
equivalence classes of pairs (a, b) of ideals with (ab)™! giving a polarization ideal of V (e.g., [PAF,
§4.1.5]). The condition of the existence of & with a(, fy) # 0 does not depend on the choice of a, b.
It fU(N) =0, fcz" X¥dyysn # 0 implies that [-conductor [V of x is exactly [ (i.e., v = n), while this
non-vanishing holds for all n > v once it holds for n = v if f|U(l) = af with a # 0.

Here are a more technical description of our method and the reason why I take up this problem
again. First, we claimed in these papers [H04] and [HO7] a stronger finiteness result of characters
of vanishing integrals when rankz, I' = 1 (e.g., [H04, Theorem 3.2]). As explained in §1.1, a few
years ago, Akshay Venkatesh noticed a missing point (taken to be true in [H04] and [HO7]) from the
proof of [HO4, Proposition 2.7]: positive dimensional irreducible components of the Zariski closure
of an infinite set = of closed points in a non-noetherian variety may not contain any points in the
starting set =. For the proof of the above theorem, we need a Zariski density theorem of a thin
infinite set = of CM points V in the product of copies of an irreducible component of the prime-
to-p Shimura variety Sh(®). The first step we need is to show the Zariski closure X of = contains
a positive dimensional irreducible component having at least one point of =. This is because the
density theorems Corollary 3.19 and Theorem 3.20 of [H10] we apply to show X = V require (as
its starting hypothesis) existence of at least one positive dimensional component with non-trivial
intersection with ZE. All the results of [H10] are valid and intact as the Zariski closure appearing
in [H10] has at the onset the base point in the positive dimensional component. Unfortunately,
under the setting of [H04] and [H07] and the present paper, the existence of a positive dimensional
component with a point in = is not evident a priori. In this paper, under some extra assumptions,
we prove the existence of such positive dimensional components in Theorem 2.6, which is sufficient
for a proof of Theorem 0.1. When ranky, I' = 1, we obtain a slightly stronger result: Consider the
sequence of vanishing integral:

() :== {0 < n € Z|I" is the conductor of x with vanishing integral}.

Then, under the condition in Theorem 0.1 on non-vanishing of g-expansion coefficients of f modulo
p, this sequence contains no infinite arithmetic progressions if ranky, I' = 1 (see Corollary 5.3). This
perhaps means that the natural density of () is zero, though we will not touch this point in this
article except for Conjecture 5.4. Since the description of = is technical, we postpone it to Section 2
of the main text. Here we just say that Z is essentially the set of points in Sh®) corresponding
classes in | |,, Cl;; which carries a character x with non-vanishing integral.

Note here that V< is a non-noetherian pro-variety, and hence the zero set of a modular form
on V is infinite (of continuous cardinality) even if dimV =1 and |Q| = 1 as its contain the entire
fiber of the infinite étale covering V' — Vi of the zeros of the modular form defined over the
noetherian quotient V. There is an example supplied by Venkatesh of a pro-curve in which any
positive dimensional irreducible component of the Zariski closure of an infinite set = is disjoint from
= (see §1.1). If gq (appearing in the proof of [H04, Theorem 3.2] denoted by g, in the text: see
(5.2)) had a non-zero eigenvalue for U([), the sequence like (*) associated to {gq}q would contain
an infinite arithmetic progression (and thereby getting a contradiction). However it is easy to see
galU(l) = 05 so, for the version of [HO4, Theorem 3.2] and the part of [H07, Theorem 4.3] in the
case where rankz, I' = 1, we need to assume that n contains an infinite arithmetic progression. The
idea to reach the missing result is to show (under some extra assumptions) that powers of ({ 2 ) for
@ € Nyyp(R) generating powers of [ for some 0 < m € Z act on the 0-dimensional irreducible
components of X and X and all the orbits in X of this action are infinite. The noetherian scheme
Xk cannot have infinite 0-dimensional components, and therefore, all components of X (and Xk)
has positive dimension, as desired.

1. IRREDUCIBLE COMPONENTS OF ZARISKI CLOSURE

We study a general theory of Zariski closure in a pro-étale variety of an infinite set of close points.
We start with a pathologic example.

1.1. An example. To motivate the reader to go through this article dealing with technical topics, we
first discuss an example of an affine pro-scheme V' = V., /¢ étale over the affine line Vy = Spec(C[X])
such that the Zariski closure of an infinite set = C V(C) does not have a single positive dimensional
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irreducible component containing a point of =. The example was supplied by Akshay Venkatesh in
2018 December.

For a (finite dimensional) scheme S/, for an algebraically closed field k, we write Irr(S) for the
set of all irreducible components of S and my(S) for the set of all connected components of a scheme
S. Put

Irrg(S) :={I € Irr(S)| dim I = d}.

Thus S = U ey Z and Irx(S) = S Trrg(S). Set Trry (S) = jfgs Irrq(S). If S = Spec(A),
we write Irr(A) = Irr(Spec(A)) and mo(A) = mo(Spec(A)). The set Irr(A) is in bijection onto the
set of minimal prime ideals of A, and we identify the two sets.

Take k = C. Let V,, := Vo x Z/2"Z and the projection Z/2™Z — Z/2"Z for m > n induces étale
morphism V,,, - V,,. Let P; := (X — j) C C[X] (0 < j € Z) and regard it as a closed point j of
Vo. We define V' :=lim V,, = Vj x Zy and = = {(j, 2 € V]j =1,2,...}. Write (P}, j), for the
maximal ideal of V,, giving rise to the point (4,27 mod 27) € V,,. Therefore (P}, 27) for finite j is
the maximal ideal of @, C[X] non-trivial equal to P; only at 2/-component of @, C[X], and the
prime ideal (P}, 27), is Pj © @295 moa (2n) C[X]. Write

i ={0.2)n =02 eVali=1,2,...}

for the image of = in V;,. Note that V;, = Spec(@y/2n7 C[X]) and V = Spec(D, C[X]). We have
N;(P,27)c = ((0),0)00 ®Ng<jez(P) 2 oo, where ((0),0)so is the prime ideal of B, C[X] equal to
(0) only at the 0-component of (B, C[X]. Thus E = = Vollly<jez (P, 27 Noo C V, where Vj is inserted
as the 0-component. Thus only positive dimensional irreducible (and connected) component of the
Zariski closure = in V is Vj which does not contain any points of =.

If we have a transitive action of a semi-group inside Aut(V) on =, we expect to be able to

avoid such a pathologic example.
Though « : (v,2) — (v + 1,22) acts transitively on Z, « is not an automorphism of V. It is an
automorphism of V) x Qg which is an indo-pro-variety not a pro-variety. In the above example, we
have

W Ity (Z,) = {(Vo x 0)|0 € Z/2"ZY}, Trrg(Zn) = {( x 2)ulj = 1,...,n— 1(27 £0 € Z)2"Z)},

Irry (B) = {(Vo X 0)|0 € Zo} and Trrg(E) = {(4,29)ee|0 < j € Z,27 € Zs}.

The action of any positive power of « brings some points in Irrg(Z,,) into a component in Irry(Z,,)

(non-stability of Irro(Z,,) under  coming from the fact that a is not an automorphism of V). Writing
: V. — V,, we can consider the reduced image m,(I) C V,, for I € Irr(E). Let m, (Irr(2)) =

{wn( W € Irr(E)} and 7y, 4 (It (2)) = {mn (1)1 € Trrj(E)} as sets. Then

(1.2)

7o 1 Irr1 (2)) 2 TIrr1(Zo)), mo,«(Irro(Z)) D Irrg(Z,) with infinite m «(Trrg(Z)) — Irrg(E,) in Vo x 0.

(ne) The image of {(j,27)s € Z|j > n} lies in the one dimensional (Vg x 0) € Irry(Z,) and the
0-dimensional scheme (j,27) (j > n) is not étale over V,,.

If we take a 2-unit u € Z and consider = = {(j,u’)|j = 1,2,...} C V, one can show that
Irr(Z,) = {Vo x v/|u’ mod 2"} and Irr(Z) = {Vj x z|z € (u)} for the subgroup (u) C ZJ topo-
logically generated by u. The action [1] : (j,u?) — (j + 1,u?™!) extends to an automorphism
[1]: (v,2) — (v+1,uz). A similar morphism «a(v, z) = (v + 1, 2z) for non-unit 2 in place of u is not
an automorphism of V.

Taking an infinite sequence of irreducible polynomials X —a; of F[X]
make an example similar to (ne) also over F taking V5 := Spec(F[X]) and
with V;, = Vo x Z/2"Z. Then lim V, = Vp x Zo.

with distinct a; € IF, we can

={(Pj = (X—a;),2")};

1.2. Geometry of irreducible components. We prepare some notation and geometric lemmas
to prove the theorem. After the lemmas, in the following section, we study the correspondence
action.

Let 7 : V/r — Vi r be an affine étale Galois covering with V = Specovk (Oy) (as a relative
spectrum). Here K = Gal(V/Vk) and V = lim__
with Vy = V/U. In the following lemmas, assume that Vg is noetherian (so, Vy = V/U is also

Vy for U running over open subgroups of K
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noetherian for an open subgroup U of K. Let = C V(F) be an infinite set of closed points with
image Ex in Vi (F).

Lemma 1.1. Regard P’ € E (resp. P € Zk) as a sheaf of Oy-ideal (resp. Oy, -ideal) defining the
point P’ (resp. P); so, for example Oy, /P 2 F(P) =T as a skyscraper sheaf supported by P. Let
X' (resp. X) be the Zariski closure of 2 (resp. Ex) in V (resp. Vi). Then
(1) X’ and X are reduced scheme, X'/ X s finite if V/Vi is finite.
(2) The projection tx : X' — X is dominant inducing a surjection of F-points: X' (F) — X(F),
and X' is unramified over X.

As described in (ne), even if = 2 =k by the map induced by 7, 7 : X’ — X may not be étale.

Proof. By definition, we have X' = Spec(Oy/(\p/cz P') and X = Spec(Ovy /Npez,. P)-

We prove the lemma first in the absolute affine case; so, we put Vg = Spec(A), V = Spec(4’),
B = A/(pez, P and B" = A’'/(\piez P'. Since B' — [[p, = A’/P with the right-hand-side
reduced, B’ is reduced. In the same way, B is reduced.

If A’/A is étale finite, we have Ex = {P' N A|P’ € E}; so, putting b’ := (\p,cz P’ and b :=
Npez, P> we have b’ N A = b. Thus the induced map B L B’ is injective. If A’/A is not finite,
we can write A = J; A; with A;/A finite étale, we still get the injectivity. Therefore the projection
Spec(B’) — Spec(B) is dominant. Pick a maximal ideal m € Spec(B)(F). Then by the going-up
theorem [CRT, Theorem 9.3 (i)], we have a prime ideal p € Spec(B’) with p’ N B = m. Take a
maximal ideal m’ containing p’, m’N B D m is still a proper ideal as B’/ B is integral; so, m'N B = m.
Thus B’/m’ is a finite extension of B/m = F which is algebraically closed, we conclude B/m’ = F
and m’ € Spec(B’)(F); so, Spec(B’)(F) — Spec(B)(F) is onto.

Pick m’ € Spec(B’)(F) and regard it as a maximal ideal of A’. Since m’ D b', m:=m'NA D b;
so, m € Spec(B)(F). We have the following commutative diagram of the completions at m’ and m:

-~ [ -~ — -~
A/ A/ ’
m

Am -

onto lonto lonto

fa Tm D7 2 N
B B, B,

—»

Since the top row composite: Ay — //1\{11 —» //1\;1/ is an isomorphism (as A — A’ is étale), pms 0 iy is
onto. Therefore B’/B is an unramified extension and is finite if A’/A is finite. This proves (1) and
(2) in the absolute affine case.

Now we treat the general relative affine case. We cover Vi = J, Spec(A) for affine open sub-
scheme Spec(A4), and write A" = 7,0y (Spec(A)). Then Spec(A’) is an open subscheme of V cov-
ering Spec(A). Then we have X' N Spec(A’) = X’ xy, Spec(4) = Spec(B’) and X N Spec(A) =
X Xy, Spec(A) = Spec(B) with (A’/A, B'/B,ZNSpec(A’), Ex NSpec(A)) satisfying the assumption
of Lemma 1.1. Since B (resp. B’) depends on A, if needed, we write B = B4 and B’ = B/, to
emphasize the dependence. By the above argument, B’ and B are reduced algebra, and B’ is an
unramified extension of B, B’/B is finite if A’/A is finite, and the projection Spec(B’) — Spec(B)
is dominant and the induced map: Spec(B’)(F) — Spec(B)(F) is surjective. Since Spec(B’) is the
pull-back to X’ of Spec(B) and X’ = J, Spec(B’) = U, 7 *(Spec(Ba)) and X = |J, Spec(Ba),
the above proof in the affine case implies the assertion in the general case. O

(a1

Assume that = = Ex. We have another commutative diagram:

B —— . [Ipe=, A/P

w5 | !
B [Ipes A’/ P,

>~

|

The right vertical map is an isomorphism as =
Spec(B’) — Spec(B) is dominant.

Ek. Thus 7} is injective; so, again we see that

Lemma 1.2. Let the notation and the assumption be as in Lemma 1.1. Recall that Vi is a noether-
ian scheme. Let m.(Irr(X")) := {w(Z")|Z" € Trr(X")} for the set of the reduced image w(Z') C X.
Then we have
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(1) The image 7. (Irr (X)) contains Irr(X),

(2) For Y € Irr(X), if Y' € Iir(m=1(Y)) is contained in X', we have Y’ € Irr(X'), where
7T71(Y) =Y XV V.

(3) If 2 = Zx under the projection V = Vi, we have a unique section Trrg(X) — Trrg(X') of
Irrg(X') — Im(Irrg(X')) C X and Irrg(X') C 2. Moreover writing X{, for the image of X’
in V/U for an open subgroup U of K, Irrg(X') = lim Irro(X,) for U running over all open
subgroups of K.

(4) If dimZ = dim X for Z € Irtqim x (X), then Z is in the image of Irrqim x/(X') in X. In
particular, Irrgim x)(X') # 0.

Proof. Again we may assume that Vi = Spec(A), V = Spec(A’), X = Spec(B) and X’ = Spec(B’)
as in the proof of Lemma 1.1. Pick py € Irr(B) giving Y € Irr(Spec(B)). Since B’/B is integral, we
find a prime P’ € Spec(B’) such that P'N B = py by going-up theorem [CRT, Theorem 9.3 (i)]. For
each P’ € Spec(B’) with P'N B = py (i.e., P’ € 7= 1Y) = Spec(B’/py B’)), take a minimal prime
p’ C P’ (i.e,p’ € Irr(B’)). Then p’ N B is a prime ideal of B and py D p’ N B; so, by minimality of
py, we have py = p’ N B. Thus py is in the image of Irr(B’). This proves the assertion (1).

As V — Vg is étale, 77 1(Y) is étale over Y; so, equi-dimensional. Suppose that Y’ C X’ for
Y’ € Trr(r=1(Y)). Then we find Z’ € Irr(X’) such that Z’ D Y'; so, m(Z') C X. We are going to
show Z/ =Y’'. We have X D 7(Z’') D Y. Since n(Z’) is irreducible, 7(Z’) containing YV € Irr(X)
implies 7(Z’) =Y. Thus Z' - Y is a integral dominant; so, dim Z’ = dimY’ = dimY". This shows
Z = 7' € Irr(X’), as desired. Thus the assertion (2) follows.

To show the assertion (3) for Irrg, we first assume that B’/B is finite. We regard Ex C Spec(B).
Pick m € Irrg(B). Then B = B™ @ B/m for a subring B(™ C B as Spec(B/m) is a connected
component of Spec(B). Thus Irrg(B) = {Z € mo(Spec(B))|dim Z = 0}. Since B’ O B, the above
decomposition induces an algebra direct sum B’ = B™ g B'/mB’. Since B’ is finite over B,
B'/mB’ has dimension 0. By reducedness of B’, the direct summand B’/mB’ of B’ is a direct sum
of fields. This means that 7 induces a surjection of the upper row of the following diagram:

mo(Spec(B'/mB')) ——— mo(Spec(B/m)) = {m}

|
Irrog(B')

for each m € Irrg(B) C mo(B). Therefore m,(Irrg(B')) D Irrg(B). Pick m € Irrg(B). If m ¢ Ek,
Ex C Spec(B™) as Spec(B) = Spec(B/m) LI Spec(B(™)). This implies B = A/ MNpez, P is equal
to B(™) a contradiction. Thus m € Eg, and Irrg(B) C Eg. Since E 2~ Ek, 7, has a unique section
7 i Irro(B) — Irro(B'). If B'/B is not finite, we can write B’ = |J; B; for B-subalgebras B; C B’
finite over B. We may assume that the index set is totally ordered so that Bj; D Bj if j/ > j. Let
X{;, = Spec(By) for an open subgroup U of K. Then By/B is finite unramified. Then applying
the above argument to finite By /B, we find natural inclusion Irrg(By) C 7y v «(Irro(By-)) for
open subgroups U’ C U C K with a unique section 7y, ; : Irrg(By) < Irrg(By). In particular, the
injective limit of 77,/ 1, gives rise to the section 7 : Irr(B) < Irro(B’) and Irro(B’) = lim, Irro(By).
This proves the assertion (3).

Now suppose that dim B/p = dim B for p € Irr(B). Such p always exists as B is noetherian. Since
B'/B is integral, dim B = dim B’. Then we take p’ € Spec(B’) such that p’ N B = p. Such a prime
exists as already remarked. Then B/p — B’/p’ and hence dim B’ /p’ = dim B/p = dim B as B'/p’
is integral over B/p. Since dim B’ = dim B, we conclude p’ € Irrgim g/ (B'); so, Irrgim 5/ (B') # 0.
This proves the assertion (4). O

Lemma 1.3. Suppose that n.(Z") := w(Z') & Irr(X) for Z' € Irr(X'). Then there exists Zy € Irr(X)
such that Zy D m.(Z').

Proof. Again we may assume that X = Spec(B) and X’ = Spec(B’) as in the proof of Lemma 1.1.
Write Z’ = Spec(B’/p’). By the assumption, p’ N B ¢ Irr(B); therefore p’ N B 2 po for a minimal
prime ideal po of B. By definition, pg € Irr(B) and p’ N B D po means p’ N B € Spec(B/pp). Thus
Zy = Spec(B/pg) does the job. O
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Lemma 1.4. If Sk o is a subset of 2 with finite Ex —ZEk o, then the Zariski closure X of ZEx in Vi
and that Xo of Ex.,0 share irreducible components of positive dimension (i.e., Irry (X) = Irry (X)),
and Irr(X) — Irr(Xo) s a finite subset of Ex — Zx 0.

Proof. Again we may assume that X = Spec(B) as in the proof of Lemma 1.1. Write Ex — Ex 0 =
{mi,...,mp} for maximal ideals m; of A and put a = ();m;. Then for by = (pcz, , P and
b= ﬂPeEK P, we have b = bg Na. For each i, either m; D by or m; + by = A as m; is maximal.
Thus we may assume that Ex —Zx o = {m;|m; + by = A}. Then a+ by = A as |Ex — Zk o] is finite.
Thus A/b=A/bpNa= A/by® A/a, and hence X = Xy U (Ex —Ek,0) as desired. O

2. ZARISKI CLOSURE IN HILBERT MODULAR SHIMURA VARIETY

Recall the CM quadratic extension M,r with its integer ring R from the introduction and their
class groups Cly, = @n Cl, and Cl = @n Cl,,, where Cl,, is the ring class group of R,, = O+I["R
and Cl = Cl,,/Clp. Writing [A],, for the class of a proper R,-ideal A in Cl,,. Let

Cl*'9 = {[z] oo = lim[2R,, N M] € Clog|x € M} with 3100 = 1} C Cle,
where R, = R, ®z Z with Z = 1, Z: (cf. [HO4, page 755]). By multiplication, C1%9 acts on Clu
and Cl.
Let G := Resp/zGL(2) and Sh g be the Hilbert modular Shimura variety associated to G. Since
G(A(>®)) acts on Sh as automorphisms, we define the prime-to-p level Shimura variety Sh(®) by
Sh/G(Z,). The Shimura variety Sh(P) extend canonically to a smooth pro-scheme over W (e.g.

PAF, Chapter 4]). Recall the irreducible component V = V®) of the Shimura variet Sh'?) we
Y2l

fixed. By smoothness, V/g :=V Xyy F is an irreducible component of Sh%).

Let Q@ C Cly be a finite subset independent modulo C%9; i.e., 6C¥9 £ §'C9 for any pair
5,0") € Q% with § # §'. Since CI1*9 naturally contains Clp, for the image Q~ in ClZ, we have
y g 0

Q= Q7 and Q9 is still independent modulo Cl%9. We often identify the two set Q and Q~. For
a closed subgroup K C G(A®>®) we put K = G(Z,) x K® and write Vi for the image of
Vin Sh = Sh/K. We set V5 = V/$ for B = Q,W,F (the product of Q copies of V) and
Vik/B = VKQ/]F. We can embed Cl,, into V by [A] — x(A) = x([A]) := (z([A]d))sco € V, and
write its image with C,. Put C(®) = || C, C V as abelian variety sitting over x(A) is uniquely
determined by [A]. Though the modular form f is a function on V', we normalize it by multiplying
a suitable Hecke character value later so that the normalized values at (. A) and (. A’) are identical
if [A] = [A] in Clg,. Because of this normalization, we may regard f as a function on C(**) modulo
Clp. We fix an infinite subset Z of C(°). When it is necessary to indicate the level group K
for which z(A) resides in Vi (or Vk), we write i (A) in place of z(A). Here K can be a closed
subgroup of GLy(F Iéoo)). Actually we only deal with the tower raising [-power level; so, K can be a
closed subgroup of GL3(O¢) which acts on V and V.

We fix a CM type X of M and write X, for the set of p-adic places induced by the embedding in
Y by the identification C = C,, we fixed. We write X (resp. Xg) for the Zariski closure of E (resp.
Ex). We recall two assumptions (unr) and (ord) in [HO4, §2.1] for p in addition to = = Ex under
the projection V — Vi

(ord) Y is p-ordinary: X, N Xpc =0 for the generator ¢ of Gal(M/F).

Such a CM type X is called a p-ordinary CM type. The existence of a p—ordinary CM type is
equivalent to the fact that all prime factors of p in F' split into a product of two distinct primes in
M. We suppose

(unr) p s unramified in F/Q.

2.1. Toric action. In this section, assuming the existence of an appropriate toric action on =
induced by an infinite toric sub-semigroup T of Aut(V,r), we prove that all irreducible components
of X has positive dimension; i.e., Irr(X) = Irry (X) (see Theorem 2.6). The Zariski closure X C V
(resp. XK C Vi) of Z (resp. Zk) forms a tower {X — X} of varieties, and the tower induces
a correspondence action on each noetherian layer Xy . If we have an appropriate action of a torus
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T in G(AP>)) on Z, by Lemma 1.2, the correspondence action on lim  Irro(Xg) = Irro(X) C =
coincides with the action of T. The idea of the proof is to show

(1) Irrg(X k) # 0 for sufficiently small open K if Irrg(X) # 0 (by Lemma 1.2 (3));
(2) If Irro(Xk) # 0, by the action of T, Irrg(Xk) has to be of infinite order, against the
noetherian property of Xg.

We start with a list of conditions for proving the assertions (1)—(2) above under the correspondence
action of T. After this, we state five lemmas about the action under these conditions before starting
with supplying the missing argument/fact (stated as Theorem 2.6).

Supposing that K is an open compact subgroup of G(A(®)), Vi is noetherian. On V = V<,
Aut(V/F) diagonally acts. Let us denote by = an infinite set of CM points in V for which we would
like to prove density in V. We suppose to have a semi-group T C Aut(V/F) as in (T) below acting
on = under the diagonal action. The action of T is supposed to come from the action of elements
in G(A®>®)) on Sh(P). Since it is a semi-group action, 3 € T embeds Z into Z; so, B(Z) C Z and
B~Y=) D =, where 37! may not be in T but in Aut(V/F).

Let N := {o(u)|u € O} for p(u) := (}}) and B be the normalizer of N in GL2(Oy) (i.e., B is the
upper triangular Borel subgroup). We may regard N and B as group schemes over Oy; for example,
N(A) ={(}¥)|u € A} for an O-algebra A. We consider the following conditions for K:

(K) K is closed of the form K®) x K, x K with K®) ¢ GLy(F{"**), GLy(0,) C K, C GLy(F})
and N C K C I'g(l),
(I) m:V — Vg induces =

(a1

EK)
where Fléproo) is the adele ring of F' away from ploo, Fp, = F' ®g Q, C Fj, and
To(") = {g € GLy(0))|(g mod 1Y) € B(O/1*)}.
We put
T (") ={g € GL2(O))|(g mod 1) € N(O/1*)}
for the image g € PGLy(Oy) of g € GLa(Oy). For general g € GLa(FY), we write S9 := g~1Sg for a

subgroup S of G(A®)). Decompose O := lim, o O/NO = O; x O, In the application in [H04],
we assumed K to be fo([) X GLQ(a([)).

We assume
(T) T =T x " for & = {a"|0 <n € Z} and a group T acts on =,

where o € GLa(F}) is upper triangular and aNa~t 2 N. Here the semi-group T C Aut(V/F) acts
on Z under the diagonal action. The action of 7 is basically multiplication by elements in C%9
(coming from the non-split torus M* < G(AP>))) which permutes elements in CI;; and is essential
in the proof of [H10, Theorem 3.20] which shows that X =V once we know Irr(X) = Irr; (X).

In this article, the action of the semi-group o plays the central role to prove Irr(X) = Irry (X).
The condition aNa~! O N implies that a € B (é wogn) B for some m > 0 with a uniformizer w;

of Oy, and if K; = I1(I) (v > 0), S = Sk := K N K” is normalized by K and a representative
set of S\ K can be chosen in N. Note that Na'N := Upean NBN C GLo(Fy) is a multiplicative
semi-group.

Consider the following condition

(c0) every T-orbit in = is infinite.

This condition will be verified for our choice of = in Proposition 2.10 for the above « well chosen.
Since o € B (é ,I,O;n)B (m > 0) does not have a fixed point in V, if one orbit T(z) for z € = is
infinite, every orbit is indeed infinite.

For simplicity, we assume hereafter K = fo([l’) or fl([l’) with v > 0 and that K is open in G(A)
satisfying (K). Since « is supposed to preserve the irreducible component V of S h(P) | we may assume
that ™ = (w) with @ = @e° for some ¢ € R. Replacing m by a positive integer multiple of m, we
may further assume

(2.1) for a := w[" /w, elements (& 9) and ({Y) in G(Z) belong to K.

Indeed, by replacing m by mn and w by @w", a is replaced by a™ which is sufficiently close to 1.

Hereafter, for simplicity, we assume that a = (§ 2) for w = ¢ and write (3 for a general element
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in No"N. We write ?(Z)k (? = 3,371) for the Zariski closure in Vi of the image ?(Z)x =?(Zx)
of 7(2) in Vk.

As we recall from [H04] in §3.1, the left action of g € G(A®P>)) on the point z = (A4,7) € V is
given by g(z) = 7(g)~!(z), where the right action 7(g) is by definition given by  — no g for the
level structure 7 associated to the point z. If 3 € o/, K D N may not be normalized by 3. Thus (3
acts on Vi as a correspondence.

Let us explain this correspondence action in some details. Recall S = Sk := K N3 'KB3 =
K N KP. By definition $# " = K ' NK C K and §° 'S C K (so, S® ' satisfies the condition
(K) while S is not). Then S is normalized by N if K| = fl([l’) but S O N. We have NGN =
Uyen NBo(u) for a finite set N = {o(u)|lu mod P} for 0 < j given by (det(8)) = I (so, m|j), and
KBK = |],cn KBo(u). Then we have the correspondence U(3) C Vi x Vi (with respect to the
tower {V — Vi } i) defined by the following commutative diagram

v B(v)=v8 "t
yg Lot
pS,KJ{ psﬁ’l,KJ(
VK —_— VK;
U(p)

where U(f3) is identified with a subvariety given by the diagonal image of Vs under the product of the
projections ps r X (pgs—1 j © ). It is easy to see U(") = U(B)" under the correspondence action.
The correspondence U(3) brings a point x € Vi to a finite set U(8)(x) := (pgs—1 x © 6)(p§1K (2)).
We assume, for K satisfying (K),

(N)  The action of T on Z extends to a correspondence action of the semi-group NTN on E.

If it is necessary to indicate the dependence of the level group K, we write Zx for the image of = in
Vie. We write U(8")(Ek) = U ez, U(B")(x). The condition (N) means that U(j3) acts on = (i.e.,
U(B)(En) C En).

Since oy € GLa(F), by (2.1), the correspondence U(3) for 3 € Sa™'S only depends on the double
coset NGN. We need the following finiteness condition (which will be verified in Lemma 2.9 and
(2.8)):

(F) Exy —U(@")(En) and a () — =2 are finite for all n > 0.
Since 7 is a group, (F) implies finiteness of Ey — U(B)(Ey) and 371(Z) — = for all 3 € T. We
actually use only the finiteness of 37(Z) — = in the proof of the key result (Theorem 2.6).

Let X = Xz (resp. Xs = Xz g) be the Zariski closure of Z in V (resp. of the image =g in Vg) for
a closed subgroup S satisfying (K). Since U(3)(Z) C E, we find Xz D Xy ()@=@) = Uyen Bo(u)(Xz).
Thus we have a tower {Xg}g of reduced schemes with projections pg g : Xg» — Xg for §' C S
(which we write simply pgs if S is clear in the context). Therefore, we can think of the corresponding
action of 3 on Xg with respect to the tower {Xg}s.

If S is open compact, Xg is a reduced variety (i.e., reduced noetherian). The semi-group NTN
acts on X sending X = X= to 3(X) = Xp=) and also U(8)(X) = Xyg)=). For € NTN and
an open compact subgroup K C G(A(*)) satisfying (K), taking an open compact subgroup S of K
such that SS8°" C K, we have a diagram

v—B(v)
- 5(X)5B*1 C AXSL?*1

(22) pS,KJ{ pSﬁil,KJ(

XK I XK;

where C'(3) is a subvariety given by the diagonal image of X under ps r X pgs-1 o 3. We regard
C(B) as a correspondence from Xk into Xg. This correspondence is specifically on X and its
points and is possibly different from the operator U(f) for the tower {V — Vg}s.

Lemma 2.1. Assume that Vg — Vi for S = Sk := K N K?® is étale. Let Y° := pg’lK(ZK) =
Zi Xy Vs for Zs € Ir(Xs) and Zi = ps.x(Zs), and write Y° = UZeIrr(YS) Z. If Z # Z' for
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Z,7" € Irr(Y®), we have ZNZ' =); so, Yo = Uzetrys) Z- If Ki = fl([l’) and Z € Trr(Y9), then
K normalizes S and for u € K/S, either w(Z) =Z oru(Z)NZ = .

Proof. Note that Y := p;lK(ZK) is étale finite over Zx as Vg — Vi is étale. Thus Y is equi-
dimensional with dimZ = dimYs = dimZs = dimZx for Z € Irr(Y®). It 0 # ZNnZ' ¢ Z
for Z # 7' (Z,72' € lrr(Y?®)), Z — Zyx and Z' — Zk are dominant by the equi-dimensionality.
Thus by the étale property of Y° — Zg, Z(F) — Zg(F) and Z'(F) — Zk(F) are onto. For

€ (ZnNnZHEF), ((ZUZ') xz, xx)(F)| < deg(Z'/ZK) + deg(Z/ZK); so, Z U Z' ramifies over
ps.x(Zs) since dimZ = dim Z’, which is impossible as Z U Z' «— Y — Zx is unramified by
Lemma 1.1 (2). This shows the first assertion.

Suppose that K = I'y () and Z € Irr(YS). Since SN = K and N normalizes S = Sx = KNK”,
K normalizes S. If K = ['1(I), Y5 = Uwners u(Z); so, u(Z) is still an irreducible component
of Y9, and K/S acts on Irr(Y®). Thus the intersection is either empty or u(Z) N Z = Z. If
w(Z)NZ = Z, we have Z C u(Z). Since they are irreducible and have equal dimension, we conclude
Z =u(Z). O

Lemma 2.2. Suppose (F). Then for § € T and K satisfying (K), we have Irr . (U(8)(X)k) =
Irry (Xk) and Irr(Xg ) — Irr(U(B)(X) k) C (Ex — U(B)(Ek)). Similarly we have Irry (871 X) k) =
Ity (Xg) and Irr (B~ (X)) — Irr(X k) € (B7H(E) — 2).

Proof. Asremarked after (F), Z—U(8)(E) is finite for all 3 € T. Since U(8)(E) C E, we have a closed
immersion U(5)(Xk) C Xk. Since U(B)(X)k is the Zariski closure of U(8)(ZEk), the finiteness of

E—U(B)(Z) implies Irr (X i) = Irr (U(B)(X) k) and Irr(Xg) — Irr( B X)k)Cc E-UP)(E)
by Lemma 1.4. The last assertion follows from finiteness of 371 (Z) — = assumed in (F) O

The semi-group element 3 € T acts on mo(X) and Irr(X) in the sense that § sends m(X) and
Irr(X) isomorphically onto mo(3(X)) and Irr(3(X)), respectively. Therefore 3 : z +— B(z) = x5!
induces an isomorphism (3, : Irr(Xg) = Irr(3(X) -1 ). Let Zs be an irreducible component of Xg
and write 3(Zs) € Irr(B(X) gp-1 ).

Lemma 2.3. Suppose that S C K is a closed subgroup for an open compact subgroup K = G(Z,) x
K® jn G(A). Take Zg € Irr(Xg) with dim Zg = dim Xg and write Zx for the image of Zs in
Xk. Then Zi € Irr(Xg), and there exists x € 2 such that its image xk lies in an open subscheme
of Zx made of smooth points of Zx .

Proof. By Lemma 1.2, we have Zx € Irr(Xg). Thus we prove the existence of the point = € Z as
in the lemma. If Zx = Xk, nothing to prove. We suppose that Zx # Xg. Since Xk is noetherian,
the Zariski closure Z# of X — Zk is a proper closed subscheme of X ; so, by Zariski density of Z
in Xg, if 2 C Z3, we find X = Z#, a contradiction. Therefore (Zx — Zz) N Zx # 0. For the
Zariski closure Zj of (Zk —ZIL() NEx in Zk, Z}; UZIL( contains ((Zx —ZIL() NEg)U (ZIL( NEk) =Ek
as X = Zk UZIL(. Thus Z} UZIL( =X =72k UZIL(. Since ZIL( is a union of irreducible components
of Xy different from Zg, this implies Zx C Zj;, and (Zx — ZIL() N 2 is Zariski dense in Zx. We
can thus pick zx in the open subscheme Zx — Z IL( in Zg. Since the subscheme of smooth points of
Z — Z3 is non-empty and open in Zx [CRT, Theorem 24.4], we may assume that xx is a smooth
point of Zx — Zi. O

For each reduced Zariski closed subset ) of Vg, we put ¥ = Y N =Zg.

Lemma 2.4. Suppose that K is an open compact subgroup as in (K). Let Zx € Trr(Xk). Then
=2k s dense in Zk.

Proof. Since Zx N (Zx — Zl) is dense in Zk as seen in the proof of Lemma 2.3, 2% containing
ExN(Zk — Zl) is dense in Zk.

We can argue differently. For an irreducible component Zx of Xy, Z — Z# is an open subset of
X s0, any open subset Y/ C (Zx — Z3), Y NEg # 0. Thus 2% == N Zf is dense in Zx. O

Take 2 € Z and § € T and fix the open compact subgroup K satisfying (K). Suppose V — Vi is
étale. Let S = Sx = KN K® C K such that $S° ' C K. Take Yx € Irrg(Xx) with Y 3 . Let
YS = pSK(YK) for the projection ps x : Vs — Vi. By Lemma 2.1, Y5 = Uzet(ys) Z (disjoint
YS

- VS ~ = —yS - - =
union). By = = Zx, =Y =2 =Yk, We have a partition =¥ = I_lZeh.r(YS) EZ for22 ==gN Z.



NON-VANISHING OF INTEGRALS OF A MOD p MODULAR FORM 11

Suppose K| = fl([l’). Assume that V — Vg is étale. Since the diagram

ys —— Vs

J{ PS,KJ(étalc

YK;VK

is Cartesian, Y° — Y is étale. Therefore, Y° is equi-dimensional with dimY® = dimYx. By
Lemma 1.2, Trr(Y¥) N Irr(Xg) # 0; so, we can define a non-empty subscheme Yg of Y by

(2.3) Y = U A || 7 C Xs,
Zelrr(Xs)NIrr(Y'S) Zelrrg(Xg)NIrr(YS)

which is equi-dimensional with dimension d := dim Y, and the identity () follows from Lemma 2.1
under étaleness of V — V. Thus Irr(Xs) N Irr(YS) = TIrrg(Xs) N Ir(Y®). Note that taking
intersection Irr(Y¥) N Irr(Xg) # @ means that we can pick irreducible components of Xg which
dominates Yx (so, each member of Irr(Y®) N Irr(Xg) # () has dimension equal to dim Yx). By
Lemma 2.1, V¥ is a disjoint union of Y5 and UZGIYY(YS)%H(YS) X, and hence Yg — Y is étale finite
dominant.

Lemma 2.5. Suppose that K is an open compact subgroup as in (K) and pick Yk € Irrg(Xk)
for 0 < d < dimX. Suppose Vs — Vi is étale. Then we have YS = LlZeIrr(YS)Z and Yg =
LlZeIrr(YS),ZcXS Z. The set 22 is either empty or Zariski dense in Z for Z € Trr(Y™S), and for each
x € EYS, there is a unique irreducible component Z € Irr(Ys) with x € Z.

Proof. The first assertion is proven before the statement of the lemma. We prove the remaining
assertion. If Z C Xg for Z € Trr(Y9), it is an irreducible component of Xg by Lemma 1.2. Thus
27 is Zariski dense in Z by Lemma 2.4. In other words, if Z ¢ Xg, Z¢ is an empty set, and for
each = € EYS, there is a unique irreducible component Z € Irr(Ys) with € Z as Yy is a disjoint
union of Z. (|

2.2. Modular correspondences acting on irreducible components of X . Pick an irreducible
component Yx € Irry(Xg) for 0 < d < dim Xk with an open compact subgroup K satisfying (K).

2.2.1. Definition of the correspondence. Choosing x € = so that g € Yg for Yg in (2.3), we have
B(x)s :=zs67" € B(Ys) C Xgs-1, and there is a unique irreducible component Z of Y containing

xs by Lemma 2.5. Since Yg —;—> B(Ys) C B(X)gs—1 C Xgs-1, we have dimYyx = dimYs =

dim 8(Ys) = dim 3(Ys) k for the projection 5(Ys)k of 5(Ys) in Xk.
For any pair of open compact subgroups (K, S) with K © SS% " (so, S ¢ K NB~1Kf), we have
a diagram similar to (2.2):

v—pB(v) C
—_—

g B(Ys) —C s Ko

PS,Klﬁnitc l Pgp—1 gk lﬁnitc

Yi RPN B¥s)k =Pt ((B(¥s)) —— Xk,
for the correspondence Cs() given by the reduced image Im(ps,x X pgs—1 x 0 :Ys — Vk x Vi)
whose support is contained in C(8) in (2.2). Note that

(2.4) Cs(B) is independent of the choice of S

as ps .k X pngl)K o 6 = (pSK,K X pSf(,K o 6) O PS,Sk for SK =KnN 6K671 (SO, Cs(ﬁ) = CSK(ﬁ))
As mentioned below (2.2), the correspondence Cg(3) is with respect to the tower {Xgs}s and is
possibly different from U () with respect to the tower {Vk } k.

Hereafter we choose S to be Sk and still write it as S (so, the correspondence action of C's(3) on
irreducible components we introduce in the proof of the following Theorem 2.6 only depends on g
(and K)). Note that 8(Ys)x = U, Bu(Z)k for some u € N = K/Sk, where fu(Z) is the image
under pgs-1 g of fu(Z) for a component Z € Irr(Ys) (cf. Lemma 2.1). Since § : Xg = B(X)gs-1,
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Irr(B(Ys)) C Irrg(B(X) gs-1 ) (d = dim Yk ). By the above diagram with dominant ps, x and pgs-1
we again find dim 3(Ys)x = dim Yk as 3(Ys)k C psﬁflyK(ﬁ(pg’lK(YK)).

K

2.3. Positive dimensionality of irreducible components of X. We now prove the following
fact not described in [HO4]:

Theorem 2.6. Suppose (unr) and (ord) at the beginning of Section 2 for p. Let = C V(F) be an
infinite subset injecting into Vi for any open compact subgroup K satisfying (K) and (I). We assume
that a semi-group T C Aut(V/F) as in (T) embedded in Aut(V/F) acts on Z, and assume (F) and
(N).
(1) If the condition (00) is satisfied, all irreducible components of X has positive dimension;
(2) If T acts on = transitively, dim X > 0, X is equi-dimensional, and the irreducible component
containing a given x € = s unique.

Under (c0), we can replace Z by an infinite orbit T(x) and apply the result and conclude the
Zariski closure of T(x) is equidimensional of positive dimension; so, one of them contains x.

Proof of (1).! We need to describe the correspondence action of 3 on Yx € Irrg(Xg). First
suppose that d = dim X as this is the easiest case. Then dim 5(Ys)x = dim X, and hence 8(Z)k €
Irrgim x (X ) for Z € Irr(Ys). In this way, 8 € T acts on Yk € Irrgim x (X k) as correspondences (i.e.,
Yy is brought to a subset 3(Yx) = {3(Z2)k|Z € Irr(Xs) NTrr(Y®)} C Irrgim x (Xx ) whose member
has equal dimension). Since Irr(Xg) NTrr(Y®) is made of u(Z) for u € N, for a finite subset B of
NBN, we have the correspondence action of C(f) given by the image set S(Yk) := Uz cp{8' (Yi)}
under C(3) on Irrgim x (Xk).

Though we only need the result for d = 0, we give an argument for the intermediate dimension
0 < d < dim X now as this introduces necessary notation for the case d = 0. Pick Yx € Irrg(Xk)
and start with Yx € Irrg(Xg). As above to define the action of C(3) on Irrg(Xk), we only need
to give a good definition of the image set 5(Yx ) for a 8 € NTN. For simplicity, write S’ := CE
Let us recall a general notation: For an irreducible component Y}, of X, we define as before
vy = pg/l)K(Yl’() and Yo = |zcp, (xo)nme, (vrs7) £ (by (2.3)). Now recall the irreducible
component Z € Irry(Ys) containing the base point s € Zg chosen in §2.2.1 and we apply the
above notation to the irreducible component Y} of Xg such that 5(Z) C Z’ for an irreducible
component Z" of Y¢, (so, B(xs) € Z’). To see the existence of an irreducible component Yy of
Xk as above, we argue as follows. Since §(Z) is an irreducible closed variety of Xg/, ps k(8(2))
is an irreducible closed variety of X. Then there exists an irreducible component Y}, containing
ps/ .k (B(Z)) of Xk by Lemma 1.2 (1). Therefore 8(Z) C Y4, which is contained in Z’ € Irr(Yg,).
So dim Z" = dim Y}, > d by Lemma 2.1. Replacing (3, Yk, S, K) by (871,Y}, S, K), we apply the
above argument. Note that 37!(Z") C 37} (Xg); so, 871 (Z' )k C B71(X)k. By the choice of Y,
Lemma 2.5 tells us that Z is determined by the two conditions (i) 37 (X)x D 871 (Z" )k D Yk
and (ii) zg € Z. Since Irry (371 (X)k) = Irr4 (Xk) by Lemma 2.2 and 371(Z')k is irreducible,
we conclude from B71(Z")x D Yk that 371 (Z')xk = Yk (as Yk is an irreducible component of
Irr (B71(X)k) = Irry (Xk)); in particular, dim Z’' = dim Yx = d. So, Y}, = 3(Z)k and that 3(Z)k
is an element in Irrg(Xg) (Lemma 2.2). Therefore, again 5 € T acts on Irrg(X ) as correspondences
(i.e., Yi is brought to a subset 3(Yx) = {3(Z)k|Z € Irr(Xs) NTrr(Y?)} C Irrg(X g ) whose member
has equal positive dimension).

Now suppose d = 0. Since the correspondence action preserves Irry (Xg), it also preserves the
complement Irrg(Xg). The following argument to see the correspondence action is really an action
sending a point to a point also gives an alternative proof of the stability of Irrg(Xg) under the
action of T. We proceed similarly to the case where 0 < d < dim X using the same notation.
Then zx = Yx € Irrg(Xk) falls in the image Zx in Vi of 2 by Lemma 1.2 (3). By (I), the
projection 7 : V — Vg induces Z = EZg; so, pg’lK(xK) is a finite set of points above zx and
{2' € pg(zx)|z’ € Xs} is asingleton by Lemma 1.2 (2-3). Thus pg . (Yr) N Xs = pg  (vx) N X
is a singleton. Therefore Y = {Z := zg} is a singleton. Take an irreducible component Y},
of X such that 3(Z) C Z’ for an irreducible component Z’ of Y¢, (so, B(xzg) € Z’). Such a

"n the proof, we use the existence of 3~ € Aut(V) essentially, while a : (v,2) — (v + 1,22) in §1.1 cannot be
extended to an automorphism of V' there.
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Y}, exists by Lemma 1.2 (1). So dimZ’ = dimYj; > 0. We want to prove dimYj; = 0. Since
Irr, (B74(X)s) = Irry (Xg) by Lemma 2.2 and (F), if dim Z’ > 0, we have dim 37!(Z’) > 0 and
B~Y(Z’") is an irreducible component of Xg. Since 87!(Z’) D Z = xg by construction and the
two are irreducible components of Xg, we find that 37%(Z') = Z = x5, a contradiction against
dimZ’ > 0. Hence dimZ’ = 0 and Z’ = B(Z) = B(xg). This implies that § brings Irro(Xk)
into Irrg(X k). It is now clear that this is really an action (not a correspondence action) of T on
Irrg(X k), and the action is compatible with the action of T on = as Irrg(Xg) C Ex = E.

In particular, Irrg (X ) contains T(zg) for each i € Irrg(Xx) C Ex. Then by (00), Irro(Xk)
is infinite, a contradiction as X is a noetherian scheme. Therefore Irro(Xg ) NT(zx) = 0 for every
open compact subgroup K of G(A®) satisfying (K) and z € Trrg(Xx ). This implies Trro(Xx) =
() for every open compact subgroup K of G(A®) satisfying (K), and therefore Trro(X) = by
Lemma 1.2 (3). This shows that all irreducible components of X have positive dimension.

Proof of (2). We have proven positive dimensionality of irreducible components of X. We need to
prove equi-dimensionality of X and the uniqueness of the component containing x € = under equi-
dimensionality. Since the smooth locus X§™ of Xk is open dense in X by [CRT, Theorem 24.4],
== EN X" is still dense in Xg. Since Irr(X g ) = mo(X "), for each x € 25, the irreducible
component of X5 containing zy is unique. Since T acts on Irr(X ) = 7o(X3™) as correspondence,
for any Z, 7" € Irr(Xk), we find z € EN Z*™ and y € EN 2",

Interchanging Z and Z’ if necessary, by (T) and transitivity of the action, we can choose § €
T with 3(z) = y. Then 3(Z) € Irr(Xk) and y € B(Z)NZ'. Thus y € Z2'°" = 7' — Zs™
(i.e., y € B(Z) N Z" with Z’ different from any irreducible components of 3(Z)) or 5(Z) > Z’ or
B(Z) C Z'. The case: y € Z2'*""9 = Z' — Z*™ does not occur as we have chosen y € Z"*™. Since the
correspondence action of T preserves Irry (X ) for any given d > 0, the remaining cases 5(Z) D Z' or
B(Z) C Z' imply dim Z = dim 5(Z) = dim Z’ and Z’ € Irr(8(Z)). Choosing one of Z and Z’ to have
maximal dimension dim X, the other has to have maximal dimension; so, Irr(Xk) = Irrgim x (XK );
so, Xk is equidimensional. This implies X is equidimensional.

By the first fundamental sequence of differentials and unramifiedness of Xg/Xk in Lemma 1.1,
the projection induces a surjection:

Qx e /r ®0x, Flzx) - Qx5 0y, F(s)

for S C K. By the proof of the equi-dimensionality, for dim Ox, »y = dim Ox 4, for any point
rg € Xg with projection xx in Xg. Thus

dimgp QXK/JF ®OXK F(xK) > dimp QXS/JF ®0Xs F(xg) > dim OXS,OCS = dimOXK,acK-

Y

Here “dimp” indicates dimension of an F-vector space, and dim R for a ring R means the Krull
dimension of the ring R. Thus the singular locus

X3 = {ws € Xs| dimp Qxo/r R0y, Flas) > dim Ox, os}

of X is sent to X329, where F(z) is the residue field of z. Thus X*"9 = lim X", and hence
dim X9 < dim X =dimY for any Y € Irr(X). Plainly T preserves X*"9. If z € 2N X9 then
Z=T(z) C X*"9; s0, X = X*"9_ a contradiction. Thus =N X*"9 = (). Since X*™ := X — X9
is a dense open subscheme of X, mo(X*™) = Irr(X*™) = Irr(X) with X*™ = | |y ¢y (x) Y*™. Thus
for each given z € E C X*™, Y*™ € Irr(X*™) containing x is unique. O

Since Xk has positive dimension for an open compact level K (as |Ek| is infinity; ¢f. Lemma 1.2
(4)), by the above proposition, all components of X have positive dimension. Taking = € = and an
irreducible component of X containing =, we get

Corollary 2.7. Let the notation and the assumption be as in Theorem 2.6 (1). Then X contains
an irreducible component Xo of positive dimension with a point x € =. Moreover for each element
& of the stabilizer of x in T, we have £(Xo) = Xp.

Proof. We need to prove the last assertion: £(Xo) = Xo. Since £ € T, £(X) is another irreducible
component of X containing x. Taking a level group K sufficiently small, £(Xo) U X — Xk is
unramified. Since £(Xo) N Xy O z, unramifiedness and positive dimensionality of Xy tells us that
&(Xo) = Xo.
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There is another argument. Replacing = by the orbit Z' := T(x), we may assume that T acts
transitively on Z. Then Xy and &(Xy) are irreducible components of the Zariski closure X’ of =’.
Then we can apply Theorem 2.6 (2) to X’ and Z’. Since there is only one irreducible component
containing = = £(x), we have Xy = £(Xp). O

Remark 2.8. Note that the stabilizer of x € Z,, is given by 7, := (M*NR NR))/(F*NO{NO))

embedded into GLa(F] é[p )y € GLy(F ff °°)) which after p-adic completion contains a p-adically open
subgroup. We can take 7 in (T) to be this group or the bigger group (M *NR{*NR))/(F*NO*NO)),
and under this choice, we can apply Corollary 2.7 to £ € 7,.. The stability of X in Corollary 2.7 is
a requirement of [H10, Corollary 3.19, Theorem 3.20], and the choice 7, C 7 is sufficient for this
purpose. Since the central elements in F'* acts on V trivially, we take 7, as above rather than
M*NRY NRY.

2.4. Verification of (F) and (N) for infinite arithmetic progression. We briefly describe the
choice of Z C V. For the details of the definition of CM point z(.A), see Section 3.
Let

(2.5) T:=(M*NRNR)/(F*NONO),

but for our convenience, we often shrink 7 slightly to a subgroup of finite index to define T as
remarked in Remark 2.8. We write R(a)

For each ¢ € R( ) (in [HO4, page 755] the symbol “a” is used for the letter “¢” here), we have
z(A) == (X(A),A(A),nP)(A)) —£—> x(§A) as in the middle of [HO04, page 755], and as seen in [HO4,

)
page 756], pr(£")(x(B)) = z([¢V)B) for the class [£] = [(£)] of the ideal (&) in Clo = lim Cl,.
Recall C,, = {x(A) := (2([A]0))seg|A € Cl,} and C>) = || C,, € V. Thus £ € T acts on O(>)

by [A] — [(§)][A].

Let oy be a prime element of O;. As specified in [H04, §2.1 and §3.1], for each proper fractional
ideal A of R,,, we have a specific CM point z(A) € Sh(P)(F). In our application, Z is made of the
set of points of the form z(A). Note that (see (3.3))

(b)) =(3=F )( ).

y [HO4, (3.2)] (see (3.2) in the text), writing am = (o o m ) and o(u) = (§ %), we have

[
1
u
(2.6) amo(u)(@n (Bn)) = ol =7 )am(zn (Bn)) = an(A) (0 <m €Z)
[
for A given by z(A) = z(R,)/C, for a suitable subgroup C, C X(R,) with C,, = O/I™ depending
on u, xy indicates the image of z in Vy, and A = R4y, if w = 0. By (2.1), in (2.6), we can
replace wi{® by w = @ and xy by xk, and the identity is valid on Vi (in place of Vy). Any A in
Ker(Cly4m — Cl,) with n > 0 can be written as in (2.6).
Set = = {x(A) € V|A € Ker(Cl,, — Cl;)} for each n > j > 0 with a given j. Since

2} = {x([A]0)|A = ER, with £ € R N (1+VRy)},
defining 7; C 7 (for 7 in (2.5)) by
(2.7) T :={¢ € (M* N R N R)|(€ mod V) € (R /V)*}/O(5

the group 7; acts transitively on E} for every n with n > j > 0. Here R, and O,y are the
localization at pl of R and O not the completion, and note (7 : 7;) < oo.

Lemma 2.9. Assume that I"™ is generated by an element of Nyyp(R) and write ™ = (w) with

w € Nyyr(R). Define o = (§2) and let T = T, = Tj X Uk>0Na N as a semi-group. If n

is an infinite arithmetic progression of difference m, for 2 = 2, = Z,; 1= | ;5 :?““m, we have

= > U(B)(Z) for B € Tj,m (which implies that the condition (N) is satisfied), and = — U(B)(Z) is
finite.

Proof. By (2.6), we have U(a)(Cp) = Cpim and U( )(EY) = x(";”m). Thus the semi-group

Upso Na#N acts on E, for n = {ng+im|i =0,1,2...} for U(a*) (0 < k € Z) sending E?““m into
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E?“Jr(Hk)m Any element o

B € No*N. Then we have

= : |_| =no+im _ |_| ~n0+(k+z/)m |_| notim
Zn _

i>0 i’>0

= _ng+(1+k) £ = —nnglm

is an image of an element o under the action of

which is finite. Since 7; is a group acting transitively on ";"’J”m this implies 2= — U(3)(E) is finite
for all 3 € NTN and hence we get (N) and (F) for U(5). O

The point z(.A) is given by identifying A®) = A®; Z® with the prime-to-p Tate module of the
corresponding CM abelian variety X (A); so, strictly speaking, it is more precise to write x(jf(?))
(or z(A)) in place of z(A). Under this notation, a(z(AP) x R,1) = (AP x Ryym,1) and
aL(z(AP) x R, ) = 2(AP) x R,,_,, ) as long as n > m. See §5.3 for what happens when n < m.

It appears that the map o~ is non-injective, but this comes from the fact that K D N (satisfying
(K)) but Sk is not; in other words, pg x is not injective but shrinking K to K’ at [ so that
K'NnN = {1} (with K/N =2 K'/(K' N N)), the fiber of pg, x will be separated modulo Sk N K’
(but the fiber of ps,, k- is non-trivial again). Thus o~ *(C,) = Cp—p, as long as n > m. This shows
(F) for ™" and E, ;:

(2.8) a”(E) — E is finite for all i > 0

as long as n is an infinite arithmetic progression of difference m as long as [ is generated by
an element of Ny /p(R) and adiag[l,w|™™ € K, writing diaga,b] for the diagonal matrix with
diagonal entries a, b from top to bottom. Therefore in this case the condition (F) is valid.

If necessary, we also write sometime z(A) (A4 = A®z Z) for z(A) assuming A, = R,. The group
T acts on z(A) as follows: For £ € T,

2(A) = 2(A) = 2(60A) = 2(()A),

where €0 € M . is the finite idele with [-component equal to 1 and every component at finite place
outside [ is equal to &.

In the idele class group Z := M /M* M, £ is trivial but €W is not trivial; so, the action of & on
Cl,, is non-trivial for any sufficiently large n. Regard Cl,, = Pic(R,,) as a quotient of Z, and write
(€) = (€),, for the image of ¢ in C1,,. Since Ker(Cl,, — Clp) is spanned by (£),, with & running in
T, T acts transitively on Ker(Cl,, — Cly). More generally, noting that 7, C 7 is the stabilizer of
z(R,) in Cl,., T, acts transitively on Ker(Cl,, — Cl,) for all n > r. From A with A= R, 1, we can
create ./zl\l = AW x R; . Then even if A = (R, with & € R, (i.e., A is trivial in Cl,), for i > n
with & & R, 1, A; is non-trivial in Cl;. In this way, the group 7 := R(Xp[)/O(Xp[) acts on C%9 as in
[HO4, page 755].

Let n={0<ng<ny <ng <---<mn; <---} be an infinite sequence of integers such that ™ is
generated by an elements in Ny /p(R). If m is an exponent such that [™ is generated by an elements
in Ny p(R), then any infinite arithmetic progression n = {n; = ng +im|0 < i € Z} for an initial
value 0 < ng satisfies this condition. Recall ";“ = {(z([A]0))seco € V|[A] € Ker(Cl,, — Cl;)} for
0 < j < ng as in [HO4, Proposition 2.7]. Define = = =, ; = | J; E}* C V. Since Cl,, and Cl; is stable
under the action of 7; and the projection Cl,, — Cl; is compatible with the action of 7}, Z,, is
stable under 7;, and hence =, ; is also stable under 7;. Thus we get

Theorem 2.10. Choose 0 < m € Z so that I is principal generated by w = @ with ¢ € R and
define o as in Lemma 2.9. Suppose adiag[l,c|™™ € K. If n is an infinite arithmetic progression
(with initial value ng and difference m), the semi-group T; ., generated by the group T; in (2.7) and
a=($2) acts transitively on 2, ; and satisfies (T), (N) and (F) (for T = T;).

0w
Theorem 2.6 combined with this result, Corollary 2.7 and [H10, Corollary 3.19, Theorem 3.20]

gives

Corollary 2.11. If n contains an arithmetic progression, then Z, ; for any j > r is Zariski dense
in V<.
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h(ZD)

2.5. Characteristic 0 version. We consider S and its geometric irreducible component V,yy

and define Y = V/Q in the same manner as above. Consider V/p = Vv @w F. Note that V)yy is
smooth over W (see [PAF, Theorem 7.1]).

Lemma 2.12. Let A be a smooth W-domain and E be a countable set of W-points of Spec(A)
and as a subscheme of Spec(A), = is étale over W. Write X := X @ F for X = A, A;,=Z as a
subscheme of Spec(A). Then if Z is Zariski dense in Spec(A), then the schematic closure of Z in
Spec(A) is equal to Spec(A) and =, = = Xy 1 for the generic point n € Spec(A) is Zariski dense in
Spec(A) xw 7.

Order E={Py, Ps,...} withE, :={P,..., P,}. Write X = @n X/mp, X for X = A, A, 5, P,
(the formal completion along the special fiber).

Proof. Since A is smooth over W, A (resp. A) is smooth over W (resp. F); in particular, A i
domain. Since =, is étale over W; so, is =,, over W. Thus =,, £ = =
as sets.

We have A/(\_, Pj — [1; A/P; = [1j_, W. Thus A/(j_, P; is W-flat. In the same manner,
A/(—, Pj is W-flat. We have a short exact sequence (()]_, Pj) @w F — A — (A/(}_, P;) @w F.

>~

=, as point sets; hence

For an A-ideal a with TW-flat quotient //1\/ a, we have an exact sequence @ = a @y F — A —
(A/a)@w F. We identify @ = a@w F as an ideal of A and A/a with (A/a) @w F. Take another ideal
b with WW-flat A/b Then A/(aﬂ b) — A/b @A/b implies A/(aﬂ b) is W-flat. From the short exact
sequence: A/(aﬂ b) — A/a@ A/b — A/(a+ b) for the two ideals a and b, we obtain a three term

exact sequence A/anNb = (A/anb) @w F 5 A/a® A/b — A/(@+b). Thus Im(7) = A/(@Nb) and
Coker(i) = A/(a+b) which implies a N b C @Nb. By induction on n, we thus have m;:l P; C m;:1 P;

and hence (ﬂpe— P)@w F = ﬂpe— P C (Npez Pj, whose right-hand-side is (0) by Zariski-density.
For P :=(\pc= P, we have P@y F = P@y F. Therefore we conclude P @y F = (0). By Nakayama’s
lemma for admally complete modules over a complete ring (e.g., [CAG, Exercise 7.2]), we conclude
P = (0). Since Npez P C \pe= PcP= (0), we conclude ()p.z P = 0. Thus Z is schematically
dense in Spec(A). Since K = Frac(W) is flat over W, we have ((p = (POwW K) = ((pez P)Ow K =
0; so, E ®yy 1 is Zariski dense in Spec(A) xyy n = Spec(4 @y K). ]

The definition of = C V in Theorem 0.1 works well over W; so, we take a geometrically irreducible
component V' of Sh(p ) with z(R,) € V(W) for sufficiently large n and define V = V< and = C V
as in Theorem 0.1.

Proposition 2.13. Assume Z Qw F is Zariski dense in V Qw F. Then = ® n is Zariski dense in
the generic fiber V Qw 0.

Proof. Since V — Vi is affine, covering Vi by open affine schemes Spec(Ak ;) and pulling them
back to Spec(Ag,;) C Vs for open subgroups S C K, we apply Lemma 2.12 to Spec(A;) C V for
A; =limg Ag; assuming Zariski density of = in the special fiber V®yy F and conclude Zariski density
in the generic fiber. O

3. GEOMETRIC MODULAR FORMS AND CM POINTS

The Hilbert modular Shimura variety Sh(®) is the moduli (up to prime-to-p O-linear isogeny) of
triples (X, A,n) for an abelian variety X of dimension d = [F : Q] with multiplication by O, an
O-linear polarization class A up to multiplication by (ng))X (see [HO4, §2.2]) and an O-linear level
structure 7 : VP (X) = T(X) @5 AP) = (Fls(f))2 for the Tate module 7 (X) of X. For the Hilbert
modular Shimura variety Sh(®), we use the definition and notation introduced in [H04, Section 2].
See alas [HMI, Section 4.3] for a more detailed description of the Shimura variety and modular
forms. Geometric modular forms can be defined as global sections of weight x Hodge bundles over
the Shimura variety, or equivalently a functorial rule assigning a value to classified abelian varieties
with extra structure. Out of the assigned value at CM points, we create a distribution interpolating
L-values in the next section Section 4.
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3.1. CM points z(A). We recall the definition of the CM points z(A) from [HO4]. Let G =
Resp/gGL(2) (so, G(A) = GLy(A ®g F)). We write the left action: G(AP>®)) x Sh(P) — Sh(®)
simply as (g, z) — g(z) := 7(g) (). Here the action of 7(g) is a right action induced by 1 — nog for
the level structure . For each point z = (X, A, n) € Sh, we can associate a lattice L= n HT(X)) C
(F Agoo))? Then the level structure n is determined by the choice of a base w = (w1, w2) of L over

-~

O. In view of the base w, the inverted action x — g(z) is matrix multiplication: ‘w — g'w, because
(nog™ ") HT(X)) =gn T (X)) =gL.

For each O-lattice A, we recall a description of a CM point z(A) = (X(A), A(A),n(A)) € Sh®)
from [HO04, §2.1], where X (A) y is an abelian scheme of CM-type (M, X) with H'(X (A)(C),Z) = A
in the sense X(A)(C) = C¥/A*® for A¥ = {(a”*,...,a%¢) € C¥|a € A} writing ¥ = {01,...,04}.
For the order R4 := {& € M|aA C A} and an ideal a of R4, we write, as a finite flat group scheme
over W,

X(A)[a] := {2 € X(A)|az = 0} = ] Ker(ar: X(A) — X(A)).

aca

Recall the order R,, = O + "R C M and the class groups Cl; = Coker(Pic(O) — Pic(R,)) and
Cly = @n Cl. . By class field theory, Cl gives the Galois group of the maximal anticyclotomic
class field in the ring class field of conductor I over M. The ideal [, = [+ ["R = [R,,_; is a
prime ideal of R,, but is not proper (it is a proper ideal of R,_1). Since X(R,)[l,] = R, /I, = O/I
and [, R,_1 C Ry, we find that X (R,)[l,] = Rn—1/R, and X(R,)/X(Ry)[ln] = X(Rn—1). We
pick a subgroup C C X(R,)[] isomorphic to O/ but different from X (R,)[l,]. We look into the
quotient X(R,)/C. Take a lattice 2 so that X(R,)/C = X(A) < A/R, = C. Since C is an
O-submodule, 2 is an O-lattice of M. Since [C = 0, we find (R, C A. Thus A is R,,;1-ideal,
because R,,+1 = O + [R,. Since C is not an R,,—submodule, the ideal 2 is not R,—ideal; so, it is a
proper R, t1-ideal. Since C generates over R,, all [-torsion points of X (R,), we find R, = [T1R,,.
In this way, we have created ¢ proper R, 1-ideals 2 with AR, = [T'R,,.

We choose a base w = (w1, ws) of R over O in [HO4, §2.1]: at p, for the choice of the ordinary
p-adic CM-type X = {P[p}, writing Ry, = [[cx Ry and Rye = [[c 5 Rype for complex conjugation
¢, R, = Rse & Ry, and w = (w1, w2) = ((1,0), (0,1)).

Let A be an O-lattice in M whose order R(A) := {a € M|aA C A} has conductor § = f(A).
Though we mainly deal with the case where f(.A) = [, we describe a general theory with arbitrary f
prime to p. We choose a “good” level structure 7(A) of X(A) so that n(.4)(0?) = A in the following
way. First we choose a representative set {2;} of ideal classes of M (prime to pf). Then we can

write §lj = ajl/i\’ for an idele a; with a; = ag-fpoo) and choose a € M so that AR = a2l;. Here for

an idele a € F; (resp. an adele a € Fy) and an integral ideal a, a(*>®) indicates a, = 1 (resp.
a, = 0) for each place v appearing in a or co. If f(A) = O (so, A is an R-ideal), we define the level
structure n(A) by (Flém)>2 3 (a,b) — acajwy + baajwy € Méoo) =V(X(A)). When f(A) # O, we
first suppose that f = (¢p°) for ¢ € M. Take o € M such that AR = a2;, and choose a base w(.A)
of A so that w(A)D = (paa;jw)D and w(A); = aws - g for g € GLy(Fy) with det(gj) = pp°. Then
we define n(A)(a,b) = a-w1(A) +b-we(A) € Méoo). There is an ambiguity of the choice of « and
@ up to units in R, but this does not cause any trouble later.

Suppose that f(A) is not generated by a norm from M. We choose g € G(A()) with ¢() =1
so that w(A) = aa;w - g gives a base over O of A, and define n(A) by using w(A). In the above
two cases, we choose g independent of the ideals in the proper ideal class of A; in other words, we
choose w(BA) = Baa;w - g. We then define g(A) € G(A) by n(A) = n(2;) - g(A). We will later
specify the choice of g precisely.

We introduce a representation pa : M — G(A()) by an(A) = n(A) - pa(a). By our choice, we

MU

have p4 = pr on and

(3.1) det(g(A)) € FI if f(A) is generated by a norm from M.

Regarding ¥ as a set of p-adic places (i.e., field embeddings of M into @p) and composing with
Q, = C we fixed, we may regard ¥ as a set of complex embeddings. We write £(A) := {(0(a))oes €

C*la € A} as a lattice in C¥ :=] . C.
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We choose a totally imaginary 6 € M with Im(o(d)) > 0 for all o € 3. Then the alternating
form (a,b) — (c(a)b — ac(b))/2d gives an identity R Ao R = ¢* for a fractional ideal ¢ of F. Here
" = {& € F|Trp/g(zc) C Z} = 27! for the different d of F/Q. Identifying M ®g R with C*
by m @ r — (o(m)r)sex, we find that (a,ia) = Qa& > 0 for a € M*. Here the symbol “>”
means total positivity. Thus Trg/g o (-, -) gives a Riemann form for the lattice ¥(.A), and therefore,
a projective embedding of C*/3(R) onto a projective abelian variety X (A),c. The complex abelian
scheme X (A) extends to an abelian scheme over W (unique up to isomorphisms). In this way, we get
a c-polarization A(A) : X(A)(C) ® ¢ 2 *X(A)(C) for the dual abelian scheme ‘X (A) = Picg((A)/W.
The same ¢ induces

RAR=FfOAR)+f(RAR)=(f"c)* and AAA= (Npyp(A) (A o),
where the exterior product is taken over O. Hereafter we fix ¢ so that ¢ is prime to pf(.A4)0, and write
¢(A) for Nar/p(A)~H(A)"te (so, ¢ = ¢(R)). We can always choose such a 4, since in this paper we
only treat A with [-power conductor.

Since an isogeny defined over the field Frac(W) of fractions of W between abelian schemes over
W extends to the entire abelian scheme (e.g. [GME] Lemma 4.1.16), we have a well defined ¢(A)-
polarization A(A) : X(A) ® ¢(A) = 'X(A). Replacing X(A) by an isomorphic X (aA) for o € M,
we may assume that A4, = R,. Then

X(A)lpr] = X(A)p] & X(A)[p°]
for pp = p N F is isomorphic by A(A) to its Cartier dual. Since the Rosati-involution a — a* =
A(A)o'ao A(A)~! is the complex conjugation ¢, X (A)[p]/y is multiplicative (étale locally) if and
only if X(A)[p°] is étale over W.

We also specified the base of ﬁﬂ’ to be w( in [HO4, §2.1], because ﬁﬂ’ =RO. To specify the
base w; of Ry, we take d € Oy so that Ry = O([v/d] C M;. We assume that d is a [-adic unit if [ is
unramified in M/F and d generates [ if [ ramifies in M/F. Then we choose w; = (1,/d).

Since the base of R, is given by ay,'(1, \/E) for a, = (é wOI") with a prime element <oy of Oy, we
find that a,(z(R)) = z(R,) and a1 (x(Ry—1)) = z(R,). Moreover, for a suitable u € O

(3.2) wi(z(A)) = (3 = ) (@(Rny1)) if A= Ry/C for O/1=C # X(Ry][ln],
because the base of wA; is given by (1;?51%3) — ((1) %) Qa1 (\/13) . Here the action of wy :

z(A) — wi(z(A)) may bring z(A) on a geometrically irreducible component of Sh(?) to a different
one.

Now we consider 2(A) in Vi for an open subgroup K C G(A(>)) containing Z (Z) By repeating
(3.2), if z(A) = (R,)/C for C = O/I"™ with C N X (R,)[l,] = {0}, then A is a proper R,,{,,~ideal.
If further [ is generated by an element w € F', we get 2(A) = z(wA) = wi*(z(A)) in Vi (because
w/w € K) and

1

(3.3) 2(A) = (0 = ) (@(Rnsm)) = (1 %) (2(Rnsm)) for a suitable u € O.

The set {z(A)|[AR,] = [2]} for A € Cl,4m Tunning through ideal classes A projecting down to
a given ideal class [/] € Cl,, is in bijection with O/I™ by associating u to A in (3.3) (see [HO04,
Proposition 4.2]).

3.2. Geometric modular forms. Let k be a weight of ' = Resp/zGn,, that is, k : T(A) =
(A ®z O)* — A* is a homomorphism given by (a ® &)* = [[(a&?)*> for integers k, indexed by
field embeddings o : F' < Q. Let B be a base ring, which is a WW-algebra. We consider quadruples
(X,A,nP),w), 4 for a B-algebra A with a differential w generating H°(X, Qx,4) over A®z O. We
impose the following condition:

(3.4) (LW = T(X) ®2 ZP) for L = O & ¢* with a fixed c.

Under this condition, as seen in [H04, §2.3] and [HMI, §4.3.1], the classification up to prime-to—p
isogenies of the quadruples is equivalent to the classification up to isomorphisms. A modular form
f (integral over B) of weight k is a functorial rule of assigning a value f(X,A,n®) w) € A to
(the A-isomorphism class of) each quadruple (X, A, 7n®), w) /A (called a test object) defined over a
B-algebra A. Here A is a ¢ polarization which (combined with ")) induces L. A L. = ¢* given
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by ((a ®b), (' ®V')) — ab’ — a’b. The Tate test object at the cusp (a, b) for two fractional ideals

with a*b = ¢* is an example of such test objects. The Tate semi-AVRM Tateq p(q) is defined over

Z[[¢*]l¢e(ap), and is given by the algebraization of the formal quotient (G ® a%)/q" (see [HMI,

§4.2.5] for details of this construction). The rule f is supposed to satisfy the following three axioms:
(G1) For a B—algebra homomorphism ¢ : A — A’, we have

FIX R P, w) x40 A') = 6(F(X, K, 0P, 0)).
(G2) f is finite at all cusps, that is, the g—expansion of f at every Tate test object does not have
a pole at ¢ = 0. _
(G3) (X, A0, aw) = € FF(X, R, '), w) for & € T(A).
We write G (c; B) for the space of all modular forms f satisfying (G1-3) for B-algebras A. We put

(3.5) Gr(B) = P Gr(c; B),

where ¢ prime to {p runs over a representative set of strict ideal classes of F.
An element g € G(A(®)) fixing L. acts on f € Gi(c; B) by

Fla(X, K, 0P, w) = f(X,K,n® o g,w).

For a closed subgroup K C K, = GL(L:) N G1(A®)), we write Gi(c; K; B) for the space of all
K-invariant modular forms; thus,

Gi(c; K; B) = HY(K, Gi(c; B)).
Take an O-ideal 9 prime to pc. Then the DM—component of K, is SL2(Ox). Let
Lo(M) = {(284) € SL2(Om)|c € NOm} and T1(MN) ={(24) €eTo(M)|a=b=1 mod NOx} .
Assume that 91 is prime to pl and define for an open subgroup Kim C SL2(Omn)
Gr(Kum; B) = @) Gile: K x KMV, B).
c

A W-algebra B is called a p-adic algebra if B = @n B/p™B. We write 1,4 for the pair of level

ord

structures (9" : pyee @ 071 — X[p™], n®). A p-adic modular form f over a p-adic W-algebra
B is a functorial rule of assigning a value in A to triples (X, A, 1orq) /4 With c—polarization class A
satisfying an obvious version of (G1-2) for p—adic B-algebras A (not just B-algebras). In general,
we do not impose (G3) on p-adic modular forms. See [HMI, §4.2.8] for more details about p-adic
modular forms. We write V (¢; B) for the space of p—adic modular forms defined over B. We again
define

(3.6) V(B) =@ V(:B) and V(Kwm;B) =@ V(i K x K7 B),

where V(¢; K; B) = H°(K, V(c; B)). For f € V(B), we write f. € V(c¢; B) for the ¢-component of f,
and we say that f is of level M if f in either in G (Km; B) or in V(Km; B) for Kin C SLa(Om)

Since ng’”d induces the identification ﬁg’”d : Gy ® O* 2 X for the formal completion of X along
the origin, by pushing forward the differential %, we can associate (X, A, n(®), ﬁgf;d%) to a quadruple

(X, A, ng’”d, n®)). In this way, any modular form f satisfying (G1-3) can be regarded as a p-adic
modular form by

_ — dt
f(Xa Aa nOTd) = f(Xa Aa n(p)a ﬁzt*d?)

By the g—expansion principle (c¢f. [HMI, Corollary 4.16] or [PAF, Corollary 4.23]), we thus have
a canonical embedding of G (B) into V(B) which keeps the g—expansion. A p-adic modular form
associated to a modular form in G (B) satisfies the following replacement of (G3):

(€3) fOXAE nyrd n®)) = € F (XA ngre, ) for € € OFF.

Although we do not impose the condition (G3) on p—adic modular forms f, we limit ourselves
to the study of forms satisfying the following condition (G3') in order to define the modified value
f([A]) later at CM points z(.A) truly independent of the choice of A in its proper ideal class. Here
abusing our notation, x(A) is the quadruple (X(A), A(A), nora(A),w(A))» introduced in [HO4,
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§2.1]). We consider the torus Tpsy = Resg/zGy, and identify its character group X*(Ths) with
the module Z[X U X¢] of formal linear combinations of embeddings of M into Q. By the identity:
(X(é.A)a A(f.A), nord(§A> = gnord(A»/W = (X(A)a §§CA(.A), nord(A) © pA(g))/Wa we may assume
that for k, k € Z[X],

(G3) f(z(€A) = f(pr(EV)(2(A))) = £+ 179 f(a(A)) for & € Tar(Z).
It is known that for the p—adic differential operator d, of Dwork-Katz ([K78] 2.5-6) corresponding
to 522 for o € X, 0°f (6% =[], ds~) satisfies (G3') if f € Gy (D).

271 Ozo

3.3. Hecke operators. Suppose that the [-component K| of the level subgroup is equal to I'o(I*)
(v >0). Let e; = *(1,0),e2 = *(0,1) be the standard basis of F? @ A®>) Then, under (3.4), for
each triple (X, A, Nord) /A With 7orq = ng’”d x ),

C=n(I""0Ore1 + Or€2)/77r(0r2)

gives rise to an A-rational cyclic subgroup of X of order [, that is, a finite group subscheme defined
over A of X, isomorphic to O/[” étale locally. Since Io(I*) fixes (I7¥Ore1+Orez)/OF, the level To(I*)
moduli problem is equivalent to the classification of quadruples (X, A, C, ﬁi?d) /A for a subgroup C
of order [¥ in X, where né?d is the (p—ordinary) level structure outside [. Thus we may define for
f € Gr(To(*N); B) the value of f at (X, A,C,n"Y,w) by f(X,A,C,n®Y w) = f(X,A,nP),w).
When f is a p—adic modular form, we replace the ingredient w by the ordinary level structure ng’”d
in order to define the value f(X, A, C,n®Y, ngTd).

We shall define Hecke operators T'(1, ") and U(I™) over (p-adic) modular forms of level K (with
K =Tg(1")). The operator U([") is defined when v > 0, and T'(1, ") is defined when v = 0. Since
[ is prime to p (and B is a W-algebra), any cyclic subgroup C’ of X of order [ is isomorphic to
O/1"™ étale locally. We make the quotient 7 : X — X/C’, and A, ng’”d and w induce canonically a

v

polarization 7, A, a canonical level structure 7,03 = 7o 79, m,n®) = 7 on®Y and a differential
(7*)"lw on X/C". If C' N C = {0} for the Iy(I")-structure C (in this case, we call that C’ and C
are disjoint), 7(C) = C + C’/C" gives rise to the level I'g(I¥)-structure on X/C’. We write X/C’

for the new test object of the same level as the test object X = (X, A, C, n(()?d,w) we started with.
When f is p—adic, we suppose not to have w in X, and when f is classical, we ignore the ingredient
79" in X. Then we define (for v > 0)

(3.7) AU (X) = ﬁ S rx/e,
2

where C’ runs over all étale cyclic subgroups of order [ disjoint from C. The newly defined f|U(I")
is a modular form of the same level as f and U(I") = U([)". Since the polarization ideal class of X/C’
is given by ¢[™ for the polarization ideal class ¢ of X, the operators U(I") permute the components

Je-

We recall some other isogeny actions on modular forms. For fractional ideals 3 in F', we can think
of the association X — X ®o 3 for each AVRM X. This operation will be made explicit in terms of
the lattice L = 71(X) in Lie(X). There are a natural polarization and a level structure on X ® 3
induced by those of X. Writing (X, A, n) ®3 for the triple made out of (X, A, n) after tensoring 3, we
define f|(3)(X,A,n) = f((X,A,n) ®3) (see [PAF, §4.1.9] for more details of this definition, though
(3) here is (371) in [PAF, §4.1.9]). For X(A), we have (3)(X(A)) = X(3A).

(3.8) The effect of (3) on the Fourier expansion at (a,b) is given by that at (30,3 'b)
(e.g., by [PAF, §4.2.9], noting (3) here is (371) in [PAF]).

Let q be a prime ideal of F outside pl. For a test object (X, A, C, ngi)d, w) of level T'y(q), we can
construct canonically its image under g-isogeny:

(X, K, C, %Y, w) = (X' K, 7D, 7, (7))

ord
for the projection m: X — X' = X/C, where 7); = 1y - GL2(0,) for any level g-structure 74 identi-
fying 7q(X’) with OF. Then Then we have a linear operator [q] : V(T'1(I"9); B) — V (To(q*N); B)
given by f|[q](X) = f([q](X)). See [HO4, (4.14)] for the description of this operator in terms of the
lattice of X.
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If g splits into Q9 in M/F, choosing 14 induced by
X(A)[g*] = Mg /Raq x Mg/Rg = Fy/Oq X Fyq/Oq,

we always have a canonical level g-structure on X (A) dependent on the choice of the factor Q. Then
[q](X(A)) = X(A[Q]™!) for [Q] € Clo. When q ramifies in M/F as q = Q2, X(A) has a subgroup
C = X(A)[Q,] isomorphic to O/q for Q,, = QN R,,; so, we can still define [q](X(A)) = X(AQ,;') =
X(A[Q]™).

The effect on the g—expansion of the operator [q] can be computed similarly to (3) (e.g. [DR80]
5.8; see also [PAF] 4.2.9), and the g—expansion of f|[q] at the cusp (a, b) is given by the g—expansion
of f at the cusp (qa, b).

These operators [q] and (3) change polarization ideals (as we will see later in [H04, §4.2]); so, they
permute components f.. By the g—expansion principle, f — f|[q] and f +— f|(3) are injective.

4. DISTRIBUTION ATTACHED TO U (I)-EIGENFORM

We recall notation and construction of a measure dyy, on Cl; for a mod p modular form f/p
such that fl[U(I) = af. If 0 # a € F, we can patch together into a measure dys on Cl_. If a = 0,
this is just a collection of infinitely many measures {dy¢ }n (see Remark 4.1).

4.1. Anti-cyclotomic measure. Choose a U(l)-eigenform f € V(T'1(1¥91); A) with a central char-
acter for a p-adic ring A in which ¢ is invertible. We suppose that f|U(l) = (a/A(I)N(l))f for either
aunit @ € A ora =0. This f is an element of V(I'y (I"9); A) defined over the non-connected Hilbert
modular Shimura variety whose geometrically connected components are indexed by the strict class
group Clf of F. Our geometrically irreducible component V' carries z(A) for A € C1% N K for
Ko := Ker(Cly, — Clp). Anyway f(z(A)) is well defined for all A € C1%9 possibly x(A) sitting in
another geometrically connected component.
Choose a Hecke character A of M such that

(f1) A has infinity type k 4+ k(1 — ¢) of conductor € which is a product of split primes over F
(k, k€ Z[%]),

(f2) Decompose € = FF. for integral ideals § and §. such that §F+ §. = R, § C F¢, the Neben
character of f as in [HO7, (S1-3)] is given by (Az., Az, ()\|FA><)| 1)

The existence of the character satisfying (f2) implies k, = k, for any two embeddings o, 7 € X; so,

hereafter, often we identify k£ with the integer k,. It might appear strange to have the absolute value

character | - |7, in the description of the central character (X|px)| - |%, of f, but when we extend
A

a geometric modular form to an automorphic form on G(A), we multiply the factor |det(g)|s as
the adelic Fourier expansion has the factor |det(g)|a in front of the Fourier expansion sum in [HMI,
(2.3.15)]; so, the central action on a geometric modular form and the adelic one has this discrepancy.
See [HMI, §2.3.2, §4.3.7] for more details on the relation of geometric Hilbert modular forms and
adelic ones. Then by (f1) and (G3'), f([A]) = A(A)~! f(z(A)) for A prime to p depends only on the
class of A in Cl; = Cl,,/Clp.

For the p-adic avatar A(z) = A(xR)x];+'{(17c), we also have f([A]) = A(A)~Lf(z(A)). This new
definition is valid even for A with non-trivial common factor with p. Then often we regard f as a
function of C(>) = | |, C,, (embedded into S}, or Ig/s by A z(A)).

Writing X(A)/C = X(A) for C # X(A)[l,] for R,-proper ideal A prime to [, 2 is a proper
R, t1-ideal such that [(R,2) = A. Since there are N(I) proper R, 41-ideal such that [(R,) = A if
n > 0, we have

(a/AN()AA)F([A]) = (@/AN (D)) f(2(A) = [IUO@(A) = NO > fla()

WA(R, A)=A
N @) Y A PP N S AR i 0.
WA(R, A)=A WA(R, A)=A

Since f([2]) only depends on the class of Cl,, ;, this implies
(1) a- f([An) = Z[B]nﬂ:cz;Hs[B]nﬂH[A]n f([Bln+1),

(2) SITOAn) = AN Xy, ez, Bl Al L (Blngr)-

n
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We can rewrite the above relation (1) as

(4.1) a- f([Al) = > f([Blnt1) ifn>0.

nt1:Bln
[Blnt1€CL i [Blny1—A

More generally as seen in [H04, (3.8)], we get, for integers n > m > 1,

(4.2) > f(B]n) = a™ " f([Alm),

[BleCl;,, [Bln—[A]lm€Cl,

where A runs over all elements in Cl; which project down to ™" € Cl . The second relation
(2) can be written

(C1) AUOAL) = A~ F([Blasr) 3 ([ Ansr) = F(Blos) Tor any [Blrr with [RuBl, = [A].,
(C2) FIUW)([Al) = ANO™ Y o immetay, J(Blosm):

n+m"*

For each function ¢ : Cl_ — A factoring through CI, assuming a € A, we define

(4.3) ¢dpp=a™" Y $(ATH)f([A)).

=
Cloe AeCl,

Then for n > m > 1, assuming a € A*, we find

a3 GAT[AD=a YT e@ e YT f([A]

AeCl;, AeCly, AeCl, , A=A

G 3T g ham AU ()" () = (@)dos (@)-

AeCly, Cloe

Thus ¢ gives an A-valued distribution on ClZ, well defined independently of the choice of m for
which ¢ factors through CI ., because U (") = U(I)™.

Remark 4.1. The assumption that a € A* is not essential. If a =0, we just define for each finite
n and a function ¢ : Cl, — A

(4.4) /C oder= 30 (A

AeCl,

without dividing by a. Though we lose the distribution relation (4.4) above, we have well defined
value fCl; pdypy dependent on n. Changing oo by n, all the formulas independent of the distribution
relation holds even when a = 0. So hereafter we allow the case where a = 0, and as a convention,
we use n in place of co. If a € A, we can replace n by co since fCl;, = fcz; as long as the integral
factors through Cl, . Thus if a =0, by (4.1), fCl; ¢dpy # 0 happens for a unique n > 0. This n is
a manimal n for which ¢ factors through Cl. . To write formulas uniform, we define a=1 ifa =0

and a=a ifa # 0 in F.

Classical modular forms can be defined over the integer ring of a number field; so, we assume that
f is defined over a discrete valuation ring V (of residual characteristic p) in a number field E. We
assume that F is the smallest field containing M’ for the reflex (M’,%’) of (M, X) and the values
A() for all M-fractional ideals 2. We write P|p for the prime ideal of the p-integral closure V of
V in Q corresponding to i, : Q — @p. More generally, if f = 6%g for a classical modular form ¢
integral over V, the value f([A]) is algebraic, abelian over M’ and P-integral over V by a result of
Shimura and Katz (see [EAI, §8.1.1] and [K78]).

Let f = 0%g for ¢ € Gi(To(l); V). Suppose flU(I) = (a/NON(I))f for a giving a unit of
9/73. For the moment, let ¢ be the measure associated to f with values in A = V. We have a
well defined measure ¢ mod P. Let Ey be the field of rationality of z(A) for all [A] € C1%9 over
Elpss]. Then Ef/E is an abelian extension unramified outside ¢, and we have the Frobenius element
op € Gal(Ey/E) (that is, the image of b under the Artin reciprocity map) for each ideal b of E
prime to ¢. By Shimura’s reciprocity law ([ACM] 26.8), writing (M’,¥’) for the reflex CM type of
(M, ), we find for o = oy, z(A)° = z(N(b)"> A) for the norm N : E — M'. As for nort(A), we

find o 0 79" (A) = ung™* for u € Ry . Since A, = Ry, we have X(R)[p™] = X (A)[p>] as a Galois
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module. Thus we conclude u = 9 (b) for the Hecke character ¢ of E /E™ giving rise to the zeta
function of X (R). From this, we see f([A])° = f([N(6)~> A]) for any ideal b, since ¢¥p(b) € M
generates the ideal N'(b6)%" ¢ M ([ACM] Sections 13 and 19) and hence ¢ (b)F+#(1=¢) = \(N(b)Z").
We then have

(4.5) o ([ otros@) = [ oo a)dpsta)

Cl, Cl,,
where N(b) is the norm of b over M’. Writing Fy for ¢ := p™ for the residue field of E NP, any
modular form defined over I, is a reduction modulo P of a classical modular form defined over V
of sufficiently high weight. Since ¢* € M’ for ¢ € M as the reflex of ¥/ is a sub-CM-type of X,
we have F; C Fq. Thus the above identity is valid for ¢ = ®° (s € Z) for the Frobenius element
® € Gal(F/F,). In this case, N(b) is a power of a prime ideal p|p in M’.

We now assume that A = F = V/P and regard the measure ¢ ¢ as having values in F. Then (4.5)
shows that if ¢ is a character x of Cl;; with arbitrary n > 0, for o € Gal(F/F,),

(1.6) [ x@desta) =0 = [ goxt@ios) =0

Cly Cly
Let Fg[pe] be the finite subfield of F generated by all ~th roots of unity over Fy; so, it is the field
of rationality of A\, f and py over the residue field of M’ NP.

4.2. Measure projected to I' and I',,. Recall I',, which is the image of I" in CI_. Since each
fractional R-ideal 2 prime to [ defines a class [2] in Cl , we can embed the ideal group of fractional
ideals prime to [ into Cl. We write C%9 for its image. Thus the projection of [Q] in CI is [Q],
as specified for the integral ideal Q above. Then A% = A~ N C% is generated by prime ideals
of M ramified over F. We choose a complete representative set for A9 made of product of prime
ideals in M ramified over F' prime to pl. We may choose this set as {R~!|t € R}, where R is made
of square-free product of primes non-principal outside [ in F' ramifying in M/F, and R is a unique
ideal in M with 82 = r. Note that {9|t € R} is a complete representative set for 2-torsion elements
in the quotient Clj .

In [HO4] and [HO7], we used Cl,, in place of Cl; so, we had to choose a complete representative
set S of the image Clr of Clp in Cl,,, which is not necessary. Indeed, since f([A]) = f([s.A]) for an
O-ideal s by our choice of A, we have hf([A]) = >, s f([sA]) for h := |Clp|, and if we make our
choice of A, this implies the triviality of the measure if p|h. To avoid this, we do not sum over S.
We fix a character ¢ : A= — F* | and define

(4.7) Fo =Y X () S]]

t€ER
In [HO4] and [HO7], fy is defined by

> TR (Z 1/)/\1(5)fl<5>> [¢],
t€R s€S
and we do not follow this definition.

Choose a complete representative set Q for ClZ /TA® made of primes Q of M split over F
outside pl except for the trivial element R representing 1 € CIZ /TA9, Thus q := Nuyyr(Q) is a
prime ideal of O if Q # R (and q = O if Q = R). We choose 777(110) out of the base (wy,ws) of R,
so that at q = QN F, w1 4 = (1,0) € Rq X Rqe = Rq and wy q = (0,1) € Rgq X Rge = Ry. Since
all operators (s), [q] and [v] commute with U([), fy|[q] is still an eigenform of U([) with the same
eigenvalue as f. Thus in particular, we have a measure ¢y, q- We then define another measure <p}/3
on I' by

(4.8) /F ¢do} = MpHQ) /F A1y, |1q);

Q€Q

where ¢|Q(y) = ¢(y[Q]r) for the projection [Q]r in T of the class [Q] € Cl,. As already remarked,
¢ — ¢|Q is a transcendental action unless Q = R. If Q = R, ¢|Q = ¢ and f|[q] = f.
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Lemma 4.2. If x: 'y, = F* and ¢ : A= — F* are characters, we have

/ xdel = / xYdey.
r Cly,

n

Here recall the image I'y, of ' in C1 .
Proof. For a proper R,—ideal A, by the above definition of these operators,

FIell[al (A = A(A) ™ f=(Q7 R A)).

Since x =1 on A~ we have

/F xdel = Y (xTTHQR) D X (A al ([A])

" NEQTER Ael,
= 3 w@ RSN A = [ vy,
A,Q.¢ Cln
because Cl; = | g [Q "R T. O

We write Fq := Fy[¢)] C F for the field of rationality of ¢ over F,. Then o € Gal(F/Fq) preserves
dw}/ﬂ Then (4.6) shows that if x is a character of T', for o € Gal(F/Fq),

(4.9) /Fn X(x)d(p}zf(x) =0 < /Fn oo X(x)d(p}zf(x) =0.

4.3. Trace relation. For any finite extensions x/x’/Fq[p¢], we consider the trace map: Try /. (§) =
> ocGal(n/n) 0(§) for £ € k. Recall the image I';, of I' in Cl,. Define

(4.10) fwg([.A]) = Z V(Q) " £ (JAQY[Q]r) for the projection [Q]r € T of [Q].
Q€Q

Let x : T, — F* be a character. Suppose that Im(x) NFq[ue]™ has order ¢" and that x has order
¢”. Note that 1 <r € Z. Fix j > r, and write

(4.11) & = &, =T 1 x (Falss])
and [Ay] = [Ay]. for the image of y € I"in T',,. By (3.3), we have an isomorphism of O-modules:
(4.12) O/V 2®, by uw o(u/w?)z(Rpy;).

Note that [R,,—1.A4y], = [Ay]n—1 for all n. Recall a € F* defined in Remark 4.1. If v > j, for
d = [Fq[x] : Fqlpe]] = [Im(x) : Im(x) N Fqlue] ] = €77,

(4.13) /F Tr]Fq[X]/]Fq[X(f)”w]OX(yilx)d%);{')(x)

=LY A = 5 Y MAR(AA),

Ael Ay~ 1ed,, [Ale®,

because for an ¢—power root of unity and a finite extension x/Fq[pei], ¢ € per — pres

. 3¢ ¢ € Klpes] and Klpe] N pese = pis
414 Tl 1/l 1(C5) =
(4.14) Tl )/l 1(C7) {0 otherwise.
Thus by (4.9), we have
(4.15) > xS =0 if [ xudgs =0
[A]cd, Cln

Let F(®,[A],F) be the space of functions ¢ : ®,[A,] — F. Consider the linear form ¢, :
F(®nl[Ay],F) — F given by £,(¢) = > 4jcq, X([A])O([A][Ay]). Since the orthogonal complement

of the space spanned by {{y+ }secal(@[ue]/0) it F(Pn, F) under the pairing

(@, 0) = Y d([A[A]¢ ([A)
!

Aled,,
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is spanned by characters of order < ¢°~!. If ¢ = 1, the orthogonal complement is made of con-
stant functions on ®,,. Thus assuming that the integral (4.13) vanishes with ®,, 2 u, and that
Gal(Fq(pe]/Fq) = Gal(Q[ue]/Q), [A] — ff([.A] [A,]) is a constant function of [A] whose value is
f([Ay]), for aq = diag[l w], we have

S(AL) = D 2Bl = > f2lew/@)on)([Ayln-1) = afP([Ayln-1).
Ble®,y w  mod [
This is easy to see if we choose A, prime to [ (i.e., A, = Ry ). Hereafter exclusively the latter r
for the integer defined by
(4.16) fiese VB pe]™ = prer.

5. PROOF OF THEOREM 0.1

Write @m sz, for the formal completion over Z, at the origin of G, (F¢). Let Hom(I', j1¢~) embed
into GZl/Zz and @Zm/zg by choosing a basis (71, ...,74) of ' over Z; and sending x € Hom(T', pip=)

to (x(71),---,x(7a)). A subset S of Hom(T, g ) therefore has its Zariski closure S (resp. §) in
G2 (Qy) (resp. G%,(Qy)). Since Aut(GZ,) = GL4(Zy), the isomorphism class of S is independent of
the choice of the basis. As we will see later for our choice of S that dimS = dim S, and hence S

being a proper Zariski closed set is independent of the choice of basis.
Fix a character v : A — F*. Let

X =Xy = {x € Hom(T, ,ugao)|/ Xx¥dpy # 0 for some n}.
Cln

If a = 0, as seen in Remark 4.1, fcz; x¥dey # 0 for one value n; in other words, for n given by
cond(x) = I", the integral is not defined over Cl,s for n’ < n and the integral vanishes for n’ > n.
On the contrary, if a # 0, the vanishing (and non-vanishing) of the integral is independent of n as
long as it is well defined.

Assume the following condition:

(5.1) The Zariski closure Xy in G2 (Q,) of the set Xy has dimension < d,
and we are going to deduce absurdity.

5.1. Proof. We prepare a lemma. Let C; be the f-adic completion of Q,. Let W be a discrete
valuation ring finite over the Witt vector ring W(Fg) inside (Cg for an algebraic closure F, of Fy, and
write K for its quotient field. For a formal subscheme X of G, /w, we write X (Cy) := X (W) for
the integral closure W of W in C;. The map ¢ +— ¢*» is an automorphism of . for z,, € (Z/{"Z)*.
Take a sequence of z, € Z lifting z,, and assuming {2, } converges to z € Z,. Then ( — t*~ gives
rise to an automorphism z € Z;* of jig~. In this way, f-adic unit z acts on pio. If 2 € QN Z, prime
to ¢, this automorphism of uf. extends to an isogeny t — t* of G%,. If we identify e = Q/Zy,
t — t* turns into a multiplication 7 — 27 by z on Q¢/Z,. In the following lemma, we take z = p™
for m € Z and a prime p # £.

Lemma 5.1. Let p and { be distinct primes and v > 0 be an integer. Let X be a subset of ud.. and
X be the Zariski closure of X in G (Qy) for d > 1. Suppose that X is a subscheme stable under
t — t?"" for alln € 7 and a fized v > 0 (this means X’ c X). Assume dim X < d. Identify
pdo (Qy) with (Q¢/Ze)¢ as (~divisible groups. Then, for a given d-tuple (a1, ...,aq) of non-negative
integers, we can find a sufficiently large p"—power P = p? with an r-multiple j = rj’ and a positive
integer N such that there exists a sequence of subsets {Y,}°° \ outside X(Q,) such that

T, — {(Pklel Pkae,

d d
e b ) mod Zg’(ki)ez}

if we choose a base {e;} of Z$ suitably.

Proof. We choose the p"-power P so that P = 1 mod £. Let I'p = P% C Z[, which is an open
subgroup of 1 + (Z,. Let X[(>°] := X(Q,) N p%e (Q,). Since X’ < X, we have X[(=]P" C X[¢>];
s0, the Zariski closure of X[¢>] is stable under ¢ — t* . We may replace X by the Zariski closure of
X[¢°°] as the lemma only concerns about X (Q,) N ud. (Q,), and after the replacement, the stability
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X" © X is intact. If X(Qp) N pdo(Qy) is a finite set, the assertion plainly follows; so, we may
assume that X' (Q,) N ué. (Q,) is infinite. Since X is noetherian, we may also assume that dim X' > 0
as otherwise, X'(Q,) is finite.

The variety X is defined over a finite extension K of Frac(W (F)). Write W be the (-adic integer
ring of K with maximal ideal mw. Let X sw be the schematic closure of X /K in G4 "W Writing
Gm/w = Epec(R) for R = W[ty, 174 .. ta, 1] aid X = Spec((R ®@w K)/a) with an ideal a of
R @w K, X jw = Spec(R/2) for A :=an R. Thus X /w is flat over W. Let

m=mw + (t1 — 1,...,tg— 1) C Wty t7 ", ... ta, ;"]

and A be the m-adic closure of a in R = WI([Ty,...,Tq]] = lim R/m™ with T; = t; — 1. We write
M for m-adic completionAof an R-module M and gr(M) = @;, m"M/m"**M (the graded module
over gr(R)). Note that G% yw = Spf (R) is the formal completion of G¢, sw along the identity of
@m /7, Define X := Spf (A) for A :=W|[[Ty o T4)l/ 2, which is a formal subscheme of @Zl Jw over
W. Since A = R/A®@r W([[T1,...,T,]] = R/, X is a flat over W. Since dim(A) = dimgr(A4) =
dimgr(R/2A) = dim(R/Q{) (e.g [CRT Theorem 15.7]), we find dim X = dim X < d.

Since X (Qy) N pd-(Qy) ;é 0) and pde xw Fy has only one geometric point, we see X(W[,ugao])

X(Qp) N pde (Qy). Since X" C X, we still have X" C X inside G¢ myw- Lhus X is stable under

an open subgroup U of 1 + ¢Z,. Here an element s € 1 + ¢Z, acts on Ggl by t — t°. Since X
is noetherian, it has finitely many geometrically irreducible components, and U permutes them.
Thus replacing U by its open subgroup, we may assume that U fix each geometrically irreducible
component. By extending scalars, we may assume that each geometrically irreducible component is
defined over W. Then by Lemma 5.5 below, X = Ucezi ¢Z¢,i» where 7¢; is a formal subtorus of

G4 myw and Z is a finite subset of pde (W peee]).

We first assume that Z = {1}. By this assumption, X' is a union of subtori {7; };c; with |J| <00
and dim7; < d. Thus we have its (-adic Tate module T'7; = lim T[("] C T := Tpd.. Put TX :=
U, T7; We identify ud, = ¢-"T/T = T/{"T; so, ple = QgT/T. In particular, X[¢"] = X N ud,
is the image of | J, Q/T7; in pd, = £7"T/T. Then we can choose a base {e1,...,e,} of T over Z;
outside TX SO that Zse N TX = {0} for e = €1 + €2 + -+ -+ e4. Then the f-adic distance from the
Q¢-span QgTX U; Q¢T'T; to the point 4 is larger than or equal to cf™ for a positive constant c
independent of n. Thus we can find suﬁimently large power P of p" (¢—adically very close to 1) so
that U, =I'p s+ + Dppids for I'p = P%¢ gives rise to an open neighborhood of % disjoint
from QgT)/(\. Then the image T,, of U, in ,uex, is disjoint from X[éoo] and hence from X for alln > 1.

When Z # {1}, we consider the subgroup (Z) of ul.. generated by Z. The group (Z) is finite.
Consider the projection 7 : éﬁl — éﬁl /{Z). The image of w()/(\ ) under 7 is a union of formal subtori
and hence stable under scalar multiplication by elements in Z,. Using the result proven under the
condition Z = {1} applied to 7(X), we write Y! for the sets constructed for m(ude) = pe /{Z).
Then we find that for n > N any I'4-orbit of an element in the pull-back image T,, := 7~ 1(Y})
gives a desired set T, C pud (Qy). This finishes the proof. O

Choose a Zg-basis 71,...,7q for d = rankz, I'. Then identify Hom(T, jue=) with pde by x —
(x(71), -+, X(7a2)) € ple € GZ,. Here is a more accurate version of Theorem 0.1.

Theorem 5.2. Suppose that for a given class v € (O/V)* with a sufficiently large j > r > 0 for
r as in Theorem 0.1 and a cusp (a,b), there exists £ € ab N —v such that a(€, fy) # 0 in F. Then
the set of characters x € Hom(T', ppoe) with v(x) = v and non-vanishing fCln Yxder #0 forn >0
given by cond(x) = " is Zariski dense in G¢ (Q,). If rankz, I' = 1, we can take j = r for r as in
(4.16).
Though the minimal possible r depends on [, the assumption in the theorem is in appearance
weaker than
(h) There exists a strict ideal class ¢ of F' such that ¢(Q 'R 1s) is in ¢ for some (Q,%R,s) €
Q x 8§ x R and for any given integer j > r > 0, the N(I)7 modular forms fy | () for
u € [79/0 are linearly independent,
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which is assumed in [H04, Theorem 3.3].
Proof. Let
X = {x € Hom(T =) = G2, | [ xdof 20 and () = v}
r

and X (resp. X) be the formal Zariski (resp. Zariski) closure of X in @Zl /w (resp. G%)). Note that

EP C X and XF C X. Suppose X is a proper Zariski closed subset of G%, and get a contradiction.

First suppose d = 1. Then X is a finite set. Take j := 7 in (4.11) and (4.12). So there exists B > 0
such that if the conductor of a character x is [ with n > B, by (4.15), identifying ®,, = O/(lO\)"
as in (4.12) by z(A,) = o(u/l")x(Rytr) < O/ (100",

/dewjg»: o XARlelu/w)([AA)) = Y ¢ fRlolu/e)([AA]) = 0.

[Aled, u  mod [¥

Here [A,] is any element in I',,. Let Z,, = {z([A])|[A] € '} and E:= | |, 5 E, N V. Then Z is
associated to an infinite arithmetic progression of difference m (for minimal exponent [ is generated
by Nar/r(R)).

Since x|s, : O/I¥ — F* is an arbitrary character of order ¢", we may fix a character x,(u) =
for v € (O/1")* independent of n > B as an additive character of O/I". Writing

(5.2) go =Y xo(u)fylou/mt),

ueO /v

we find Y750 7 (Q)g0|[a]([A][Q]r) = 0 for all [A] € Z. By Corollary 2.11, Z is Zariski dense in
V = V<, and hence we conclude g,|[q] = 0. Since the g-expansion of a modular form h|[g] at (a, b)
is given by the g-expansion of h at (qa, b); so, by g-expansion principle, g,|[q] =0 < ¢, = 0 (e.g.,
[H10, (5.10)]). Note a(¢, gv) = N(D)"a(é, fy) as long as € = —v mod [¥. Since v is arbitrary, we can
choose v so that £ as in the theorem satisfies £ = —v mod ”; so, g, # 0, a contradiction.

We now assume d > 2. Take a base v, ...,v4 of I' of " over Z, which gives rise to an identification
Hom(T, pe=) = pde by x — (x(m1),---,x(7a)). Regard ud. C Gi/@l and apply Lemma 5.1 to

VU
T

X C GY,. Thus we have the base ey,...,eq as in Lemma 5.1 of the Tate module THom(T', pip) =
@n Hom(T', p1gn). We rewrite the corresponding basis of T as 71, ..., v4; so, the Zy-module ”yl-Z’f is
sent isomorphically onto Zse; for each i. Recall Cl = @n Cl, and Cly, = I' x A for a finite group
A. Pick the smallest integer 0 < a € Z so that Ker(Clo, — Cl,) C I. Choose aq,- - ,aq so that
IL ”yfaﬁnz’f = Ker(Cly — Clgyy) for n > 0. Let P = p? with j > r as in Lemma 5.1.

Suppose [™ is principal generated by @ = p° for ¢ € R. Then T = | J,» 5 T is disjoint from
X by Lemma 5.1 for some positive integer N. Put Zqim = {2(A)|A € Ker(Cloyim — Cla)},
replacing m by a positive multiple so that m > N — a. Define an infinite arithmetic progression
n:={a+im|i =1,2,...}. Then T, ,, acts transitively on =, and by Theorem 2.6 and the proof of

[HO4, Proposition 2.8], = embedded in V< by A — x([A]) := (2([A][Q]r))aeco is Zariski dense.
For each x € T,

2@ D (A (A7) =0
Q Aeyx =t ()
holds by (4.15) (see also [H04, page 770]) for A with x([A]) € E,,.

dentify again @, = Oy/(I07. Let g, i= o0 Xo()fulelu/m)) for x,(w) = ¢ for
Tr := Tro,/z,. Then

(5:3) DY@ Y gullal((Al[Q)r) =0 for x([A4]) € E.
Q

Acd,

By Zariski density of Z in V¥, we conclude g,|[q] = 0. Since [q] € Aut(Sh(®)), we conclude g, = 0.
For a chosen class v € (O/VV), we find £ such that £ € —v and a(&, fy) # 0 < a(, gv) # 0, and
from this we conclude contradiction against a(§, fy) # 0. O

Here is an obvious corollary of the proof of Theorem 5.2:
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Corollary 5.3. Let the notation be as in Theorem 5.2. Suppose d = 1 and a(§, fy) # 0 for
some & € —v for a given v € (O/WV)*. For a character x € Hom(T, py=(F)), define n(x) by
Ker(x) = Ker(I' = Cly,(y)). Define a subset of Z by

ny = {0000 = v and [ wder =0,
n(x)

Then n, cannot contain any infinite arithmetic progression.

We can interpret heuristically the above corollary into a natural density O result. Let

n={0<ng<ni<ng<---<n;<---}
be an infinite sequence of integers. We define the density of n by
n; <
D@ e 1 1 <l

Consider the function ¢ = ¢,, : j +— n; defined on the set of natural numbers N := {n € Z|n > 0}.
We study D(n) in terms of ¢. Suppose

(E) n does not contain any arithmetic progression.
Let A¢(x) = ¢(x + 1) — ¢(z). Suppose that A¢(z) is bounded by an integer B > 0. Then the
map Z 3> x — ¢(x) mod B has a fiber F over a € [0, B) N Z with infinitely many element by the
pigeon hole principle. Arrange the set F’ := {m|a +mB € F} in increasing order, if F’ contains an
additive subgroup, then n contains an arithmetic progression, a contradiction to (E). Thus A¢(x)
is unbounded. Therefore lim,_,o ¢(z)/Bx = oo for all B > 0, and we have |[A¢(x)| < B for x > 0.

This implies D(n) = 0 if n does not contains arithmetic progression. Thus it is perhaps reasonable
to expect

Conjecture 5.4. Let the notation and the assumption be as in Corollary 5.3. Then D(n,) = 0.

5.2. A rigidity lemma. We study formal subschemes of G = @Z W stable under the action of

t — t* for all z in an open subgroup U of Z,. We recall with a proof the following result used in
the proof of Theorem 0.1 from [H14, Lemma 4.1]:

Lemma 5.5. Let K be a finite extension of Frac(W (F,)) and W be the integral closure of W (F,) in
K. Let T = Spf(7T) be a closed formal subscheme of G = GZ/W flat geometrically irreducible over
W (i.e., TNQ, = W). Suppose there exists an open subgroup U of 7, such that T is stable under

the action G >t — t* € G for allu € U. If T contains a Zariski dense subset Q0 C T(Cy) N g (Cy),
then we have w € Q and a formal subtorus T such that T = Tw.

A similar assertion is not valid for a formal group @fn /1c = Spec(K[[T, T"]]) over a characteristic
0 field K. Writingt =1+ T and ¢/ = 1 + T’ for multiplicative variables, the formal subscheme Z
defined by #°%(t') = 1 is not a formal torus, but it is stable under (¢,#) — (t™,t'™) for any m € Z.
See [C02, Remark 6.6.1 (iv)] for an optimal expected form of the assertion similar to the above
lemma.

Proof. Let T, be the singular locus of the associated scheme T°" = Spec(7) over W, and put
T° = Th \ Ts. The scheme Ty is a closed formal subscheme of T" with dim7Ty < dimT as 7T is
excellent [CRT, §32]. To see this, we note, by the structure theorem of complete noetherian ring,
that 7 is finite over a power series ring W[[X1,...,X4]] C 7 for d = dimw T (cf. [CRT, §29]). The
sheaf of continuous differentials Q7 /spe(wiix,,...,x,]) is @ torsion 7-module, and T} is the support
of the formal sheaf of Q7 /spewiix,,...x,)) (Which is a closed formal subscheme of T"). The regular
locus T of T is open dense in the generic fiber T/‘"‘,’é = T*" xw K of T*". Then Q° := T°NQ is
Zariski dense in T/‘"‘,’é

In this proof, by extending scalars, we always assume that W is sufficiently large so that for ¢ € Q)
we focus on, we have ¢ € G(W) and that we have a plenty of elements of infinite order in T(W)
and in 7°(KC) N T(W), which we simply write as T°(W) := T°(K) N T(W).

Note that the stabilizer Us of ¢ € Q in U is an open subgroup of U. Indeed, if the order of ( is
equal to %, then U; = U N (1 + p°Z;). Thus making a variable change ¢ — t¢(~! (which commutes

with the action of U¢), we may assume that the identity 1 of G is in Q°.
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Let éa", Ton and T, be the rigid analytic spaces associated to T and T (in Berthelot’s sense
in [J95, §7]). We put To, = Tan \ T2, which is an open rigid analytic subspace of T,,. Then
we apply the logarithm log : Go"(C,) — Cy = Lie(é%z) sending (t;); € G"(Cy) (the f-adic
open unit ball centered at 1 = (1,1,...,1)) to (log,(t;));) € C} for the ¢-adic Iwasawa logarithm
map log, : C; — C;. Then for each smooth point z € T°(W), taking a small analytic open
neighborhood V. of z (isomorphic to an open ball in W9 for d = dimw T) in 7°(W), we may
assume that V, = G, NT°(W) for an n-dimensional open ball G, in G(W) centered at = € G(W).
Since Q° # 0, log(T°(W)) contains the origin 0 € C}. Take ¢ € Q°. Write T¢ for the Tangent space
at ¢ of T'. Then T; = W for d = dimw 7. The space T¢ @w Cy is canonically isomorphic to the
tangent space Ty of log(V;) at 0.

If dimw T = 1, there exists an infinite order element t; € T(W). We may (and will) assume that

U= (1+¢mZ) for 0 < m € Z. Then T is the (formal) Zariski closure t{ of
V= {14722 € Zo) = 61 {88772 € 2},

which is a coset of a formal subgroup Z. The group Z is the Zariski closure of {t{"*|z € Z,}; in
other words, regarding ¢} as a W-algebra homomorphism t} : 7 — C,, we have t;Z = Spf(Z2)
for Z = T/N,cy Ker(tt). Since t¥ is an infinite set, we have dimw Z > 0. From geometric
irreducibility and dimw 7" = 1, we conclude T' = t1Z and Z = @m. Since T' contains roots of unity
( € QC ppe(W), we confirm that 7' = ¢Z for ( € QN pul,, for m’ > 0. Replacing t; by t{"
for m as above if necessary, we have the translation Z, 3 s — (t] € Z of one parameter subgroup
Z¢ > s — t5. Thus we have log(t1) = %ﬂszo € T¢, which is sent by “log : G — C}” to log(t1) € Tp.
This implies that log(t1) € Ty and hence log(t1) € T¢ for any ¢ € Q° (under the identification of the
tangent space at any x € G with Lie(é)). Therefore T¢’s over ¢ € Q2° can be identified canonically.
This is natural as Z is a formal torus, and the tangent bundle on Z is constant, giving Lie(Z).

Suppose that d = dimw T > 1. Consider the Zariski closure Y of tV for an infinite order element
t € Ve (for ¢ € Q°). Since U permutes finitely many geometrically irreducible components, each
component of Y is stable under an open subgroup of U. Therefore Y = (J('7¢ is a union of
formal subtori 7¢/ of dimension < 1, where ¢’ runs over a finite set inside pjs (C¢) N T(Cy). Since
dimw Y = 1, we can pick 7¢ of dimension 1 which we denote simply by 7. Then 7 contains ¢t* for
some u € U. Applying the argument in the case of dimw T' = 1 to 7, we find ulog(t) = log(t*) € T¢;
s0, log(t) € T¢ for any ¢ € Q° and ¢t € V. Summarizing our argument, we have found

(t) The Zariski closure of tV in T for an element ¢ € V; of infinite order contains a coset 7~ of

one dimensional subtorus 7, §EM/ =1 and tEM/ € T for some m' > 0;
(D) Under the notation as above, we have log(t) € T, for all ¢ € Q°.

Moreover, the image V¢ of V in G /T is isomorphic to (d — 1)-dimensional open ball. If d > 1,
therefore, we can find 7 € V¢ of infinite order. Pulling back ¥ to t’ € V¢, we find log(t), log(t') € T¢,
and log(t) and log(t') are linearly independent in T¢. Inductively arguing this way, we find infinite
order elements t1,...,tq in V¢ such that log(t;) span over the quotient field K of W the tangent
space T¢ /g = Te @w K — Tp (for any ¢ € Q°). We identify Ty x C Tp with T¢/x C Tp. Thus the
tangent bundle over T/O,C is constant as it is constant over the Zariski dense subset 2°. Therefore T
is close to an open dense subscheme of a coset of a formal subgroup. We pin-down this fact.

Take t; € V; as above (i = 1,2,. .., d) which give rise to a basis {09; = log(t;) }; of the tangent space
of Te ) = Th/k. Note that ¢j* € T' and u0; = log(t}') = ulog(t;) € T1/x for u € U. The embedding
log: Ve = T1 C Lie(é sw) is surjective onto a open neighborhood of 0 € T1 (by extending scalars
if necessary). For t € V,, if we choose ¢ closer to ¢, log(t) getting closer to 0. Thus by replacing
t1,...,tq inside V¢ to elements in V; closer to ¢, we may assume that log(t;) & log(t;) for all ¢ # j
is in log(V¢).

So, for each pair ¢ # j, we can find t,1; € V¢ such that log(tl-tj-ﬂ) = log(t;) & log(t;) = log(ti+;).

~

The element log(t;+;) is uniquely determined in log(Gen(Cr)) = Gan(Cr)/ptps (Cp). Thus we con-
clude ¢/, jtitj-ﬂ = tix; for some (], ; € pyy for sufficiently large N. Replacing T' by its image under
the ¢-power isogeny Gt t" € G and t; by th, we may assume that tl-tj-ﬂ = tj+; all in
T. Since tY C T, by (t), for a sufficiently large m’ € Z, we find a one dimensional subtorus H;
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containing th/ such that Qﬁl C T with some (; € py,,, for all i. Thus again replacing T’ by the

image of the ¢-power isogeny G>ote tEM/ € é, we may assume that the subgroup H (Zariski)
topologically generated by ¢y, ...,tq is contained in T'. Since {log(t;)}: is linearly independent, we
conclude dimwy H >d = dunw T and hence T must be the formal subgroup H of G. Since T is
geometrically irreducible, H =T is a formal subtorus. Pulling it back by the ¢-power isogenies we
have used, we conclude T = (H for the original T and ¢ € iy (W). Since Q is Zariski dense in
T, we may assume that ¢ € . This finishes the proof. (|

5.3. Semi-group action. Though we do not need it, we add here an explicit determination of the
action of a,, and a;,! on the point z(A) defined in [HO4 §2.1]. More generally we consider a pair
(L,n : 0% = L) of an O-lattice L of M and an O-linear isomorphism 7 : (Flgooo))2 ~ I ®o Flépoo)
with n((O(p)) ) = L™ . We suppose that L, = R,. We define Lg = Im(n o 9(52)) N M and
(L,n)g := (Lg,n o g). The pair gives rise to a point z(L) € Sh(p)

Choose a prime element oy of Oy and if [ ramifies in R, we suppose that By = O+ /@ O;. Recall
R, = O+ ["R. If £ is odd or £ dose not split in R, we write Ry = O + 00 so that § = |/ if
[ ramifies in R and § = v/d for d € O/ if [ is unramified (d = §? is square if [ = ££¢ splits and
d=(6,-0) € Re X Rge = Ry). If £ =2 and ¢ splits in R, we define R{ = {z € Ri|z = 2° mod 2}
and we start with this order, which has basis 1 and (1, —1) € O; x Oy = R(. We note in this case
Ry = R N[, Rq for primes q in O, and we put § = (1, —1) € Ry ¢ (so,we start with non-maximal
order R;). Then we put aq = (§ 5, ) € GL2(O1). We often regard a; € G(A) so that its component
at a prime g # [ is equal to 1. We simply write R,, for the pair (R,,n,) with n,(a,b) = a + @b at
[ and outside [, we choose the basis given in [H04, page 741] and define 7 accordingly.

Then we put o' (2(R,,)) = #(R,ai") under the action defined above. This action depends only
on local component at [. As seen in [H04, page 760], we have

(5.4) a(z(Ry)) = 2(Rnt1) and o) Y(z(R,)) = 2(R,—1) if n > 0.
Note
—nl] _ 1 — wie !
o " [5] = |:w;"6:| =w 5[ 4 }

at [, we need to change the original 7, to 7], given by 7/, (a,b) = w; "6 *(awfé ' + b) at [ and
outside [, the choice is the same as 7,. The lattice will change as follows

(unr) Ry [T"R, ; with Ry = R if [ remains prime or [ is odd and split in R;

(ram) Ry~ [T"LR,, ( with Ry = R if [= £2 in R;

(3p2) Ro,i— "™ Ry with Ro = Ry if |2 and [ splits in R.
Denote 2/ (A) = (A, n,,) with A equal to the ideal as in (unr), (ram) and (sp2). Since

ol — {fractional projective R,-ideals}

3

{principal R, -ideals}
we may allow R,-ideals not prime to [. For an R,-fractional ideal A prime to [, we denote A,, (resp.
A;,) by the R,-fractional ideal A, (resp. A,) with A, 1 = R, 1 (resp. A} | given as in (unr), (ram)
and (sp2)), and outside [, it is equal to the given A. We have the following effect of af* on the points
z(Ay) and ' (A});
(+) af"(z(An)
(0) of"(z'(A
(=) a"(«'(A

6. A KEY STEP IN THE PROOF OF ANTICYCLOTOMIC MAIN CONJECTURE IN [HOG6]

) = 2(Anim) and af "(2'(A})) = 2" (A, L,,) if n >0 and m > 0;
) = (Am—n) and o " (2(An)) = 2'(Aj, ) if m > m;
) =2'(A,_,,) and a; " (z(Ayn)) = 2(An_m) if n > m.

/
n
!/
n

A key step towards the proof of the anticyclotomic main conjecture is the following divisibility in
the introduction of [HO6]:

(L) (R(M)/h(F))Ly, (™) H (™ )in W[[Ty]].

Here h(M) (resp. h(F)) is the class number of M (resp. F), and I'js is the Galois group over M of
the composite of all Zy-extensions of M and I'}; is its anti-cyclotomic projection. In [HO06], H (™)
is written as H(v), though it depends essentially only on ¢~ (strictly speaking, its is defined for v
with minimal conductor giving a fixed 7). All the ingredients in the above formula are described
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in the introduction of [H06]. In particular, L, (:/~) is the anti-cyclotomic Katz p-adic L-function
with branch character v»~, H(¢™) is a congruence power series associated to the p-adic analytic
family 0(¢)) of modular form containing the theta series of ¢ with anticyclotomic projection ¢~
(see [HO06] for precise definition). In [HO06], this is attributed to [HO7, Corollary 5.6], whose proof
relies on the stronger version [H07, Theorem 4.7] of Corollary 5.3 asserting finiteness of n, (actually
the density 0 expectation in Conjecture 5.4 is sufficient). In [HO06], this corollary was quoted as
Corollary 5.5, but it became Corollary 5.6 after publication of [HO7] one year after the publication
of [HO6]. This stronger version is still an open question. However the proof of (L) is valid intact if
the analytic density 0 result in Conjecture 5.4 holds. In any case, we can give two different proofs
of the anticyclotomic main conjecture in the following ways (without assuming any conjecture).

Here is the first on relying on the vanishing of the p-invariant of Katz p-adic L-functions [H11].
Indeed, in [HT93, Theorem I], (L) is proven under the vanishing of the p-invariant of the Katz p-adic
L functions, which was proven in [H11] 18 years later.

The second argument is a modification of the argument in [HO7]. For a Hecke character ¢ of M
of type Ay, regarding it as a character of Gal(Q/M) by class field theory, we write ¢.(0) = ¢(coc)
for complex conjugation ¢ and ¢~ = ¢/p.. Following the technique of [HT93], the following formula
was proven in [HO7, Theorem 5.5]:

(K0) L L, o)L, )

H(y~)  (h(M)/h(F))Lp ()
Here 1) is a given finite order branch character of M with conductor made of split primes of M/F
for which we want to prove (L) and ¢ is a character of order ¢-power of conductor [-power. The
numerator £ € W][['j]] interpolating Rankin product of the two CM families () and ().
The numerator of the right-hand-side of the product of the two Katz p-adic L-functions £,(¢~1¢)
and L,(y"1¢.) with branch characters ¢¥~'¢ and ¢ ~'p,, respectively. If the stronger version of
Corollary 5.3 (or Conjecture 5.4) is valid, choosing [ so that ranky, I' = 1, we can arrange the two
Katz p-adic L-functions £,(1v 1) and £,(¢p"1¢.) to be units in W[[["/]] and (L) follows. Whether
the actual Corollary 5.3 is sufficient for this argument is not clear. However there is a way-out.
We choose one more CM quadratic extension M;/F disjoint from M. For a Hecke character ¢
of X = M, M; and the composite K = MM, write § := ¢ o Ng,x as a Hecke character of K.
Adjusting the notation to the formula (K0), in [H09, Theorem 3.5] (where slightly different notation
was used), the following formula generalizing (K0) is proven:
(Kl) L — Ep(wilg)

H(Y~)  (h(M)/h(F)) Ly (7)
where £ is a branch Hecke character of M; whose conductor is an [-power for a split prime [ of
My /F, L € W[[Tp x Tpy,]] and Ep(ﬂ)\*l/\) is the Katz p-adic L-function in W{[['k]] projected to
WI[Tar % Tag]] by Nijar X Nicjar, - The formula in [HO9] is more general including the case where
the conductor of ¢ can have inert or ramified primes, and in such a case, there is an extra factor
in the denominator of the right-hand-side. By Theorem 0.1 applied to Hilbert modular Eisenstein
series for the maximal real subfield of K, one can find £ for which Ep(ﬂ)\*l/\) is a unit in W[[I'k]]
and is a unit in W[[T'ps x Ty, ]] after the projection. This shows (L) also.
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