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Abstract. The proof of [H04, Theorem 3.2], [H07, Theorem 4.3] and [EAI, Theorem 8.31] is based

on the assertion claiming that the Zariski closure in the Hilbert modular Shimura variety of an
infinite set of CM points stable under the action of a CM torus contains an irreducible component

of positive dimension with a CM point in the starting infinite set. A few years ago, Akshay
Venkatesh pointed me out that this fact might not be true for a non-noetherian pro-variety like

Shimura variety. I would like to present an argument proving this fact under an extra requirement
on the starting infinite set of CM points. Thereby the assertion of [H04, Theorem 3.3], [H07,

Theorem 4.3] and [EAI, Theorem 8.31] on non-vanishing modulo p of Hecke L-values is valid for
“Zariski dense” characters in the sense of these articles. In some special cases, non-vanishing is

claimed for except finitely many characters in these articles, which is still an open question.
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Recall from [H04] the base totally real field F with integer ring O and the CM quadratic extension
M/F with integer ring R. We fix a prime p > 2 unramified in F/Q each of whose prime factor in O
splits in M/F and a prime ideal l of O prime to p with residual characteristic `. Let Rn = O+ lnR
(the order of conductor ln) and put Cln = Pic(Rn). Since O ⊂ Rn, we have a natural map ClF :=
Pic(O) → Cln. We write Cl−n := Coker(ClF → Cln). Let Cl∞ := lim←−nCln and Cl−∞ := lim←−nCl

−
n
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under natural projections. The group of fractional R-ideals prime to l is naturally embedded into
Cl∞ whose image in Cl∞ (resp. Cl−∞) we write as Clalg ⊂ Cl∞ (resp, Calg ⊂ Cl−∞). Decompose
Cl−∞ = ∆−×Γ for the maximal finite group ∆− and Z`-free Γ. Since ClF is finite, Γ can be identified
with the torsion-free part of Cl∞, and we have a decomposition Cl∞ = Γ × ∆ with ∆ surjecting
down to ∆− under the projection Cl∞ � Cl−∞. Write d = rankZ` Γ and choose a basis γ1, . . . , γd of

Γ over Z`. Let F (resp. Q`) be an algebraic closure of Fp (resp. Q`). We identify µ`∞(F) = µ`∞(Q`)
as an `-divisible group, and write it just as µ`∞ .

For each projective fractional Rn-ideal A, we defined in [H04, §2.1 and §3.1] a CM abelian variety
X(A) of ordinary CM type Σ and the associated CM point x(A) = xΣ(A) of the Shimura variety
Sh for G = ResF/QGL(2), which only depends on the ideal A and a chosen p-ordinary CM type
Σ. Choose suitably an irreducible component V of the Shimura variety of prime-to-p level defined
over an algebraic closure F = Fp of Fp. We just fix a finite extension W of W (F) inside Cp and put

W =Wp = W ∩Q for the algebraic closure Q ⊂ Cp. We embed Q into C. We take a U(l)-eigenform

g/W and put f = θκf for the Ramanujan differential operator θκ given by
∏
σ

(
qσ

dσ
dqσ

)κσ
with

κσ ≥ 0 for the q-expansion variables qσ = exp(2πizσ). We use the same symbol f also for f/F := f
mod mW defined over F.

Write Γn for the image of Γ in Cl−n (for small n, it can be just {1}). We fix a character ψ : ∆− →
F× to project the measure originally defined on Cl−n to Γn (see Lemma 4.2 in the text). To define
the measure, we need to replace f(x(A)) by f([A]) := λ−1(A)f(x(A)) choosing a Hecke character of
infinity type kΣ + κ(1− c) and of conductor C prime to p` so that f([A]) only depends on the class
[A] ∈ Cl−n for all n (see §4.1 for more details of the choice of λ). This allows us to define a “measure”
dϕf = dϕf,n on the finite group Cl−n by

∫
Cl−n

φdϕf,n =
∑

[A]∈Cl−n φ([A])f([A]). If f |U(l) = af with

a 6= 0, (λ(l)N(l)a−1)ndϕf,n patches into a unique measure dϕf on Cl−∞, but if f |U(l) = 0, this is
just a collection of measures {dϕf,n}n.

Let Fq be the field of rationality of f/F, ψ and λmodulo mW , and define an integer r > 0 such that

`-Sylow subgroup of Fq[µ`]
× has order `r (i.e., µ`∞(Fq[µ`]) = µ`r (Fq[µ`]) and `r‖(q − 1)). Though

the measure is defined in the earlier papers for f with non-zero eigenvalue for U(l), in this paper
we define a measure on Cl−n for each finite n even for f with f |U(l) = 0, and the argument goes
through even for f killed by U(l). The non-vanishing of the U(l)-eigenvalue is necessary to patch
the measure on Cl−n for each n to get a measure on Cl−∞, but this patching argument is not essential
in the proof of non-vanishing results. Also if f |U(l) = 0,

∫
Cl−n

χψdϕf,n 6= 0 can happen only for

the minimal n for which the integral is well defined. To project the measure dϕf,n to Γn, we need

to modify f into a modular form fψ and further to a function fQψ :
⊔
n Cl

−
n → F which involve a

transcendental operation depending on a choice of a finite subset Q of Cl−∞/C
alg (see (4.7)) so that∫

Γn
χdϕfQ

ψ
,n =

∫
Cln

χψdϕf,n for all n and all characters χ : Γn → F×. Indeed, we embed
⊔
nCl

−
n

into the product V Q of Q-copies of V , choose an infinite subset Ξ of the disjoint union
⊔
nCl

−
n and

study the Zariski density in V Q of the embedded image Ξ ↪→ V Q.
We regard the set of continuous characters Hom(Γ, µ`∞) as a subset of Gd

m(Q`) by sending a
character χ to (χ(γ1), . . . , χ(γd)) ∈ µd`∞(Q`) ⊂ Gd

m(Q`). A subset X of Hom(Γ, µ`∞) is said to be

Zariski dense if X is Zariski dense in Gd
m over Q`. This notion of density is independent of the choice

of the basis {γj}j . Write cond(χ) for the conductor of χ which is a power of l.
Here is a new version of [H04, Theorem 3.3] and (a part of) [H07, Theorem 4.3]:

Theorem 0.1. Suppose that there exists ξ ∈ F ∩Ol in each class v ∈ (Ol/l
jOl)

× for a sufficiently
large j ≥ r (for a specific r > 0 defined in (4.16)) only dependent on l (not v) such that the
q-expansion coefficient a(ξ, fψ) 6= 0 in F at an infinity cusp of V . Then the set of characters
χ ∈ Hom(Γ, µ`∞(F)) such that

∫
Cl−n

χψdϕf,n 6= 0 for n given by cond(χ) = ln is Zariski dense in

Gd
m/Q`

. If rankZ` Γ = 1, j can be taken to be equal to r.

For the Eisenstein series g we took in [H04] and [H07], for any v ∈ O/lj and any j ≥ r, the
assumption of the theorem is satisfied except for a very rare case which satisfies conditions (M1–3)
in [H07, Theorem 4.3]. For cusp forms, things are more complicated, and Hsieh [Hs14] uses Galois
representations of the given cusp form as its traces is basically q-expansion coefficients. Of course,
one needs to assume that the root number is not −1 in addition to some extra assumptions (as the
square of the integral is the central critical values by Waldspurger).
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Geometrically irreducible components of the Shimura variety of the level group Γ0(N) are indexed
by polarization (strict) ideal classes of F . Then infinity cusps of a component V are indexed by
equivalence classes of pairs (a, b) of ideals with (ab)−1 giving a polarization ideal of V (e.g., [PAF,
§4.1.5]). The condition of the existence of ξ with a(ξ, fψ) 6= 0 does not depend on the choice of a, b.
If f |U(l) = 0,

∫
Cln

χψdϕf,n 6= 0 implies that l-conductor lν of χ is exactly ln (i.e., ν = n), while this

non-vanishing holds for all n ≥ ν once it holds for n = ν if f |U(l) = af with a 6= 0.
Here are a more technical description of our method and the reason why I take up this problem

again. First, we claimed in these papers [H04] and [H07] a stronger finiteness result of characters
of vanishing integrals when rankZ` Γ = 1 (e.g., [H04, Theorem 3.2]). As explained in §1.1, a few
years ago, Akshay Venkatesh noticed a missing point (taken to be true in [H04] and [H07]) from the
proof of [H04, Proposition 2.7]: positive dimensional irreducible components of the Zariski closure
of an infinite set Ξ of closed points in a non-noetherian variety may not contain any points in the
starting set Ξ. For the proof of the above theorem, we need a Zariski density theorem of a thin
infinite set Ξ of CM points V in the product of copies of an irreducible component of the prime-
to-p Shimura variety Sh(p). The first step we need is to show the Zariski closure X of Ξ contains
a positive dimensional irreducible component having at least one point of Ξ. This is because the
density theorems Corollary 3.19 and Theorem 3.20 of [H10] we apply to show X = V require (as
its starting hypothesis) existence of at least one positive dimensional component with non-trivial
intersection with Ξ. All the results of [H10] are valid and intact as the Zariski closure appearing
in [H10] has at the onset the base point in the positive dimensional component. Unfortunately,
under the setting of [H04] and [H07] and the present paper, the existence of a positive dimensional
component with a point in Ξ is not evident a priori. In this paper, under some extra assumptions,
we prove the existence of such positive dimensional components in Theorem 2.6, which is sufficient
for a proof of Theorem 0.1. When rankZ` Γ = 1, we obtain a slightly stronger result: Consider the
sequence of vanishing integral:

(∗) := {0 < n ∈ Z|ln is the conductor of χ with vanishing integral}.
Then, under the condition in Theorem 0.1 on non-vanishing of q-expansion coefficients of f modulo
p, this sequence contains no infinite arithmetic progressions if rankZ` Γ = 1 (see Corollary 5.3). This
perhaps means that the natural density of (∗) is zero, though we will not touch this point in this
article except for Conjecture 5.4. Since the description of Ξ is technical, we postpone it to Section 2
of the main text. Here we just say that Ξ is essentially the set of points in Sh(p) corresponding
classes in

⊔
n Cl

−
n which carries a character χ with non-vanishing integral.

Note here that V Q is a non-noetherian pro-variety, and hence the zero set of a modular form
on V is infinite (of continuous cardinality) even if dimV = 1 and |Q| = 1 as its contain the entire
fiber of the infinite étale covering V � VK of the zeros of the modular form defined over the
noetherian quotient VK . There is an example supplied by Venkatesh of a pro-curve in which any
positive dimensional irreducible component of the Zariski closure of an infinite set Ξ is disjoint from
Ξ (see §1.1). If gQ (appearing in the proof of [H04, Theorem 3.2] denoted by gv in the text: see
(5.2)) had a non-zero eigenvalue for U(l), the sequence like (∗) associated to {gQ}Q would contain
an infinite arithmetic progression (and thereby getting a contradiction). However it is easy to see
gQ|U(l) = 0; so, for the version of [H04, Theorem 3.2] and the part of [H07, Theorem 4.3] in the
case where rankZ` Γ = 1, we need to assume that n contains an infinite arithmetic progression. The
idea to reach the missing result is to show (under some extra assumptions) that powers of ( 1 0

0 $ ) for
$ ∈ NM/F (R) generating powers of lm for some 0 < m ∈ Z act on the 0-dimensional irreducible
components of X and XK and all the orbits in XK of this action are infinite. The noetherian scheme
XK cannot have infinite 0-dimensional components, and therefore, all components of X (and XK )
has positive dimension, as desired.

1. Irreducible components of Zariski closure

We study a general theory of Zariski closure in a pro-étale variety of an infinite set of close points.
We start with a pathologic example.

1.1. An example. To motivate the reader to go through this article dealing with technical topics, we
first discuss an example of an affine pro-scheme V = V∞/C étale over the affine line V0 = Spec(C[X])
such that the Zariski closure of an infinite set Ξ ⊂ V (C) does not have a single positive dimensional
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irreducible component containing a point of Ξ. The example was supplied by Akshay Venkatesh in
2018 December.

For a (finite dimensional) scheme S/k for an algebraically closed field k, we write Irr(S) for the
set of all irreducible components of S and π0(S) for the set of all connected components of a scheme
S. Put

Irrd(S) := {I ∈ Irr(S)| dim I = d}.
Thus S =

⋃
Z∈Irr(S) Z and Irr(S) =

⊔dimS
d=0 Irrd(S). Set Irr+(S) =

⊔dim S
d>0 Irrd(S). If S = Spec(A),

we write Irr(A) = Irr(Spec(A)) and π0(A) = π0(Spec(A)). The set Irr(A) is in bijection onto the
set of minimal prime ideals of A, and we identify the two sets.

Take k = C. Let Vn := V0 ×Z/2nZ and the projection Z/2mZ � Z/2nZ for m > n induces étale
morphism Vm � Vn. Let Pj := (X − j) ⊂ C[X] (0 < j ∈ Z) and regard it as a closed point j of
V0. We define V := lim←−n Vn ∼= V0 × Z2 and Ξ = {(j, 2j)∞ ∈ V |j = 1, 2, . . .}. Write (Pj , j)n for the

maximal ideal of Vn giving rise to the point (j, 2j mod 2j) ∈ Vn. Therefore (Pj, 2
j)∞ for finite j is

the maximal ideal of
⊕

Z2
C[X] non-trivial equal to Pj only at 2j -component of

⊕
Z2

C[X], and the

prime ideal (Pj, 2
j)n is Pj ⊕

⊕
i 6≡2j mod (2n) C[X]. Write

Ξn := {(j, 2j)n = (j, 2j)n ∈ Vn|j = 1, 2, . . .}
for the image of Ξ in Vn. Note that Vn = Spec(

⊕
Z/2nZ C[X]) and V = Spec(

⊕
Z2

C[X]). We have⋂
j(Pj, 2

j)∞ = ((0), 0)∞⊕
⋂

0<j∈Z
(Pj, 2

j)∞, where ((0), 0)∞ is the prime ideal of
⊕

Z2
C[X] equal to

(0) only at the 0-component of
⊕

Z2
C[X]. Thus Ξ = V0t

⊔
0<j∈Z

(Pj, 2
j)∞ ⊂ V , where V0 is inserted

as the 0-component. Thus only positive dimensional irreducible (and connected) component of the

Zariski closure Ξ in V is V0 which does not contain any points of Ξ.

If we have a transitive action of a semi-group inside Aut(V ) on Ξ, we expect to be able to
avoid such a pathologic example.

Though α : (v, z) 7→ (v + 1, 2z) acts transitively on Ξ, α is not an automorphism of V . It is an
automorphism of V0 ×Q2 which is an indo-pro-variety not a pro-variety. In the above example, we
have

Irr1(Ξn) = {(V0 × 0)|0 ∈ Z/2nZ}, Irr0(Ξn) = {(j × 2j)n|j = 1, . . . , n− 1(2j 6= 0 ∈ Z/2nZ)},
Irr1(Ξ) = {(V0 × 0)|0 ∈ Z2} and Irr0(Ξ) = {(j, 2j)∞|0 < j ∈ Z, 2j ∈ Z2}.

(1.1)

The action of any positive power of α brings some points in Irr0(Ξn) into a component in Irr1(Ξn)
(non-stability of Irr0(Ξn) under α coming from the fact that α is not an automorphism of V ). Writing

πn : V → Vn, we can consider the reduced image πn(I) ⊂ Vn for I ∈ Irr(Ξ). Let πn,∗(Irr(Ξ)) =

{πn(I)|I ∈ Irr(Ξ)} and πn,∗(Irrj(Ξ)) = {πn(I)|I ∈ Irrj(Ξ)} as sets. Then
(1.2)
π0,∗ : Irr1(Ξ)) ∼= Irr1(Ξ0)), π0,∗(Irr0(Ξ)) ⊃ Irr0(Ξn) with infinite π0,∗(Irr0(Ξ)) − Irr0(Ξn) in V0 × 0.

(ne) The image of {(j, 2j)∞ ∈ Ξ|j ≥ n} lies in the one dimensional (V0 × 0) ∈ Irr1(Ξn) and the
0-dimensional scheme (j, 2j)∞ (j ≥ n) is not étale over Vn.

If we take a 2-unit u ∈ Z and consider Ξ = {(j, uj)∞|j = 1, 2, . . .} ⊂ V , one can show that
Irr(Ξn) = {V0 × uj |uj mod 2n} and Irr(Ξ) = {V0 × x|x ∈ 〈u〉} for the subgroup 〈u〉 ⊂ Z×

2 topo-
logically generated by u. The action [1] : (j, uj) 7→ (j + 1, uj+1) extends to an automorphism
[1] : (v, z) 7→ (v + 1, uz). A similar morphism α(v, z) = (v + 1, 2z) for non-unit 2 in place of u is not
an automorphism of V .

Taking an infinite sequence of irreducible polynomialsX−aj of F[X] with distinct aj ∈ F, we can
make an example similar to (ne) also over F taking V0 := Spec(F[X]) and Ξ = {(Pj := ((X−aj), 2j)}j
with Vn = V0 × Z/2nZ. Then lim←−n Vn = V0 × Z2.

1.2. Geometry of irreducible components. We prepare some notation and geometric lemmas
to prove the theorem. After the lemmas, in the following section, we study the correspondence
action.

Let π : V/F → VK/F be an affine étale Galois covering with V = SpecOVK
(OV ) (as a relative

spectrum). Here K = Gal(V/VK ) and V = lim←−U/K VU for U running over open subgroups of K

with VU = V/U . In the following lemmas, assume that VK is noetherian (so, VU = V/U is also
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noetherian for an open subgroup U of K. Let Ξ ⊂ V(F) be an infinite set of closed points with
image ΞK in VK(F).

Lemma 1.1. Regard P ′ ∈ Ξ (resp. P ∈ ΞK) as a sheaf of OV-ideal (resp. OVK -ideal) defining the
point P ′ (resp. P ); so, for example OVK/P ∼= F(P ) = F as a skyscraper sheaf supported by P . Let
X′ (resp. X) be the Zariski closure of Ξ (resp. ΞK) in V (resp. VK ). Then

(1) X′ and X are reduced scheme, X′/X is finite if V/VK is finite.
(2) The projection πX : X′ → X is dominant inducing a surjection of F-points: X′(F) � X(F),

and X′ is unramified over X.

As described in (ne), even if Ξ ∼= ΞK by the map induced by π, π : X′ → X may not be étale.

Proof. By definition, we have X′ = Spec(OV/
⋂
P ′∈Ξ P

′) and X = Spec(OVK/
⋂
P∈ΞK

P ).

We prove the lemma first in the absolute affine case; so, we put VK = Spec(A), V = Spec(A′),
B = A/

⋂
P∈ΞK

P and B′ = A′/
⋂
P ′∈Ξ P

′. Since B′ ↪→ ∏
P ′∈Ξ A

′/P with the right-hand-side

reduced, B′ is reduced. In the same way, B is reduced.
If A′/A is étale finite, we have ΞK = {P ′ ∩ A|P ′ ∈ Ξ}; so, putting b′ :=

⋂
P ′∈Ξ P

′ and b :=
⋂
P∈ΞK

P , we have b′ ∩ A = b. Thus the induced map B
i−→ B′ is injective. If A′/A is not finite,

we can write A =
⋃
iAi with Ai/A finite étale, we still get the injectivity. Therefore the projection

Spec(B′) → Spec(B) is dominant. Pick a maximal ideal m ∈ Spec(B)(F). Then by the going-up
theorem [CRT, Theorem 9.3 (i)], we have a prime ideal p ∈ Spec(B′) with p′ ∩ B = m. Take a
maximal ideal m′ containing p′, m′∩B ⊃ m is still a proper ideal as B′/B is integral; so, m′∩B = m.
Thus B′/m′ is a finite extension of B/m = F which is algebraically closed, we conclude B/m′ = F

and m′ ∈ Spec(B′)(F); so, Spec(B′)(F)→ Spec(B)(F) is onto.
Pick m′ ∈ Spec(B′)(F) and regard it as a maximal ideal of A′. Since m′ ⊃ b′, m := m′ ∩A ⊃ b;

so, m ∈ Spec(B)(F). We have the following commutative diagram of the completions at m′ and m:

Âm
↪→−−−−→ Â′

m
�−−−−→ Â′

m′

onto

y
yonto

yonto

B̂m
im−−−−→ B̂′

m

p
m′−−−−→
�

B̂′
m′ .

Since the top row composite: Âm ↪→ Â′
m � Â′

m′ is an isomorphism (as A ↪→ A′ is étale), pm′ ◦ im is
onto. Therefore B′/B is an unramified extension and is finite if A′/A is finite. This proves (1) and
(2) in the absolute affine case.

Now we treat the general relative affine case. We cover VK =
⋃
A Spec(A) for affine open sub-

scheme Spec(A), and write A′ = π∗OV(Spec(A)). Then Spec(A′) is an open subscheme of V cov-
ering Spec(A). Then we have X′ ∩ Spec(A′) = X′ ×VK Spec(A) = Spec(B′) and X ∩ Spec(A) =
X×VK Spec(A) = Spec(B) with (A′/A,B′/B,Ξ∩Spec(A′),ΞK∩Spec(A)) satisfying the assumption
of Lemma 1.1. Since B (resp. B′) depends on A, if needed, we write B = BA and B′ = B′

A to
emphasize the dependence. By the above argument, B′ and B are reduced algebra, and B′ is an
unramified extension of B, B′/B is finite if A′/A is finite, and the projection Spec(B′) → Spec(B)
is dominant and the induced map: Spec(B′)(F) → Spec(B)(F) is surjective. Since Spec(B′) is the
pull-back to X′ of Spec(B) and X′ =

⋃
A Spec(B′

A) =
⋃
A π

−1(Spec(BA)) and X =
⋃
A Spec(BA),

the above proof in the affine case implies the assertion in the general case. �

Assume that Ξ ∼= ΞK. We have another commutative diagram:

B
↪→−−−−→ ∏

P∈ΞK
A/P

π∗
B

y o
y

B′ −−−−→
↪→

∏
P∈Ξ A

′/P ′.

The right vertical map is an isomorphism as Ξ ∼= ΞK . Thus π∗
B is injective; so, again we see that

Spec(B′)→ Spec(B) is dominant.

Lemma 1.2. Let the notation and the assumption be as in Lemma 1.1. Recall that VK is a noether-
ian scheme. Let π∗(Irr(X′)) := {π(Z′)|Z′ ∈ Irr(X′)} for the set of the reduced image π(Z′) ⊂ X.
Then we have
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(1) The image π∗(Irr(X′)) contains Irr(X),
(2) For Y ∈ Irr(X), if Y ′ ∈ Irr(π−1(Y )) is contained in X′, we have Y ′ ∈ Irr(X′), where

π−1(Y ) = Y ×VK V.
(3) If Ξ ∼= ΞK under the projection V π−→ VK , we have a unique section Irr0(X) → Irr0(X

′) of
Irr0(X

′) � Im(Irr0(X
′)) ⊂ X and Irr0(X

′) ⊂ Ξ. Moreover writing X′
U for the image of X′

in V/U for an open subgroup U of K, Irr0(X
′) = lim−→U

Irr0(X
′
U ) for U running over all open

subgroups of K.
(4) If dimZ = dimX for Z ∈ IrrdimX(X), then Z is in the image of IrrdimX′ (X′) in X. In

particular, Irrdim(X)(X
′) 6= ∅.

Proof. Again we may assume that VK = Spec(A), V = Spec(A′), X = Spec(B) and X′ = Spec(B′)
as in the proof of Lemma 1.1. Pick pY ∈ Irr(B) giving Y ∈ Irr(Spec(B)). Since B′/B is integral, we
find a prime P ′ ∈ Spec(B′) such that P ′∩B = pY by going-up theorem [CRT, Theorem 9.3 (i)]. For
each P ′ ∈ Spec(B′) with P ′ ∩B = pY (i.e., P ′ ∈ π−1(Y ) = Spec(B′/pYB′)), take a minimal prime
p′ ⊂ P ′ (i.e., p′ ∈ Irr(B′)). Then p′ ∩B is a prime ideal of B and pY ⊃ p′ ∩B; so, by minimality of
pY , we have pY = p′ ∩B. Thus pY is in the image of Irr(B′). This proves the assertion (1).

As V � VK is étale, π−1(Y ) is étale over Y ; so, equi-dimensional. Suppose that Y ′ ⊂ X′ for
Y ′ ∈ Irr(π−1(Y )). Then we find Z′ ∈ Irr(X′) such that Z′ ⊃ Y ′; so, π(Z′) ⊂ X. We are going to
show Z′ = Y ′. We have X ⊃ π(Z′) ⊃ Y . Since π(Z′) is irreducible, π(Z′) containing Y ∈ Irr(X)
implies π(Z′) = Y . Thus Z′

� Y is a integral dominant; so, dimZ′ = dimY ′ = dimY . This shows
Z = Z′ ∈ Irr(X′), as desired. Thus the assertion (2) follows.

To show the assertion (3) for Irr0, we first assume that B′/B is finite. We regard ΞK ⊂ Spec(B).

Pick m ∈ Irr0(B). Then B = B(m) ⊕ B/m for a subring B(m) ⊂ B as Spec(B/m) is a connected
component of Spec(B). Thus Irr0(B) = {Z ∈ π0(Spec(B))| dimZ = 0}. Since B′ ⊃ B, the above

decomposition induces an algebra direct sum B′ = B′(m) ⊕ B′/mB′. Since B′ is finite over B,
B′/mB′ has dimension 0. By reducedness of B′, the direct summand B′/mB′ of B′ is a direct sum
of fields. This means that π induces a surjection of the upper row of the following diagram:

π0(Spec(B′/mB′))
�−−−−→
π∗

π0(Spec(B/m)) = {m}

∩
y

Irr0(B
′)

for each m ∈ Irr0(B) ⊂ π0(B). Therefore π∗(Irr0(B′)) ⊃ Irr0(B). Pick m ∈ Irr0(B). If m 6∈ ΞK,

ΞK ⊂ Spec(B(m)) as Spec(B) = Spec(B/m) t Spec(B(m)). This implies B = A/
⋂
P∈ΞK

P is equal

to B(m), a contradiction. Thus m ∈ ΞK , and Irr0(B) ⊂ ΞK . Since Ξ ∼= ΞK , π∗ has a unique section
π∗ : Irr0(B) → Irr0(B

′). If B′/B is not finite, we can write B′ =
⋃
j Bj for B-subalgebras Bj ⊂ B′

finite over B. We may assume that the index set is totally ordered so that Bj′ ⊃ Bj if j′ > j. Let
X′
U = Spec(BU ) for an open subgroup U of K. Then BU/B is finite unramified. Then applying

the above argument to finite BU/B, we find natural inclusion Irr0(BU ) ⊂ πU ′,U,∗(Irr0(BU ′ )) for
open subgroups U ′ ⊂ U ⊂ K with a unique section π∗

U ′,U : Irr0(BU ) ↪→ Irr0(BU ′ ). In particular, the

injective limit of π∗
U ′,U gives rise to the section π∗ : Irr0(B) ↪→ Irr0(B

′) and Irr0(B
′) = lim−→U

Irr0(BU ).

This proves the assertion (3).
Now suppose that dimB/p = dimB for p ∈ Irr(B). Such p always exists as B is noetherian. Since

B′/B is integral, dimB = dimB′. Then we take p′ ∈ Spec(B′) such that p′ ∩B = p. Such a prime
exists as already remarked. Then B/p ↪→ B′/p′ and hence dimB′/p′ = dimB/p = dimB as B′/p′

is integral over B/p. Since dimB′ = dimB, we conclude p′ ∈ IrrdimB′ (B′); so, IrrdimB′(B′) 6= ∅.
This proves the assertion (4). �

Lemma 1.3. Suppose that π∗(Z′) := π(Z′) 6∈ Irr(X) for Z′ ∈ Irr(X′). Then there exists Z0 ∈ Irr(X)
such that Z0 ⊃ π∗(Z′).

Proof. Again we may assume that X = Spec(B) and X′ = Spec(B′) as in the proof of Lemma 1.1.
Write Z′ = Spec(B′/p′). By the assumption, p′ ∩ B 6∈ Irr(B); therefore p′ ∩B ) p0 for a minimal
prime ideal p0 of B. By definition, p0 ∈ Irr(B) and p′ ∩B ⊃ p0 means p′ ∩B ∈ Spec(B/p0). Thus
Z0 = Spec(B/p0) does the job. �
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Lemma 1.4. If ΞK,0 is a subset of ΞK with finite ΞK−ΞK,0, then the Zariski closure X of ΞK in VK
and that X0 of ΞK,0 share irreducible components of positive dimension (i.e., Irr+(X) = Irr+(X0)),
and Irr(X) − Irr(X0) is a finite subset of ΞK − ΞK,0.

Proof. Again we may assume that X = Spec(B) as in the proof of Lemma 1.1. Write ΞK − ΞK,0 =
{m1, . . . ,mh} for maximal ideals mi of A and put a =

⋂
imi. Then for b0 =

⋂
P∈ΞK,0

P and

b =
⋂
P∈ΞK

P , we have b = b0 ∩ a. For each i, either mi ⊃ b0 or mi + b0 = A as mi is maximal.
Thus we may assume that ΞK −ΞK,0 = {mi|mi+b0 = A}. Then a+b0 = A as |ΞK−ΞK,0| is finite.
Thus A/b = A/b0 ∩ a = A/b0 ⊕A/a, and hence X = X0 t (ΞK − ΞK,0) as desired. �

2. Zariski closure in Hilbert modular Shimura variety

Recall the CM quadratic extension M/F with its integer ring R from the introduction and their

class groups Cl∞ = lim←−nCln and Cl−∞ = lim←−n Cl
−
n , where Cln is the ring class group of Rn = O+lnR

and Cl−n = Cln/ClF . Writing [A]n for the class of a proper Rn-ideal A in Cln. Let

Clalg := {[x]∞ = lim←−
n

[xR̂n ∩M ] ∈ Cl∞|x ∈M×
A

with xl∞ = 1} ⊂ Cl∞,

where R̂n = Rn ⊗Z Ẑ with Ẑ =
∏
l Zl (cf. [H04, page 755]). By multiplication, Clalg acts on Cl∞

and Cl−∞.
Let G := ResO/ZGL(2) and Sh/Q be the Hilbert modular Shimura variety associated to G. Since

G(A(∞)) acts on Sh as automorphisms, we define the prime-to-p level Shimura variety Sh(p) by
Sh/G(Zp). The Shimura variety Sh(p) extend canonically to a smooth pro-scheme over W (e.g.

[PAF, Chapter 4]). Recall the irreducible component V = V (p) of the Shimura variety Sh
(p)

/Q
we

fixed. By smoothness, V/F := V ×W F is an irreducible component of Sh
(p)
/F

.

Let Q ⊂ Cl∞ be a finite subset independent modulo Calg; i.e., δCalg 6= δ′Calg for any pair
(δ, δ′) ∈ Q2 with δ 6= δ′. Since Clalg naturally contains ClF , for the image Q− in Cl−∞, we have
Q ∼= Q− and Q− is still independent modulo Clalg . We often identify the two set Q and Q−. For
a closed subgroup K(p) ⊂ G(A(p∞)), we put K = G(Zp) × K(p) and write VK for the image of

V in Sh
(p)
K = Sh/K. We set V/B := V Q

/B for B = Q,W,F (the product of Q copies of V ) and

VK/B := V Q
K/F

. We can embed Cln into V by [A] 7→ x(A) = x([A]) := (x([A]δ))δ∈Q ∈ V, and

write its image with Cn. Put C(∞) =
⊔
n Cn ⊂ V as abelian variety sitting over x(A) is uniquely

determined by [A]. Though the modular form f is a function on V , we normalize it by multiplying
a suitable Hecke character value later so that the normalized values at x(A) and x(A′) are identical

if [A] = [A′] in Cl−∞. Because of this normalization, we may regard f as a function on C(∞) modulo
ClF . We fix an infinite subset Ξ of C(∞). When it is necessary to indicate the level group K
for which x(A) resides in VK (or VK), we write xK(A) in place of x(A). Here K can be a closed

subgroup of GL2(F
(∞)
A ). Actually we only deal with the tower raising l-power level; so, K can be a

closed subgroup of GL2(Ol) which acts on V and V .
We fix a CM type Σ of M and write Σp for the set of p-adic places induced by the embedding in

Σ by the identification C ∼= Cp we fixed. We write X (resp. XK) for the Zariski closure of Ξ (resp.
ΞK). We recall two assumptions (unr) and (ord) in [H04, §2.1] for p in addition to Ξ ∼= ΞK under
the projection V → VK :

(ord) Σ is p–ordinary: Σp ∩ Σpc = ∅ for the generator c of Gal(M/F ).

Such a CM type Σ is called a p–ordinary CM type. The existence of a p–ordinary CM type is
equivalent to the fact that all prime factors of p in F split into a product of two distinct primes in
M . We suppose

(unr) p is unramified in F/Q.

2.1. Toric action. In this section, assuming the existence of an appropriate toric action on Ξ
induced by an infinite toric sub-semigroup T of Aut(V/F), we prove that all irreducible components
of X has positive dimension; i.e., Irr(X) = Irr+(X) (see Theorem 2.6). The Zariski closure X ⊂ V
(resp. XK ⊂ VK) of Ξ (resp. ΞK) forms a tower {X → XK}K of varieties, and the tower induces
a correspondence action on each noetherian layer XK . If we have an appropriate action of a torus
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T in G(A(p∞)) on Ξ, by Lemma 1.2, the correspondence action on lim−→K
Irr0(XK) = Irr0(X) ⊂ Ξ

coincides with the action of T. The idea of the proof is to show

(1) Irr0(XK ) 6= ∅ for sufficiently small open K if Irr0(X) 6= ∅ (by Lemma 1.2 (3));
(2) If Irr0(XK ) 6= ∅, by the action of T, Irr0(XK) has to be of infinite order, against the

noetherian property of XK .

We start with a list of conditions for proving the assertions (1)–(2) above under the correspondence
action of T. After this, we state five lemmas about the action under these conditions before starting
with supplying the missing argument/fact (stated as Theorem 2.6).

Supposing that K is an open compact subgroup of G(A(∞)), VK is noetherian. On V = V Q,
Aut(V/F) diagonally acts. Let us denote by Ξ an infinite set of CM points in V for which we would
like to prove density in V. We suppose to have a semi-group T ⊂ Aut(V/F) as in (T) below acting
on Ξ under the diagonal action. The action of T is supposed to come from the action of elements
in G(A(p∞)) on Sh(p). Since it is a semi-group action, β ∈ T embeds Ξ into Ξ; so, β(Ξ) ⊂ Ξ and
β−1(Ξ) ⊃ Ξ, where β−1 may not be in T but in Aut(V/F).

Let N := {%(u)|u ∈ Ol} for %(u) := ( 1 u
0 1 ) and B be the normalizer of N in GL2(Ol) (i.e., B is the

upper triangular Borel subgroup). We may regard N and B as group schemes over Ol; for example,
N(A) = {( 1 u

0 1 ) |u ∈ A} for an Ol-algebra A. We consider the following conditions for K:

(K) K is closed of the formK(pl)×Kp×Kl withK(pl) ⊂ GL2(F
(pl∞)
A

), GL2(Op) ⊂ Kp ⊂ GL2(Fp)

and N ⊂ Kl ⊂ Γ̂0(l),
(I) π : V � VK induces Ξ ∼= ΞK,

where F
(pl∞)
A is the adele ring of F away from pl∞, Fp = F ⊗Q Qp ⊂ FA, and

Γ̂0(l
ν) = {g ∈ GL2(Ol)|(g mod lν) ∈ B(O/lν)} .

We put

Γ̂1(l
ν) = {g ∈ GL2(Ol)|(g mod lν) ∈ N(O/lν)}

for the image g ∈ PGL2(Ol) of g ∈ GL2(Ol). For general g ∈ GL2(Fl), we write Sg := g−1Sg for a

subgroup S of G(A(∞)). Decompose Ô := lim←−0<N∈Z
O/NO = Ol×O(l). In the application in [H04],

we assumed K to be Γ̂0(l) ×GL2(Ô
(l)).

We assume

(T) T = T × αN for αN = {αn|0 ≤ n ∈ Z} and a group T acts on Ξ,

where α ∈ GL2(Fl) is upper triangular and αNα−1 ) N . Here the semi-group T ⊂ Aut(V/F) acts
on Ξ under the diagonal action. The action of T is basically multiplication by elements in Clalg

(coming from the non-split torus M× ↪→ G(A(p∞))) which permutes elements in Cl−n and is essential
in the proof of [H10, Theorem 3.20] which shows that X = V once we know Irr(X) = Irr+(X).

In this article, the action of the semi-group αN plays the central role to prove Irr(X) = Irr+(X).

The condition αNα−1 ) N implies that α ∈ B
(

1 0
0 $m

l

)
B for some m > 0 with a uniformizer $l

of Ol, and if Kl = Γ̂1(l
ν) (ν > 0), S = SK := K ∩ Kβ is normalized by K and a representative

set of SK\K can be chosen in N . Note that NαNN :=
⋃
β∈αN NβN ⊂ GL2(Fl) is a multiplicative

semi-group.
Consider the following condition

(∞) every T-orbit in Ξ is infinite.

This condition will be verified for our choice of Ξ in Proposition 2.10 for the above α well chosen.
Since α ∈ B

( 1 0
0 $m

l

)
B (m > 0) does not have a fixed point in V, if one orbit T(x) for x ∈ Ξ is

infinite, every orbit is indeed infinite.

For simplicity, we assume hereafter Kl = Γ̂0(l
ν) or Γ̂1(l

ν) with ν > 0 and that K is open in G(A)
satisfying (K). Since α is supposed to preserve the irreducible component V of Sh(p), we may assume
that lm = ($) with $ = ϕϕc for some ϕ ∈ R. Replacing m by a positive integer multiple of m, we
may further assume

(2.1) for a := $m
l /$, elements ( a 0

0 a ) and ( 1 0
0 a ) in G(Ẑ) belong to K.

Indeed, by replacing m by mn and $ by $n, a is replaced by an which is sufficiently close to 1.
Hereafter, for simplicity, we assume that α = ( 1 0

0 $ ) for $ = ϕϕc and write β for a general element
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in NαNN . We write ?(Ξ)K (? = β, β−1) for the Zariski closure in VK of the image ?(Ξ)K =?(ΞK)
of ?(Ξ) in VK .

As we recall from [H04] in §3.1, the left action of g ∈ G(A(p∞)) on the point x = (A, η) ∈ V is
given by g(x) = τ (g)−1(x), where the right action τ (g) is by definition given by η 7→ η ◦ g for the
level structure η associated to the point x. If β ∈ αN, K ⊃ N may not be normalized by β. Thus β
acts on VK as a correspondence.

Let us explain this correspondence action in some details. Recall S = SK := K ∩ β−1Kβ =

K ∩ Kβ. By definition Sβ
−1

= Kβ−1 ∩K ⊂ K and Sβ
−1

S ⊂ K (so, Sβ
−1

satisfies the condition

(K) while S is not). Then S is normalized by N if Kl = Γ̂1(l
ν) but S ) N . We have NβN =⊔

u∈N Nβ%(u) for a finite set N =
{
%(u)|u mod lj

}
for 0 < j given by (det(β)) = lj (so, m|j), and

KβK =
⊔
u∈N Kβ%(u). Then we have the correspondence U(β) ⊂ VK × VK (with respect to the

tower {V � VK}K) defined by the following commutative diagram

VS
v 7→β(v)=vβ−1

−−−−−−−−−→
∼

VSβ−1

pS,K

y p
Sβ

−1
,K

y

VK −−−−→
U(β)

VK ,

where U(β) is identified with a subvariety given by the diagonal image of VS under the product of the
projections pS,K × (pSβ−1 ,K ◦ β). It is easy to see U(βn) = U(β)n under the correspondence action.

The correspondence U(β) brings a point x ∈ VK to a finite set U(β)(x) := (pSβ−1
,K ◦ β)(p−1

S,K (x)).

We assume, for K satisfying (K),

(N) The action of T on Ξ extends to a correspondence action of the semi-group NTN on ΞK .

If it is necessary to indicate the dependence of the level group K, we write ΞK for the image of Ξ in
VK . We write U(βn)(ΞK) :=

⋃
x∈ΞK

U(βn)(x). The condition (N) means that U(β) acts on Ξ (i.e.,

U(β)(ΞN ) ⊂ ΞN).
Since αl ∈ GL2(Fl), by (2.1), the correspondence U(β) for β ∈ SαNS only depends on the double

coset NβN . We need the following finiteness condition (which will be verified in Lemma 2.9 and
(2.8)):

(F) ΞN − U(αn)(ΞN) and α−n(Ξ)− Ξ are finite for all n > 0.

Since T is a group, (F) implies finiteness of ΞN − U(β)(ΞN ) and β−1(Ξ) − Ξ for all β ∈ T. We
actually use only the finiteness of β−1(Ξ)− Ξ in the proof of the key result (Theorem 2.6).

Let X = XΞ (resp. XS = XΞ,S) be the Zariski closure of Ξ in V (resp. of the image ΞS in VS) for
a closed subgroup S satisfying (K). Since U(β)(Ξ) ⊂ Ξ, we find XΞ ⊃ XU(β)(Ξ) =

⋃
u∈N β%(u)(XΞ).

Thus we have a tower {XS}S of reduced schemes with projections pS′,S : XS′ → XS for S′ ⊂ S
(which we write simply pS′ if S is clear in the context). Therefore, we can think of the corresponding
action of β on XS with respect to the tower {XS}S.

If S is open compact, XS is a reduced variety (i.e., reduced noetherian). The semi-group NTN
acts on X sending X = XΞ to β(X) = Xβ(Ξ) and also U(β)(X) = XU(β)(Ξ). For β ∈ NTN and

an open compact subgroup K ⊂ G(A(∞)) satisfying (K), taking an open compact subgroup S of K

such that SSβ
−1 ⊂ K, we have a diagram

(2.2)

XS
v 7→β(v)−−−−−→ β(X)Sβ−1 ⊂ XSβ−1

pS,K

y p
Sβ

−1
,K

y

XK −−−−→
C(β)

XK ,

where C(β) is a subvariety given by the diagonal image of XS under pS,K × pSβ−1 ,K ◦ β. We regard

C(β) as a correspondence from XK into XK . This correspondence is specifically on XK and its
points and is possibly different from the operator U(β) for the tower {V � VS}S .

Lemma 2.1. Assume that VS → VK for S = SK := K ∩ Kβ is étale. Let Y S := p−1
S,K(ZK ) =

ZK ×VK VS for ZS ∈ Irr(XS) and ZK := pS,K(ZS), and write Y S =
⋃
Z∈Irr(Y S) Z. If Z 6= Z′ for
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Z, Z′ ∈ Irr(Y S), we have Z ∩Z′ = ∅; so, Y S =
⊔
Z∈Irr(Y S) Z. If Kl = Γ̂1(l

ν) and Z ∈ Irr(Y S), then

K normalizes S and for u ∈ K/S, either u(Z) = Z or u(Z) ∩ Z = ∅.
Proof. Note that Y S := p−1

S,K(ZK ) is étale finite over ZK as VS → VK is étale. Thus Y S is equi-

dimensional with dimZ = dim YS = dimZS = dimZK for Z ∈ Irr(Y S). If ∅ 6= Z ∩ Z′ ( Z
for Z 6= Z′ (Z, Z′ ∈ Irr(Y S)), Z → ZK and Z′ → ZK are dominant by the equi-dimensionality.
Thus by the étale property of Y S → ZK , Z(F) → ZK(F) and Z′(F) → ZK(F) are onto. For
x ∈ (Z ∩ Z′)(F), |((Z ∪ Z′) ×ZK xK)(F)| < deg(Z′/ZK) + deg(Z/ZK); so, Z ∪ Z′ ramifies over
pS,K(ZS) since dimZ = dimZ′, which is impossible as Z ∪ Z′ ↪→ Y S → ZK is unramified by
Lemma 1.1 (2). This shows the first assertion.

Suppose that Kl = Γ̂1(l
ν) and Z ∈ Irr(Y S). Since SN = K and N normalizes S = SK = K∩Kβ,

K normalizes S. If Kl = Γ̂1(l
ν), Y S =

⋃
u∈K/S u(Z); so, u(Z) is still an irreducible component

of Y S , and K/S acts on Irr(Y S). Thus the intersection is either empty or u(Z) ∩ Z = Z. If
u(Z)∩Z = Z, we have Z ⊂ u(Z). Since they are irreducible and have equal dimension, we conclude
Z = u(Z). �

Lemma 2.2. Suppose (F). Then for β ∈ T and K satisfying (K), we have Irr+(U(β)(X)K ) =
Irr+(XK ) and Irr(XK )− Irr(U(β)(X)K ) ⊂ (ΞK −U(β)(ΞK )). Similarly we have Irr+(β−1(X)K ) =
Irr+(XK ) and Irr(β−1(X)K )− Irr(XK ) ⊂ (β−1(Ξ)− Ξ).

Proof. As remarked after (F), Ξ−U(β)(Ξ) is finite for all β ∈ T. Since U(β)(Ξ) ⊂ Ξ, we have a closed
immersion U(β)(XK ) ⊂ XK . Since U(β)(X)K is the Zariski closure of U(β)(ΞK ), the finiteness of
Ξ− U(β)(Ξ) implies Irr+(XK ) = Irr+(U(β)(X)K ) and Irr(XK) − Irr(U(β)(X)K ) ⊂ (Ξ− U(β)(Ξ))
by Lemma 1.4. The last assertion follows from finiteness of β−1(Ξ)− Ξ assumed in (F). �

The semi-group element β ∈ T acts on π0(X) and Irr(X) in the sense that β sends π0(X) and
Irr(X) isomorphically onto π0(β(X)) and Irr(β(X)), respectively. Therefore β : x 7→ β(x) = xβ−1

induces an isomorphism β∗ : Irr(XS) ∼= Irr(β(X)Uβ−1 ). Let ZS be an irreducible component of XS
and write β(ZS) ∈ Irr(β(X)Sβ−1 ).

Lemma 2.3. Suppose that S ⊂ K is a closed subgroup for an open compact subgroup K = G(Zp)×
K(p) in G(A(∞)). Take ZS ∈ Irr(XS) with dimZS = dimXS and write ZK for the image of ZS in
XK . Then ZK ∈ Irr(XK), and there exists x ∈ Ξ such that its image xK lies in an open subscheme
of ZK made of smooth points of ZK .

Proof. By Lemma 1.2, we have ZK ∈ Irr(XK ). Thus we prove the existence of the point x ∈ Ξ as
in the lemma. If ZK = XK , nothing to prove. We suppose that ZK 6= XK . Since XK is noetherian,
the Zariski closure Z⊥

K of XK −ZK is a proper closed subscheme of XK ; so, by Zariski density of ΞK
in XK , if ΞK ⊂ Z⊥

K , we find XK = Z⊥
K , a contradiction. Therefore (ZK − Z⊥

K) ∩ ΞK 6= ∅. For the
Zariski closure Z′

K of (ZK−Z⊥
K )∩ΞK in ZK , Z′

K∪Z⊥
K contains ((ZK−Z⊥

K)∩ΞK)∪(Z⊥
K∩ΞK) = ΞK

as XK = ZK∪Z⊥
K . Thus Z′

K∪Z⊥
K = XK = ZK ∪Z⊥

K . Since Z⊥
K is a union of irreducible components

of XK different from ZK , this implies ZK ⊂ Z′
K , and (ZK − Z⊥

K) ∩ ΞK is Zariski dense in ZK . We
can thus pick xK in the open subscheme ZK − Z⊥

K in ZK . Since the subscheme of smooth points of
ZK − Z⊥

K is non-empty and open in ZK [CRT, Theorem 24.4], we may assume that xK is a smooth
point of ZK − Z⊥

K . �

For each reduced Zariski closed subset Y of VS , we put ΞY = Y ∩ ΞS .

Lemma 2.4. Suppose that K is an open compact subgroup as in (K). Let ZK ∈ Irr(XK). Then
ΞZK is dense in ZK .

Proof. Since ΞK ∩ (ZK − Z⊥
K) is dense in ZK as seen in the proof of Lemma 2.3, ΞZK containing

ΞK ∩ (ZK − Z⊥
K) is dense in ZK .

We can argue differently. For an irreducible component ZK of XK , ZK −Z⊥
K is an open subset of

XK ; so, any open subset Y ′ ⊂ (ZK −Z⊥
K), Y ′ ∩ ΞK 6= ∅. Thus ΞZK = ΞK ∩ZK is dense in ZK . �

Take x ∈ Ξ and β ∈ T and fix the open compact subgroup K satisfying (K). Suppose V → VK is

étale. Let S = SK = K ∩Kβ ⊂ K such that SSβ
−1 ⊂ K. Take YK ∈ Irrd(XK ) with YK 3 xK . Let

Y S := p−1
S,K(YK ) for the projection pS,K : VS → VK . By Lemma 2.1, Y S =

⊔
Z∈Irr(Y S) Z (disjoint

union). By Ξ ∼= ΞK, ΞY
S ∼= ΞYK . We have a partition ΞY

S

=
⊔
Z∈Irr(Y S) ΞZ for ΞZ = ΞS ∩ Z.
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Suppose Kl = Γ̂1(l
ν). Assume that V � VK is étale. Since the diagram

Y S
↪→−−−−→ VSy pS,K

yétale

YK
↪→−−−−→ VK

is Cartesian, Y S → YK is étale. Therefore, Y S is equi-dimensional with dimY S = dimYK . By
Lemma 1.2, Irr(Y S) ∩ Irr(XS) 6= ∅; so, we can define a non-empty subscheme YS of Y S by

(2.3) YS :=
⋃

Z∈Irr(XS)∩Irr(Y S)

Z
(∗)
=

⊔

Z∈Irrd(XS)∩Irr(Y S)

Z ⊂ XS ,

which is equi-dimensional with dimension d := dimYK , and the identity (∗) follows from Lemma 2.1
under étaleness of V � VK . Thus Irr(XS) ∩ Irr(Y S) = Irrd(XS) ∩ Irr(Y S). Note that taking
intersection Irr(Y S) ∩ Irr(XS) 6= ∅ means that we can pick irreducible components of XS which
dominates YK (so, each member of Irr(Y S) ∩ Irr(XS) 6= ∅ has dimension equal to dim YK). By
Lemma 2.1, Y S is a disjoint union of YS and

⊔
Z∈Irr(Y S)−Irr(YS)X, and hence YS → YK is étale finite

dominant.

Lemma 2.5. Suppose that K is an open compact subgroup as in (K) and pick YK ∈ Irrd(XK )
for 0 ≤ d ≤ dimX. Suppose VS → VK is étale. Then we have Y S =

⊔
Z∈Irr(Y S) Z and YS =⊔

Z∈Irr(Y S),Z⊂XS Z. The set ΞZ is either empty or Zariski dense in Z for Z ∈ Irr(Y S), and for each

x ∈ ΞYS , there is a unique irreducible component Z ∈ Irr(YS) with x ∈ Z.

Proof. The first assertion is proven before the statement of the lemma. We prove the remaining
assertion. If Z ⊂ XS for Z ∈ Irr(Y S), it is an irreducible component of XS by Lemma 1.2. Thus
ΞZ is Zariski dense in Z by Lemma 2.4. In other words, if Z 6⊂ XS , ΞZ is an empty set, and for
each x ∈ ΞYS , there is a unique irreducible component Z ∈ Irr(YS) with x ∈ Z as YS is a disjoint
union of Z. �

2.2. Modular correspondences acting on irreducible components of XK . Pick an irreducible
component YK ∈ Irrd(XK) for 0 ≤ d ≤ dimXK with an open compact subgroup K satisfying (K).

2.2.1. Definition of the correspondence. Choosing x ∈ Ξ so that xS ∈ YS for YS in (2.3), we have
β(x)S := xSβ

−1 ∈ β(YS) ⊂ XSβ−1 , and there is a unique irreducible component Z of YS containing

xS by Lemma 2.5. Since YS
∼−→
β

β(YS) ⊂ β(X)Sβ−1 ⊂ XSβ−1 , we have dimYK = dimYS =

dimβ(YS) = dimβ(YS)K for the projection β(YS)K of β(YS) in XK .

For any pair of open compact subgroups (K, S) with K ⊃ SSβ−1

(so, S ⊂ K ∩ β−1Kβ), we have
a diagram similar to (2.2):

YS
v 7→β(v)−−−−−→

∼
β(YS)

⊂−−−−→ XSβ−1

pS,K

yfinite

y p
Sβ

−1
,K

yfinite

YK −−−−→
CS(β)

β(YS)K := pSβ−1 ,K(β(YS)) −−−−→
⊂

XK ,

for the correspondence CS(β) given by the reduced image Im(pS,K × pSβ−1 ,K ◦ β : YS → VK × VK )

whose support is contained in C(β) in (2.2). Note that

(2.4) CS(β) is independent of the choice of S

as pS,K × pSβ−1 ,K ◦ β = (pSK ,K × pSβ
K
,K ◦ β) ◦ pS,SK for SK = K ∩ βKβ−1 (so, CS(β) = CSK (β)).

As mentioned below (2.2), the correspondence CS(β) is with respect to the tower {XS}S and is
possibly different from U(β) with respect to the tower {VK}K.

Hereafter we choose S to be SK and still write it as S (so, the correspondence action of CS(β) on
irreducible components we introduce in the proof of the following Theorem 2.6 only depends on β
(and K)). Note that β(YS)K =

⋃
u βu(Z)K for some u ∈ N ∼= K/SK , where βu(Z)K is the image

under pSβ−1 ,K of βu(Z) for a component Z ∈ Irr(YS) (cf. Lemma 2.1). Since β : XS ∼= β(X)Sβ−1 ,
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Irr(β(YS)) ⊂ Irrd(β(X)Sβ−1 ) (d = dimYK). By the above diagram with dominant pS,K and pSβ−1
,K,

we again find dimβ(YS)K = dimYK as β(YS)K ⊂ pSβ−1 ,K(β(p−1
S,K (YK)).

2.3. Positive dimensionality of irreducible components of X. We now prove the following
fact not described in [H04]:

Theorem 2.6. Suppose (unr) and (ord) at the beginning of Section 2 for p. Let Ξ ⊂ V(F) be an
infinite subset injecting into VK for any open compact subgroup K satisfying (K) and (I). We assume
that a semi-group T ⊂ Aut(V/F) as in (T) embedded in Aut(V/F) acts on Ξ, and assume (F) and
(N).

(1) If the condition (∞) is satisfied, all irreducible components of X has positive dimension;
(2) If T acts on Ξ transitively, dimX > 0, X is equi-dimensional, and the irreducible component

containing a given x ∈ Ξ is unique.

Under (∞), we can replace Ξ by an infinite orbit T(x) and apply the result and conclude the
Zariski closure of T(x) is equidimensional of positive dimension; so, one of them contains x.

Proof of (1).1 We need to describe the correspondence action of β on YK ∈ Irrd(XK ). First
suppose that d = dimX as this is the easiest case. Then dimβ(YS)K = dimX, and hence β(Z)K ∈
IrrdimX(XK) for Z ∈ Irr(YS). In this way, β ∈ T acts on YK ∈ IrrdimX(XK) as correspondences (i.e.,
YK is brought to a subset β(YK ) = {β(Z)K |Z ∈ Irr(XS) ∩ Irr(Y S)} ⊂ IrrdimX(XK ) whose member
has equal dimension). Since Irr(XS) ∩ Irr(Y S) is made of u(Z) for u ∈ N , for a finite subset B of
NβN , we have the correspondence action of C(β) given by the image set β(YK ) :=

⋃
β′∈B{β′(YK)}

under C(β) on IrrdimX(XK).
Though we only need the result for d = 0, we give an argument for the intermediate dimension

0 < d < dimX now as this introduces necessary notation for the case d = 0. Pick YK ∈ Irrd(XK )
and start with YK ∈ Irrd(XK). As above to define the action of C(β) on Irrd(XK ), we only need

to give a good definition of the image set β(YK ) for a β ∈ NTN . For simplicity, write S′ := Sβ
−1

.
Let us recall a general notation: For an irreducible component Y ′

K of XK , we define as before

Y ′S′

:= p−1
S′,K(Y ′

K) and Y ′
S′ :=

⊔
Z′∈Irr+(XS′ )∩Irr+(Y ′S′

) Z
′ (by (2.3)). Now recall the irreducible

component Z ∈ Irr+(YS) containing the base point xS ∈ ΞS chosen in §2.2.1 and we apply the
above notation to the irreducible component Y ′

K of XK such that β(Z) ⊂ Z′ for an irreducible
component Z′ of Y ′

S′ (so, β(xS) ∈ Z′). To see the existence of an irreducible component Y ′
K of

XK as above, we argue as follows. Since β(Z) is an irreducible closed variety of XS′ , pS′,K(β(Z))
is an irreducible closed variety of XK . Then there exists an irreducible component Y ′

K containing
pS′,K(β(Z)) of XK by Lemma 1.2 (1). Therefore β(Z) ⊂ Y ′

S′ which is contained in Z′ ∈ Irr(Y ′
S′).

So dimZ′ = dimY ′
K ≥ d by Lemma 2.1. Replacing (β, YK , S,K) by (β−1 , Y ′

K, S
′, K), we apply the

above argument. Note that β−1(Z′) ⊂ β−1(XS′ ); so, β−1(Z′)K ⊂ β−1(X)K . By the choice of Y ′
K ,

Lemma 2.5 tells us that Z is determined by the two conditions (i) β−1(X)K ⊃ β−1(Z′)K ⊃ YK
and (ii) xS ∈ Z. Since Irr+(β−1(X)K ) = Irr+(XK ) by Lemma 2.2 and β−1(Z′)K is irreducible,
we conclude from β−1(Z′)K ⊃ YK that β−1(Z′)K = YK (as YK is an irreducible component of
Irr+(β−1(X)K ) = Irr+(XK)); in particular, dimZ′ = dimYK = d. So, Y ′

K = β(Z)K and that β(Z)K
is an element in Irrd(XK) (Lemma 2.2). Therefore, again β ∈ T acts on Irrd(XK) as correspondences
(i.e., YK is brought to a subset β(YK ) = {β(Z)K |Z ∈ Irr(XS)∩ Irr(Y S)} ⊂ Irrd(XK ) whose member
has equal positive dimension).

Now suppose d = 0. Since the correspondence action preserves Irr+(XK), it also preserves the
complement Irr0(XK). The following argument to see the correspondence action is really an action
sending a point to a point also gives an alternative proof of the stability of Irr0(XK) under the
action of T. We proceed similarly to the case where 0 < d < dimX using the same notation.
Then xK = YK ∈ Irr0(XK) falls in the image ΞK in VK of Ξ by Lemma 1.2 (3). By (I), the
projection π : V � VK induces Ξ ∼= ΞK ; so, p−1

S,K(xK) is a finite set of points above xK and

{x′ ∈ p−1
S,K(xK)|x′ ∈ XS} is a singleton by Lemma 1.2 (2–3). Thus p−1

S,K(YK)∩XS = p−1
S,K(xK)∩XS

is a singleton. Therefore YS = {Z := xS} is a singleton. Take an irreducible component Y ′
K

of XK such that β(Z) ⊂ Z′ for an irreducible component Z′ of Y ′
S′ (so, β(xS) ∈ Z′). Such a

1In the proof, we use the existence of β−1 ∈ Aut(V ) essentially, while α : (v, z) 7→ (v + 1,2z) in §1.1 cannot be
extended to an automorphism of V there.
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Y ′
K exists by Lemma 1.2 (1). So dimZ′ = dimY ′

K ≥ 0. We want to prove dimY ′
K = 0. Since

Irr+(β−1(X)S) = Irr+(XS) by Lemma 2.2 and (F), if dimZ′ > 0, we have dimβ−1(Z′) > 0 and
β−1(Z′) is an irreducible component of XS . Since β−1(Z′) ⊃ Z = xS by construction and the
two are irreducible components of XS , we find that β−1(Z′) = Z = xS , a contradiction against
dimZ′ > 0. Hence dimZ′ = 0 and Z′ = β(Z) = β(xS). This implies that β brings Irr0(XK )
into Irr0(XK). It is now clear that this is really an action (not a correspondence action) of T on
Irr0(XK ), and the action is compatible with the action of T on Ξ as Irr0(XK ) ⊂ ΞK ∼= Ξ.

In particular, Irr0(XK) contains T(xK) for each xK ∈ Irr0(XK ) ⊂ ΞK. Then by (∞), Irr0(XK )
is infinite, a contradiction as XK is a noetherian scheme. Therefore Irr0(XK )∩T(xK) = ∅ for every

open compact subgroup K of G(A(p)) satisfying (K) and xK ∈ Irr0(XK ). This implies Irr0(XK) =
∅ for every open compact subgroup K of G(A(p)) satisfying (K), and therefore Irr0(X) = ∅ by
Lemma 1.2 (3). This shows that all irreducible components of X have positive dimension.

Proof of (2). We have proven positive dimensionality of irreducible components of X. We need to
prove equi-dimensionality of X and the uniqueness of the component containing x ∈ Ξ under equi-
dimensionality. Since the smooth locus Xsm

K of XK is open dense in XK by [CRT, Theorem 24.4],
ΞsmK := Ξ ∩Xsm

K is still dense in XK . Since Irr(XK ) = π0(X
sm
K ), for each x ∈ ΞsmK , the irreducible

component of Xsm
K containing xK is unique. Since T acts on Irr(XK) = π0(X

sm
K ) as correspondence,

for any Z, Z′ ∈ Irr(XK), we find x ∈ Ξ ∩ Zsm and y ∈ Ξ ∩Z′sm.
Interchanging Z and Z′ if necessary, by (T) and transitivity of the action, we can choose β ∈

T with β(x) = y. Then β(Z) ∈ Irr(XK) and y ∈ β(Z) ∩ Z′. Thus y ∈ Z′sing = Z′ − Zsm

(i.e., y ∈ β(Z) ∩ Z′ with Z′ different from any irreducible components of β(Z)) or β(Z) ⊃ Z′ or

β(Z) ⊂ Z′. The case: y ∈ Z′sing = Z′ −Zsm does not occur as we have chosen y ∈ Z′sm. Since the
correspondence action of T preserves Irrd(XK) for any given d > 0, the remaining cases β(Z) ⊃ Z′ or
β(Z) ⊂ Z′ imply dimZ = dimβ(Z) = dimZ′ and Z′ ∈ Irr(β(Z)). Choosing one of Z and Z′ to have
maximal dimension dimX, the other has to have maximal dimension; so, Irr(XK ) = IrrdimX(XK);
so, XK is equidimensional. This implies X is equidimensional.

By the first fundamental sequence of differentials and unramifiedness of XS/XK in Lemma 1.1,
the projection induces a surjection:

ΩXK/F ⊗OXK F(xK) � ΩXS/F ⊗OXS F(xS)

for S ⊂ K. By the proof of the equi-dimensionality, for dimOXS ,xS = dimOXK ,xK for any point
xS ∈ XS with projection xK in XK . Thus

dimF ΩXK/F ⊗OXK F(xK) ≥ dimF ΩXS/F ⊗OXS F(xS) ≥ dimOXS ,xS = dimOXK ,xK .
Here “dimF” indicates dimension of an F-vector space, and dimR for a ring R means the Krull
dimension of the ring R. Thus the singular locus

Xsing
S := {xS ∈ XS | dimF ΩXS/F ⊗OXS F(xS) > dimOXS ,xS}

of XS is sent to Xsing
K , where F(x) is the residue field of x. Thus Xsing = lim←−S X

sing
S , and hence

dimXsing < dimX = dim Y for any Y ∈ Irr(X). Plainly T preserves Xsing. If x ∈ Ξ ∩Xsing, then
Ξ = T(x) ⊂ Xsing; so, X = Xsing, a contradiction. Thus Ξ ∩Xsing = ∅. Since Xsm := X −Xsing

is a dense open subscheme of X, π0(X
sm) ∼= Irr(Xsm) ∼= Irr(X) with Xsm =

⊔
Y ∈Irr(X) Y

sm. Thus

for each given x ∈ Ξ ⊂ Xsm, Y sm ∈ Irr(Xsm) containing x is unique. �

Since XK has positive dimension for an open compact level K (as |ΞK| is infinity; cf. Lemma 1.2
(4)), by the above proposition, all components of X have positive dimension. Taking x ∈ Ξ and an
irreducible component of X containing x, we get

Corollary 2.7. Let the notation and the assumption be as in Theorem 2.6 (1). Then X contains
an irreducible component X0 of positive dimension with a point x ∈ Ξ. Moreover for each element
ξ of the stabilizer of x in T, we have ξ(X0) = X0.

Proof. We need to prove the last assertion: ξ(X0) = X0. Since ξ ∈ T, ξ(X0) is another irreducible
component of X containing x. Taking a level group K sufficiently small, ξ(X0) ∪ X0 → XK is
unramified. Since ξ(X0) ∩ X0 3 x, unramifiedness and positive dimensionality of X0 tells us that
ξ(X0) = X0.
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There is another argument. Replacing Ξ by the orbit Ξ′ := T(x), we may assume that T acts
transitively on Ξ. Then X0 and ξ(X0) are irreducible components of the Zariski closure X′ of Ξ′.
Then we can apply Theorem 2.6 (2) to X′ and Ξ′. Since there is only one irreducible component
containing x = ξ(x), we have X0 = ξ(X0). �

Remark 2.8. Note that the stabilizer of x ∈ Ξn is given by Tx := (M×∩R×
n,l∩R×

p )/(F×∩O×
l ∩O×

p )

embedded into GL2(F
(lp∞)
A

) ⊂ GL2(F
(p∞)
A

) which after p-adic completion contains a p-adically open

subgroup. We can take T in (T) to be this group or the bigger group (M×∩R×
l ∩R×

p )/(F×∩O×
l ∩O×

p ),
and under this choice, we can apply Corollary 2.7 to ξ ∈ Tx. The stability of X in Corollary 2.7 is
a requirement of [H10, Corollary 3.19, Theorem 3.20], and the choice Tx ⊂ T is sufficient for this
purpose. Since the central elements in F× acts on V trivially, we take Tx as above rather than
M× ∩R×

n,l ∩R×
p .

2.4. Verification of (F) and (N) for infinite arithmetic progression. We briefly describe the
choice of Ξ ⊂ V. For the details of the definition of CM point x(A), see Section 3.

Let

(2.5) T := (M× ∩R×
l ∩R×

p )/(F× ∩O×
l ∩O×

p ),

but for our convenience, we often shrink T slightly to a subgroup of finite index to define T as
remarked in Remark 2.8. We write R×

(a)
.

For each ξ ∈ R×
(p) (in [H04, page 755] the symbol “α” is used for the letter “ξ” here), we have

x(A) := (X(A),Λ(A), η(p)(A))
∼−→
ξ
x(ξA) as in the middle of [H04, page 755], and as seen in [H04,

page 756], ρR(ξ(l))(x(B)) = x([ξ(l)]B) for the class [ξ(l)] = [(ξ)] of the ideal (ξ) in Cl∞ = lim←−n Cln.
Recall Cn = {x(A) := (x([A]δ))δ∈Q|A ∈ Cln} and C(∞) =

⊔
n Cn ⊂ V. Thus ξ ∈ T acts on C(∞)

by [A] 7→ [(ξ)][A].
Let $l be a prime element of Ol. As specified in [H04, §2.1 and §3.1], for each proper fractional

ideal A of Rn, we have a specific CM point x(A) ∈ Sh(p)(F). In our application, Ξ is made of the
set of points of the form x(A). Note that (see (3.3))

( 1 0
0 $m

l

)
( 1 u

0 1 ) =
(

1 u
$m

l

0 1

) ( 1 0
0 $m

l

)
.

By [H04, (3.2)] (see (3.2) in the text), writing αm :=
(

1 0
0 $m

l

)
and %(u) := ( 1 u

0 1 ), we have

(2.6) αm%(u)(xN (Rn)) = %(
u

$m
l

)αm(xN (Rn)) = xN(A) (0 < m ∈ Z)

for A given by x(A) = x(Rn)/Cu for a suitable subgroup Cu ⊂ X(Rn) with Cu ∼= O/lm depending
on u, xN indicates the image of x in VN , and A = Rn+m if u = 0. By (2.1), in (2.6), we can
replace $m

l by $ = ϕϕc and xN by xK, and the identity is valid on VK (in place of VN ). Any A in
Ker(Cln+m → Cln) with n > 0 can be written as in (2.6).

Set Ξnj = {x(A) ∈ V|A ∈ Ker(Cln → Clj)} for each n > j ≥ 0 with a given j. Since

Ξnj = {x([A]δ)|A = ξRn with ξ ∈ R×
(pl) ∩ (1 + ljRl)},

defining Tj ⊂ T (for T in (2.5)) by

(2.7) Tj := {ξ ∈ (M× ∩R×
l ∩R×

p )|(ξ mod lj) ∈ (R(pl)/l
j)×}/O×

(pl),

the group Tj acts transitively on Ξnj for every n with n > j ≥ 0. Here R(pl) and O(pl) are the

localization at pl of R and O not the completion, and note (T : Tj) <∞.

Lemma 2.9. Assume that lm is generated by an element of NM/F (R) and write lm = ($) with

$ ∈ NM/F (R). Define α = ( 1 0
0 $ ) and let T = Tj,m = Tj ×

⋃
k≥0Nα

kN as a semi-group. If n

is an infinite arithmetic progression of difference m, for Ξ = Ξn = Ξn,j :=
⊔
i≥0 Ξn0+im

j , we have

Ξ ⊃ U(β)(Ξ) for β ∈ Tj,m (which implies that the condition (N) is satisfied), and Ξ − U(β)(Ξ) is
finite.

Proof. By (2.6), we have U(α)(Cn) = Cn+m and U(α)(Ξnj ) = x(Ξn+m
j ). Thus the semi-group⋃

k≥0Nα
kN acts on Ξn for n = {n0 + im|i = 0, 1, 2 . . .} for U(αk) (0 ≤ k ∈ Z) sending Ξn0+im

j into
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Ξ
n0+(i+k)m
j . Any element of Ξ

n0+(i+k)m
j is an image of an element of Ξn0+im

j under the action of

β ∈ NαkN . Then we have

Ξn − U(αk)(Ξn) =
⊔

i≥0

Ξn0+im
j −

⊔

i′≥0

Ξ
n0+(k+i′)m
j =

k−1⊔

i=0

Ξn0+im
j

which is finite. Since Tj is a group acting transitively on Ξn0+im
j , this implies Ξ− U(β)(Ξ) is finite

for all β ∈ NTN and hence we get (N) and (F) for U(β). �

The point x(A) is given by identifying Â(p) = A⊗Z Ẑ(p) with the prime-to-p Tate module of the

corresponding CM abelian variety X(A); so, strictly speaking, it is more precise to write x(Â(p))

(or x(Â)) in place of x(A). Under this notation, α(x(Â(pl) × Rn,l)) = x(Â(pl) × Rn+m,l) and

α−1(x(Â(pl)×Rn,l)) = x(Â(pl)×Rn−m,l) as long as n > m. See §5.3 for what happens when n ≤ m.
It appears that the map α−1 is non-injective, but this comes from the fact that K ⊃ N (satisfying

(K)) but SK is not; in other words, pS,K is not injective but shrinking K to K′ at l so that
K′ ∩ N = {1} (with K/N ∼= K′/(K′ ∩ N)), the fiber of pSK ,K will be separated modulo SK ∩K′

(but the fiber of pSK′ ,K′ is non-trivial again). Thus α−1(Cn) = Cn−m as long as n > m. This shows

(F) for α−i and Ξn,j:

(2.8) α−i(Ξ)− Ξ is finite for all i > 0

as long as n is an infinite arithmetic progression of difference m as long as lm is generated by
an element of NM/F (R) and αdiag[1, $l]

−m ∈ K, writing diag[a, b] for the diagonal matrix with
diagonal entries a, b from top to bottom. Therefore in this case the condition (F) is valid.

If necessary, we also write sometime x(Â) (Â = A⊗Z Ẑ) for x(A) assuming Ap = Rp. The group
T acts on x(A) as follows: For ξ ∈ T ,

x(A) = x(Â) 7→ x(ξ(l)Â) = x((ξ)A),

where ξ(l) ∈ M×
A

is the finite idele with l-component equal to 1 and every component at finite place
outside l is equal to ξ.

In the idele class group I := M×
A /M

×M×
∞, ξ is trivial but ξ(l) is not trivial; so, the action of ξ on

Cln is non-trivial for any sufficiently large n. Regard Cln = Pic(Rn) as a quotient of I, and write
(ξ) = (ξ)n for the image of ξ(l) in Cln. Since Ker(Cln → Cl0) is spanned by (ξ)n with ξ running in
T , T acts transitively on Ker(Cln → Cl0). More generally, noting that Tr ⊂ T is the stabilizer of

x(Rr) in Clr, Tr acts transitively on Ker(Cln → Clr) for all n ≥ r. From Â with Al = Rn,l, we can

create Âi := Â(l) × Ri,l. Then even if A = ξRn with ξl ∈ Rn,l (i.e., A is trivial in Cln), for i > n

with ξl 6∈ Ri,l, Âi is non-trivial in Cli. In this way, the group T := R×
(pl)/O

×
(pl) acts on Calg as in

[H04, page 755].
Let n = {0 < n0 < n1 < n2 < · · · < ni < · · · } be an infinite sequence of integers such that lni is

generated by an elements in NM/F (R). If m is an exponent such that lm is generated by an elements
in NM/F (R), then any infinite arithmetic progression n = {ni = n0 + im|0 ≤ i ∈ Z} for an initial
value 0 < n0 satisfies this condition. Recall Ξnij = {(x([A]δ))δ∈Q ∈ V|[A] ∈ Ker(Clni → Clj)} for

0 < j ≤ n0 as in [H04, Proposition 2.7]. Define Ξ = Ξn,j =
⊔
i Ξ

ni
j ⊂ V. Since Clni and Clj is stable

under the action of Tj and the projection Clni → Clj is compatible with the action of Tj, Ξni is
stable under Tj, and hence Ξn,j is also stable under Tj. Thus we get

Theorem 2.10. Choose 0 < m ∈ Z so that lm is principal generated by $ = ϕϕc with ϕ ∈ R and
define α as in Lemma 2.9. Suppose α diag[1, $l]

−m ∈ K. If n is an infinite arithmetic progression
(with initial value n0 and difference m), the semi-group Tj,m generated by the group Tj in (2.7) and
α = ( 1 0

0 $ ) acts transitively on Ξn,j and satisfies (T), (N) and (F) (for T = Tj).

Theorem 2.6 combined with this result, Corollary 2.7 and [H10, Corollary 3.19, Theorem 3.20]
gives

Corollary 2.11. If n contains an arithmetic progression, then Ξn,j for any j ≥ r is Zariski dense

in V Q.
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2.5. Characteristic 0 version. We consider Sh
(p)
/W and its geometric irreducible component V/W

and define V = V Q
/W in the same manner as above. Consider V/F = V/W ⊗W F. Note that V/W is

smooth over W (see [PAF, Theorem 7.1]).

Lemma 2.12. Let A be a smooth W-domain and Ξ be a countable set of W-points of Spec(A)
and as a subscheme of Spec(A), Ξ is étale over W. Write X := X ⊗W F for X = A,Ai,Ξ as a
subscheme of Spec(A). Then if Ξ is Zariski dense in Spec(A), then the schematic closure of Ξ in
Spec(A) is equal to Spec(A) and Ξη = Ξ×W η for the generic point η ∈ Spec(A) is Zariski dense in
Spec(A) ×W η.

Order Ξ = {P1, P2, . . .} with Ξn := {P1, . . . , Pn}. Write X̂ := lim←−nX/m
n
WX for X = A,Ai,Ξi, Pi

(the formal completion along the special fiber).

Proof. Since A is smooth over W, Â (resp. A) is smooth over W (resp. F); in particular, A is a

domain. Since Ξn is étale overW; so, is Ξ̂n over W . Thus Ξn ∼= Ξ̂n ∼= Ξn as point sets; hence Ξ ∼= Ξ
as sets.

We have A/
⋂n
j=1 Pj ↪→

∏
j A/Pj =

∏n
j=1W. Thus A/

⋂n
j=1 Pj is W-flat. In the same manner,

Â/
⋂n
j=1 P̂j is W -flat. We have a short exact sequence (

⋂n
j=1 P̂j)⊗W F ↪→ A � (Â/

⋂n
j=1 P̂j)⊗W F.

For an Â-ideal a with W -flat quotient Â/a, we have an exact sequence a = a ⊗W F ↪→ A �

(A/a)⊗W F. We identify a = a⊗W F as an ideal of A and A/a with (A/a)⊗W F. Take another ideal

b with W -flat Â/b. Then Â/(a∩b) ↪→ Â/b⊕ Â/b implies Â/(a∩ b) is W -flat. From the short exact

sequence: Â/(a ∩ b) ↪→ Â/a⊕ Â/b � Â/(a + b) for the two ideals a and b, we obtain a three term

exact sequence A/a ∩ b = (Â/a∩ b)⊗W F
i−→ A/a⊕A/b � A/(a + b). Thus Im(i) ∼= A/(a ∩ b) and

Coker(i) ∼= A/(a+b) which implies a ∩ b ⊂ a∩b. By induction on n, we thus have
⋂n
j=1 Pj ⊂

⋂n
j=1 P j

and hence (
⋂
P∈Ξ P̂ ) ⊗W F =

⋂
P∈Ξ P ⊂

⋂
P∈Ξ P j, whose right-hand-side is (0) by Zariski-density.

For P :=
⋂
P∈Ξ P̂ , we have P̂⊗W F = P⊗W F. Therefore we conclude P̂⊗W F = (0). By Nakayama’s

lemma for adically complete modules over a complete ring (e.g., [CAG, Exercise 7.2]), we conclude

P = (0). Since
⋂
P∈Ξ P ⊂

⋂
P∈Ξ P̂ ⊂ P = (0), we conclude

⋂
P∈Ξ P = 0. Thus Ξ is schematically

dense in Spec(A). Since K = Frac(W) is flat overW, we have
⋂
P∈Ξ(P ⊗WK) = (

⋂
P∈Ξ P )⊗WK =

0; so, Ξ⊗W η is Zariski dense in Spec(A)×W η = Spec(A⊗W K). �

The definition of Ξ ⊂ V in Theorem 0.1 works well overW; so, we take a geometrically irreducible

component V of Sh
(p)
/W with x(Rn) ∈ V (W) for sufficiently large n and define V = V Q and Ξ ⊂ V

as in Theorem 0.1.

Proposition 2.13. Assume Ξ ⊗W F is Zariski dense in V ⊗W F. Then Ξ ⊗ η is Zariski dense in
the generic fiber V ⊗W η.

Proof. Since V � VK is affine, covering VK by open affine schemes Spec(AK,i) and pulling them
back to Spec(AS,i) ⊂ VS for open subgroups S ⊂ K, we apply Lemma 2.12 to Spec(Ai) ⊂ V for
Ai = limS AS,i assuming Zariski density of Ξ in the special fiber V⊗W F and conclude Zariski density
in the generic fiber. �

3. Geometric modular forms and CM points

The Hilbert modular Shimura variety Sh(p) is the moduli (up to prime-to-p O-linear isogeny) of
triples (X,Λ, η) for an abelian variety X of dimension d = [F : Q] with multiplication by O, an

O-linear polarization class Λ up to multiplication by (O
(p)
+ )× (see [H04, §2.2]) and an O-linear level

structure η : V (p)(X) = T (X) ⊗bZ
A(p) ∼= (F

(p)
A )2 for the Tate module T (X) of X. For the Hilbert

modular Shimura variety Sh(p), we use the definition and notation introduced in [H04, Section 2].
See alas [HMI, Section 4.3] for a more detailed description of the Shimura variety and modular
forms. Geometric modular forms can be defined as global sections of weight κ Hodge bundles over
the Shimura variety, or equivalently a functorial rule assigning a value to classified abelian varieties
with extra structure. Out of the assigned value at CM points, we create a distribution interpolating
L-values in the next section Section 4.
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3.1. CM points x(A). We recall the definition of the CM points x(A) from [H04]. Let G =
ResF/QGL(2) (so, G(A) = GL2(A ⊗Q F )). We write the left action: G(A(p∞)) × Sh(p) → Sh(p)

simply as (g, x) 7→ g(x) := τ (g)−1(x). Here the action of τ (g) is a right action induced by η 7→ η◦g for

the level structure . For each point x = (X,Λ, η) ∈ Sh, we can associate a lattice L̂ = η−1(T (X)) ⊂
(F

(∞)
A )2. Then the level structure η is determined by the choice of a base w = (w1, w2) of L̂ over

Ô. In view of the base w, the inverted action x 7→ g(x) is matrix multiplication: tw 7→ gtw, because

(η ◦ g−1)−1(T (X)) = gη−1(T (X)) = gL̂.
For each O-lattice A, we recall a description of a CM point x(A) = (X(A),Λ(A), η(A)) ∈ Sh(p)

from [H04, §2.1], where X(A)/W is an abelian scheme of CM-type (M,Σ) withH1(X(A)(C),Z) = A
in the sense X(A)(C) = CΣ/AΣ for AΣ = {(aσ1 , . . . , aσd) ∈ CΣ|a ∈ A} writing Σ = {σ1, . . . , σd}.
For the order RA := {α ∈M |αA ⊂ A} and an ideal a of RA, we write, as a finite flat group scheme
over W,

X(A)[a] := {x ∈ X(A)|ax = 0} =
⋂

α∈a

Ker(α : X(A) → X(A)).

Recall the order Rn = O + lnR ⊂ M and the class groups Cl−n = Coker(Pic(O) → Pic(Rn)) and
Cl−∞ = lim←−nCl

−
n . By class field theory, Cl−n gives the Galois group of the maximal anticyclotomic

class field in the ring class field of conductor ln over M . The ideal ln = l + lnR = lRn−1 is a
prime ideal of Rn but is not proper (it is a proper ideal of Rn−1). Since X(Rn)[ln] ∼= Rn/ln = O/l
and lnRn−1 ⊂ Rn, we find that X(Rn)[ln] = Rn−1/Rn and X(Rn)/X(Rn)[ln] ∼= X(Rn−1). We
pick a subgroup C ⊂ X(Rn)[l] isomorphic to O/l but different from X(Rn)[ln]. We look into the
quotient X(Rn)/C. Take a lattice A so that X(Rn)/C = X(A) ⇔ A/Rn = C. Since C is an
O–submodule, A is an O–lattice of M . Since lC = 0, we find lRnA ⊂ A. Thus A is Rn+1–ideal,
because Rn+1 = O + lRn. Since C is not an Rn–submodule, the ideal A is not Rn–ideal; so, it is a
proper Rn+1–ideal. Since C generates over Rn all l–torsion points of X(Rn), we find RnA = l−1Rn.
In this way, we have created ` proper Rn+1–ideals A with ARn = l−1Rn.

We choose a base w = (w1, w2) of R̂ over Ô in [H04, §2.1]: at p, for the choice of the ordinary
p-adic CM-type Σ = {P|p}, writing RΣ =

∏
P∈ΣRP and RΣc =

∏
P∈ΣRPc for complex conjugation

c, Rp = RΣc ⊕ RΣ and w = (w1, w2) = ((1, 0), (0, 1)).
Let A be an O-lattice in M whose order R(A) := {α ∈ M |αA ⊂ A} has conductor f = f(A).

Though we mainly deal with the case where f(A) = ln, we describe a general theory with arbitrary f

prime to p. We choose a “good” level structure η(A) of X(A) so that η(A)(Ô2) = Â in the following
way. First we choose a representative set {Aj} of ideal classes of M (prime to pf). Then we can

write Âj = ajR̂ for an idele aj with aj = a
(fp∞)
j and choose α ∈ M so that AR = αAj. Here for

an idele a ∈ F×
A (resp. an adele a ∈ FA) and an integral ideal a, a(a∞) indicates av = 1 (resp.

av = 0) for each place v appearing in a or ∞. If f(A) = O (so, A is an R–ideal), we define the level

structure η(A) by (F
(∞)
A

)2 3 (a, b) 7→ aαajw1 + bαajw2 ∈ M (∞)
A

= V (X(A)). When f(A) 6= O, we
first suppose that f = (ϕϕc) for ϕ ∈M . Take α ∈ M such that AR = αAj, and choose a base w(A)

of Â so that w(A)(f) = (ϕαajw)(f) and w(A)f = αwf · g for g ∈ GL2(Ff) with det(gf) = ϕϕc. Then

we define η(A)(a, b) = a · w1(A) + b · w2(A) ∈ M (∞)
A . There is an ambiguity of the choice of α and

ϕ up to units in R, but this does not cause any trouble later.
Suppose that f(A) is not generated by a norm from M . We choose g ∈ G(A(∞)) with g(f) = 1

so that w(A) = αajw · g gives a base over Ô of Â, and define η(A) by using w(A). In the above
two cases, we choose g independent of the ideals in the proper ideal class of A; in other words, we
choose w(βA) = βαajw · g. We then define g(A) ∈ G(A(∞)) by η(A) = η(Aj) · g(A). We will later
specify the choice of g precisely.

We introduce a representation ρA : M×
A → G(A(∞)) by αη(A) = η(A) · ρA(α). By our choice, we

have ρA = ρR on M
(f(A))×
A , and

(3.1) det(g(A)) ∈ F×
+ if f(A) is generated by a norm from M .

Regarding Σ as a set of p-adic places (i.e., field embeddings of M into Qp) and composing with

Qp
∼= C we fixed, we may regard Σ as a set of complex embeddings. We write Σ(A) := {(σ(a))σ∈Σ ∈

CΣ|a ∈ A} as a lattice in CΣ :=
∏
σ∈Σ C.
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We choose a totally imaginary δ ∈ M with Im(σ(δ)) > 0 for all σ ∈ Σ. Then the alternating
form (a, b) 7→ (c(a)b − ac(b))/2δ gives an identity R ∧O R = c∗ for a fractional ideal c of F . Here
c∗ = {x ∈ F |TrF/Q(xc) ⊂ Z} = d−1c−1 for the different d of F/Q. Identifying M ⊗Q R with CΣ

by m ⊗ r 7→ (σ(m)r)σ∈Σ, we find that (a, ia) =
√
−1
δ aa � 0 for a ∈ M×. Here the symbol “�”

means total positivity. Thus TrF/Q ◦ (·, ·) gives a Riemann form for the lattice Σ(A), and therefore,

a projective embedding of CΣ/Σ(R) onto a projective abelian variety X(A)/C. The complex abelian
scheme X(A) extends to an abelian scheme overW (unique up to isomorphisms). In this way, we get

a c–polarization Λ(A) : X(A)(C) ⊗ c ∼= tX(A)(C) for the dual abelian scheme tX(A) = Pic0
X(A)/W .

The same δ induces

R∧R = f(O ∧R) + f2(R ∧R) = (f−1c)∗ and A∧A = (NM/F (A)−1f(A)−1c)∗,

where the exterior product is taken over O. Hereafter we fix δ so that c is prime to pf(A)d, and write
c(A) for NM/F (A)−1f(A)−1c (so, c = c(R)). We can always choose such a δ, since in this paper we
only treat A with l–power conductor.

Since an isogeny defined over the field Frac(W) of fractions of W between abelian schemes over
W extends to the entire abelian scheme (e.g. [GME] Lemma 4.1.16), we have a well defined c(A)–
polarization Λ(A) : X(A) ⊗ c(A) ∼= tX(A). Replacing X(A) by an isomorphic X(αA) for α ∈ M ,
we may assume that Ap = Rp. Then

X(A)[pF ] = X(A)[p]⊕X(A)[pc]

for pF = p ∩ F is isomorphic by Λ(A) to its Cartier dual. Since the Rosati-involution a 7→ a∗ =
Λ(A) ◦ ta ◦ Λ(A)−1 is the complex conjugation c, X(A)[p]/W is multiplicative (étale locally) if and
only if X(A)[pc] is étale over W.

We also specified the base of R̂
(l)
n to be w(l) in [H04, §2.1], because R̂

(l)
n = R̂(l). To specify the

base wl of Rl, we take d ∈ Ol so that Rl = Ol[
√
d] ⊂ Ml. We assume that d is a l–adic unit if l is

unramified in M/F and d generates l if l ramifies in M/F . Then we choose wl = (1,
√
d).

Since the base of Rn,l is given by αn
t(1,
√
d) for αn =

( 1 0
0 $n

l

)
with a prime element $l of Ol, we

find that αn(x(R)) = x(Rn) and α1(x(Rn−1)) = x(Rn). Moreover, for a suitable u ∈ O
(3.2) $l(x(A)) =

(
1 u
$l

0 1

)
(x(Rn+1)) if A = Rn/C for O/l ∼= C 6= X(Rn][ln],

because the base of $lAl is given by
(

1+$n
l
u
√
d

$n+1
l

√
d

)
=
(

1 u
$l

0 1

)
αn+1

(
1√
d

)
. Here the action of $l :

x(A) 7→ $l(x(A)) may bring x(A) on a geometrically irreducible component of Sh(p) to a different
one.

Now we consider x(A) in VK for an open subgroup K ⊂ G(A(∞)) containing Z(Ẑ). By repeating
(3.2), if x(A) = x(Rn)/C for C ∼= O/lm with C ∩X(Rn)[ln] = {0}, then A is a proper Rn+m–ideal.
If further lm is generated by an element $ ∈ F , we get x(A) = x($A) = $m

l (x(A)) in VK (because
$/$m

l ∈ K) and

(3.3) x(A) =
(

1 u
$m

l

0 1

)
(x(Rn+m)) =

(
1 u
$

0 1

)
(x(Rn+m)) for a suitable u ∈ O.

The set {x(A)|[ARn] = [A]} for A ∈ Cln+m running through ideal classes A projecting down to
a given ideal class [A] ∈ Cln is in bijection with O/lm by associating u to A in (3.3) (see [H04,
Proposition 4.2]).

3.2. Geometric modular forms. Let k be a weight of T = ResO/ZGm, that is, k : T (A) =

(A ⊗Z O)× → A× is a homomorphism given by (a ⊗ ξ)k =
∏

(aξσ)kσ for integers kσ indexed by
field embeddings σ : F ↪→ Q. Let B be a base ring, which is a W–algebra. We consider quadruples
(X,Λ, η(p), ω)/A for a B–algebra A with a differential ω generating H0(X,ΩX/A) over A⊗Z O. We
impose the following condition:

(3.4) η(p)(L̂
(p)
c ) = T (X) ⊗Z Ẑ(p) for Lc = O ⊕ c∗ with a fixed c.

Under this condition, as seen in [H04, §2.3] and [HMI, §4.3.1], the classification up to prime-to–p
isogenies of the quadruples is equivalent to the classification up to isomorphisms. A modular form
f (integral over B) of weight k is a functorial rule of assigning a value f(X,Λ, η(p), ω) ∈ A to

(the A–isomorphism class of) each quadruple (X,Λ, η(p), ω)/A (called a test object) defined over a

B–algebra A. Here Λ is a c–polarization which (combined with η(p)) induces Lc ∧ Lc
∼= c∗ given
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by ((a ⊕ b), (a′ ⊕ b′)) 7→ ab′ − a′b. The Tate test object at the cusp (a, b) for two fractional ideals
with a∗b = c∗ is an example of such test objects. The Tate semi-AVRM Tatea,b(q) is defined over

Z[[qξ]]ξ∈(ab)+ and is given by the algebraization of the formal quotient (Ĝm ⊗ a∗)/qb (see [HMI,
§4.2.5] for details of this construction). The rule f is supposed to satisfy the following three axioms:

(G1) For a B–algebra homomorphism φ : A→ A′, we have

f((X,Λ, η(p), ω)×A,φ A′) = φ(f(X,Λ, η(p), ω)).

(G2) f is finite at all cusps, that is, the q–expansion of f at every Tate test object does not have
a pole at q = 0.

(G3) f(X,Λ, η(p), αω) = ξ−kf(X,Λ, η(p), ω) for ξ ∈ T (A).

We write Gk(c;B) for the space of all modular forms f satisfying (G1-3) for B–algebras A. We put

(3.5) Gk(B) =
⊕

c

Gk(c;B),

where c prime to `p runs over a representative set of strict ideal classes of F .

An element g ∈ G(A(∞)) fixing L̂c acts on f ∈ Gk(c;B) by

f |g(X,Λ, η(p), ω) = f(X,Λ, η(p) ◦ g, ω).

For a closed subgroup K ⊂ Kc = GL(L̂c) ∩ G1(A
(∞)), we write Gk(c;K;B) for the space of all

K–invariant modular forms; thus,

Gk(c;K;B) = H0(K,Gk(c;B)).

Take an O–ideal N prime to pc. Then the N–component of Kc is SL2(ON). Let

Γ0(N) =
{(

a b
c d

)
∈ SL2(ON)

∣∣c ∈ NON

}
and Γ1(N) =

{(
a b
c d

)
∈ Γ0(N)

∣∣a ≡ b ≡ 1 mod NON

}
.

Assume that N is prime to pl and define for an open subgroup KlN ⊂ SL2(OlN)

Gk(KlN;B) =
⊕

c

Gk(c;KlN ×K(plN)
c ;B).

A W–algebra B is called a p–adic algebra if B = lim←−n B/p
nB. We write ηord for the pair of level

structures (ηordp : µp∞ ⊗ d−1 ↪→ X[p∞], η(p)). A p–adic modular form f over a p–adic W–algebra

B is a functorial rule of assigning a value in A to triples (X,Λ, ηord)/A with c–polarization class Λ
satisfying an obvious version of (G1-2) for p–adic B–algebras A (not just B–algebras). In general,
we do not impose (G3) on p–adic modular forms. See [HMI, §4.2.8] for more details about p-adic
modular forms. We write V (c;B) for the space of p–adic modular forms defined over B. We again
define

(3.6) V (B) =
⊕

c

V (c;B) and V (KlN;B) =
⊕

c

V (c;KlN ×K(plN)
c ;B),

where V (c;K;B) = H0(K, V (c;B)). For f ∈ V (B), we write fc ∈ V (c;B) for the c–component of f ,
and we say that f is of level N if f in either in Gk(KlN;B) or in V (KlN;B) for KlN ⊂ SL2(OlN)
with KN = Γ0(N) or Γ1(N).

Since ηordp induces the identification η̂ordp : Ĝm ⊗ O∗ ∼= X̂ for the formal completion of X along

the origin, by pushing forward the differential dtt , we can associate (X,Λ, η(p), η̂ordp,∗
dt
t ) to a quadruple

(X,Λ, ηordp , η(p)). In this way, any modular form f satisfying (G1-3) can be regarded as a p–adic
modular form by

f(X,Λ, ηord) = f(X,Λ, η(p), η̂ordp,∗
dt

t
).

By the q–expansion principle (cf. [HMI, Corollary 4.16] or [PAF, Corollary 4.23]), we thus have
a canonical embedding of Gk(B) into V (B) which keeps the q–expansion. A p–adic modular form
associated to a modular form in Gk(B) satisfies the following replacement of (G3):

(g3) f(X,Λ, ξ · ηordp , η(p)) = ξ−kf(X,Λ, ηordp , η(p)) for ξ ∈ O×
p .

Although we do not impose the condition (G3) on p–adic modular forms f , we limit ourselves
to the study of forms satisfying the following condition (G3′) in order to define the modified value
f([A]) later at CM points x(A) truly independent of the choice of A in its proper ideal class. Here
abusing our notation, x(A) is the quadruple (X(A),Λ(A), ηord(A), ω(A))/W introduced in [H04,
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§2.1]). We consider the torus TM = ResR/ZGm and identify its character group X∗(TM ) with

the module Z[Σ t Σc] of formal linear combinations of embeddings of M into Q. By the identity:
(X(ξA),Λ(ξA), ηord(ξA) = ξηord(A))/W ∼= (X(A), ξξcΛ(A), ηord(A) ◦ ρA(ξ))/W , we may assume
that for k, κ ∈ Z[Σ],

(G3′) f(x(ξA)) = f(ρR(ξ(l))(x(A))) = ξ−k−κ(1−c)f(x(A)) for ξ ∈ TM (Z(`)).

It is known that for the p–adic differential operator dσ of Dwork-Katz ([K78] 2.5-6) corresponding
to 1

2πi
∂
∂zσ

for σ ∈ Σ, θκf (θκ =
∏
σ d

κσ
σ ) satisfies (G3′) if f ∈ Gk(B).

3.3. Hecke operators. Suppose that the l–component Kl of the level subgroup is equal to Γ0(l
ν)

(ν ≥ 0). Let e1 = t(1, 0), e2 = t(0, 1) be the standard basis of F 2 ⊗ A(p∞). Then, under (3.4), for

each triple (X,Λ, ηord)/A with ηord = ηordp × η(p),

C = ηl(l
−νOle1 +Ole2)/ηl(O

2
l )

gives rise to an A–rational cyclic subgroup of X of order lν, that is, a finite group subscheme defined
over A ofX/A isomorphic to O/lν étale locally. Since Γ0(l

ν) fixes (l−νOle1+Ole2)/O
2
l , the level Γ0(l

ν)

moduli problem is equivalent to the classification of quadruples (X,Λ, C, η
(l)
ord)/A for a subgroup C

of order lν in X, where η
(l)
ord is the (p–ordinary) level structure outside l. Thus we may define for

f ∈ Gk(Γ0(l
νN);B) the value of f at (X,Λ, C, η(pl), ω) by f(X,Λ, C, η(pl), ω) := f(X,Λ, η(p), ω).

When f is a p–adic modular form, we replace the ingredient ω by the ordinary level structure ηordp

in order to define the value f(X,Λ, C, η(pl), ηordp ).
We shall define Hecke operators T (1, ln) and U(ln) over (p–adic) modular forms of level K (with

Kl = Γ0(l
ν)). The operator U(ln) is defined when ν > 0, and T (1, ln) is defined when ν = 0. Since

l is prime to p (and B is a W–algebra), any cyclic subgroup C ′ of X of order ln is isomorphic to
O/ln étale locally. We make the quotient π : X � X/C ′, and Λ, ηordp and ω induce canonically a

polarization π∗Λ, a canonical level structure π∗ηordp = π ◦ ηordp , π∗η(pl) = π ◦ η(pl) and a differential

(π∗)−1ω on X/C ′. If C ′ ∩ C = {0} for the Γ0(l
ν)–structure C (in this case, we call that C ′ and C

are disjoint), π(C) = C + C ′/C ′ gives rise to the level Γ0(l
ν)–structure on X/C ′. We write X/C ′

for the new test object of the same level as the test object X = (X,Λ, C, η
(l)
ord, ω) we started with.

When f is p–adic, we suppose not to have ω in X , and when f is classical, we ignore the ingredient
ηordp in X . Then we define (for ν > 0)

(3.7) f |U(ln)(X) =
1

N(ln)

∑

C′

f(X/C ′),

where C ′ runs over all étale cyclic subgroups of order ln disjoint from C. The newly defined f |U(ln)
is a modular form of the same level as f and U(ln) = U(l)n. Since the polarization ideal class of X/C ′

is given by cln for the polarization ideal class c of X, the operators U(ln) permute the components
fc.

We recall some other isogeny actions on modular forms. For fractional ideals z in F , we can think
of the association X 7→ X ⊗O z for each AVRM X. This operation will be made explicit in terms of
the lattice L = π1(X) in Lie(X). There are a natural polarization and a level structure on X ⊗ z

induced by those of X. Writing (X,Λ, η)⊗z for the triple made out of (X,Λ, η) after tensoring z, we
define f |〈z〉(X,Λ, η) = f((X,Λ, η) ⊗ z) (see [PAF, §4.1.9] for more details of this definition, though
〈z〉 here is 〈z−1〉 in [PAF, §4.1.9]). For X(A), we have 〈z〉(X(A)) = X(zA).

(3.8) The effect of 〈z〉 on the Fourier expansion at (a, b) is given by that at (za, z−1b)

(e.g., by [PAF, §4.2.9], noting 〈z〉 here is 〈z−1〉 in [PAF]).

Let q be a prime ideal of F outside pl. For a test object (X,Λ, C, η
(q)
ord, ω) of level Γ0(q), we can

construct canonically its image under q–isogeny:

[q](X,Λ, C, η
(pq)
ord , ω) = (X′,Λ, π∗η

(pq)
ord , ηq, (π

∗)−1ω)

for the projection π : X � X′ = X/C, where ηq = ηq ·GL2(Oq) for any level q–structure ηq identi-

fying Tq(X
′) with O2

q. Then Then we have a linear operator [q] : V (Γ1(l
νN);B)→ V (Γ0(ql

νN);B)

given by f |[q](X) = f([q](X)). See [H04, (4.14)] for the description of this operator in terms of the
lattice of X.
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If q splits into QQ in M/F , choosing ηq induced by

X(A)[q∞] ∼= MQ/RQ ×MQ/RQ
∼= Fq/Oq × Fq/Oq,

we always have a canonical level q–structure on X(A) dependent on the choice of the factor Q. Then
[q](X(A)) = X(A[Q]−1) for [Q] ∈ Cl∞. When q ramifies in M/F as q = Q2, X(A) has a subgroup
C = X(A)[Qn ] isomorphic to O/q for Qn = Q∩Rn; so, we can still define [q](X(A)) = X(AQ−1

n ) =
X(A[Q]−1).

The effect on the q–expansion of the operator [q] can be computed similarly to 〈z〉 (e.g. [DR80]
5.8; see also [PAF] 4.2.9), and the q–expansion of f |[q] at the cusp (a, b) is given by the q–expansion
of f at the cusp (qa, b).

These operators [q] and 〈z〉 change polarization ideals (as we will see later in [H04, §4.2]); so, they
permute components fc. By the q–expansion principle, f 7→ f |[q] and f 7→ f |〈z〉 are injective.

4. Distribution attached to U(l)-eigenform

We recall notation and construction of a measure dϕf,n on Cl−n for a mod p modular form f/F

such that f |U(l) = af . If 0 6= a ∈ F, we can patch together into a measure dϕf on Cl−∞. If a = 0,
this is just a collection of infinitely many measures {dϕf,n}n (see Remark 4.1).

4.1. Anti-cyclotomic measure. Choose a U(l)-eigenform f ∈ V (Γ1(l
νN);A) with a central char-

acter for a p-adic ring A in which ` is invertible. We suppose that f |U(l) = (a/λ(l)N(l))f for either
a unit a ∈ A or a = 0. This f is an element of V (Γ1(l

νN);A) defined over the non-connected Hilbert
modular Shimura variety whose geometrically connected components are indexed by the strict class
group Cl+F of F . Our geometrically irreducible component V carries x(A) for A ∈ Clalg ∩ K0 for

K0 := Ker(Cl∞ � Cl0). Anyway f(x(A)) is well defined for all A ∈ Clalg possibly x(A) sitting in
another geometrically connected component.

Choose a Hecke character λ of M such that

(f1) λ has infinity type k + κ(1 − c) of conductor C which is a product of split primes over F
(k, κ ∈ Z[Σ]),

(f2) Decompose C = FFc for integral ideals F and Fc such that F + Fc = R, F ⊂ Fcc, the Neben
character of f as in [H07, (S1-3)] is given by (λFc , λF, (λ|F×

A

)| · |2FA
).

The existence of the character satisfying (f2) implies kσ = kτ for any two embeddings σ, τ ∈ Σ; so,
hereafter, often we identify k with the integer kσ. It might appear strange to have the absolute value
character | · |2FA

in the description of the central character (λ|F×

A

)| · |2FA
of f , but when we extend

a geometric modular form to an automorphic form on G(A), we multiply the factor | det(g)|A as
the adelic Fourier expansion has the factor | det(g)|A in front of the Fourier expansion sum in [HMI,
(2.3.15)]; so, the central action on a geometric modular form and the adelic one has this discrepancy.
See [HMI, §2.3.2, §4.3.7] for more details on the relation of geometric Hilbert modular forms and
adelic ones. Then by (f1) and (G3′), f([A]) = λ(A)−1f(x(A)) for A prime to p depends only on the
class of A in Cl−n = Cln/ClF .

For the p–adic avatar λ̂(x) = λ(xR)x
k+κ(1−c)
p , we also have f([A]) = λ̂(A)−1f(x(A)). This new

definition is valid even for A with non-trivial common factor with p. Then often we regard f as a

function of C(∞) =
⊔
nCn (embedded into Sh

(p)
/W or Ig/F by A 7→ x(A)).

Writing X(A)/C = X(A) for C 6= X(A)[ln] for Rn-proper ideal A prime to l, A is a proper
Rn+1-ideal such that l(RnA) = A. Since there are N(l) proper Rn+1-ideal such that l(RnA) = A if
n > 0, we have

(a/λN(l))λ(A)f([A]) = (a/λN(l))f(x(A)) = f |U(l)(x(A)) = N(l)−1
∑

A:l(RnA)=A
f(x(A))

= N(l)−1λ(A)
∑

A:l(RnA)=A
f([A])

λ(A)=λ(l)−1λ(A)
= λN(l)−1λ(A)

∑

A:l(RnA)=A
f([A]) if n > 0.

Since f([A]) only depends on the class of Cl−n+1, this implies

(1) a · f([A]n) =
∑

[B]n+1 :Cl−
n+13[B]n+1 7→[A]n

f([B]n+1),

(2) f |U(l)([A]n) = λN(l)−1
∑

[B]n+1∈Cl−n+1 :[B]n+1 7→[A]n
f([B]n+1).
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We can rewrite the above relation (1) as

(4.1) a · f([A]n) =
∑

[B]n+1∈Cl−n+1 :[B]n+1 7→A

f([B]n+1) if n > 0.

More generally as seen in [H04, (3.8)], we get, for integers n > m ≥ 1,

(4.2)
∑

[B]∈Cl−n , [B]n 7→[A]m∈Cl−m

f([B]n) = an−mf([A]m),

where A runs over all elements in Cl−n which project down to lm−nA ∈ Cl−m. The second relation
(2) can be written

(C1) f |U(l)([A]n) = λ(l)−1f([B]n+1) if f([A]n+1) = f([B]n+1) for any [B]n+1 with [RnB]n = [A]n,
(C2) f |U(lm)([A]n) = λN(l)−m

∑
[B]n+m∈Cl−

n+m :[B]n+m 7→[A]n
f([B]n+m).

For each function φ : Cl−∞ → A factoring through Cl−n , assuming a ∈ A×, we define

(4.3)

∫

Cl−∞

φdϕf = a−n
∑

A∈Cl−n

φ(A−1)f([A]).

Then for n > m ≥ 1, assuming a ∈ A×, we find

a−n
∑

A∈Cl−n

φ(A−1)f([A]) = a−m
∑

A∈Cl−m

φ(A−1)am−n ∑

A∈Cl−n , A7→A

f([A])

(4.2)
= a−m

∑

A∈Cl−m

φ(A−1)am−nf |U((l)n−m)([A]) =

∫

Cl−∞

φ(x)dϕf(x).

Thus ϕf gives an A–valued distribution on Cl−∞ well defined independently of the choice of m for
which φ factors through Cl−m, because U(lm) = U(l)m.

Remark 4.1. The assumption that a ∈ A× is not essential. If a = 0, we just define for each finite
n and a function φ : Cl−n → A

(4.4)

∫

Cl−n

φdϕf =
∑

A∈Cl−n

φ(A−1)f([A])

without dividing by a. Though we lose the distribution relation (4.4) above, we have well defined
value

∫
Cl−n

φdϕf dependent on n. Changing ∞ by n, all the formulas independent of the distribution

relation holds even when a = 0. So hereafter we allow the case where a = 0, and as a convention,
we use n in place of ∞. If a ∈ A×, we can replace n by ∞ since

∫
Cl−∞

=
∫
Cl−n

as long as the integral

factors through Cl−n . Thus if a = 0, by (4.1),
∫
Cl−n

φdϕf 6= 0 happens for a unique n > 0. This n is

a minimal n for which φ factors through Cl−n . To write formulas uniform, we define a = 1 if a = 0
and a = a if a 6= 0 in F.

Classical modular forms can be defined over the integer ring of a number field; so, we assume that
f is defined over a discrete valuation ring V (of residual characteristic p) in a number field E. We
assume that E is the smallest field containing M ′ for the reflex (M ′,Σ′) of (M,Σ) and the values

λ(A) for all M -fractional ideals A. We write P|p for the prime ideal of the p–integral closure Ṽ of
V in Q corresponding to ip : Q ↪→ Qp. More generally, if f = θκg for a classical modular form g
integral over V, the value f([A]) is algebraic, abelian over M ′ and P–integral over V by a result of
Shimura and Katz (see [EAI, §8.1.1] and [K78]).

Let f = θκg for g ∈ Gk(Γ0(l);V). Suppose f |U(l) = (a/λ(l)N(l))f for a giving a unit of

Ṽ/P. For the moment, let ϕ be the measure associated to f with values in A = Ṽ . We have a
well defined measure ϕ mod P. Let Ef be the field of rationality of x(A) for all [A] ∈ Clalg over
E[µ`∞ ]. Then Ef/E is an abelian extension unramified outside `, and we have the Frobenius element
σb ∈ Gal(Ef/E) (that is, the image of b under the Artin reciprocity map) for each ideal b of E
prime to `. By Shimura’s reciprocity law ([ACM] 26.8), writing (M ′,Σ′) for the reflex CM type of

(M,Σ), we find for σ = σb, x(A)σ = x(N(b)−Σ′A) for the norm N : E → M ′. As for ηordp (A), we

find σ ◦ ηordp (A) = uηordp for u ∈ R×
Σp

. Since Ap ∼= Rp, we have X(R)[p∞] ∼= X(A)[p∞] as a Galois
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module. Thus we conclude u = ψE(b) for the Hecke character ψE of E×
A /E

× giving rise to the zeta

function of X(R). From this, we see f([A])σ = f([N(b)−Σ′A]) for any ideal b, since ψE(b) ∈ M
generates the ideal N(b)Σ

′ ⊂M ([ACM] Sections 13 and 19) and hence ψE(b)k+κ(1−c) = λ(N(b)Σ
′

).
We then have

(4.5) σ ·
(∫

Cl−n

φ(x)dϕf(x)

)
=

∫

Cl−n

σ ◦ φ(N(b)Σ
′

x)dϕf(x),

where N(b) is the norm of b over M ′. Writing Fq for q := pr0 for the residue field of E ∩ P, any
modular form defined over Fq is a reduction modulo P of a classical modular form defined over V
of sufficiently high weight. Since ξΣ ∈ M ′ for ξ ∈ M as the reflex of Σ′ is a sub-CM-type of Σ,
we have Fq ⊂ Fq. Thus the above identity is valid for σ = Φs (s ∈ Z) for the Frobenius element
Φ ∈ Gal(F/Fq). In this case, N(b) is a power of a prime ideal p|p in M ′.

We now assume that A = F = Ṽ/P and regard the measure ϕf as having values in F. Then (4.5)
shows that if φ is a character χ of Cl−n with arbitrary n > 0, for σ ∈ Gal(F/Fq),

(4.6)

∫

Cl−n

χ(x)dϕf(x) = 0 ⇐⇒
∫

Cl−n

σ ◦ χ(x)dϕf(x) = 0.

Let Fq [µ`] be the finite subfield of F generated by all `–th roots of unity over Fq ; so, it is the field
of rationality of λ, f and µ` over the residue field of M ′ ∩ P.

4.2. Measure projected to Γ and Γn. Recall Γn which is the image of Γ in Cl−n . Since each
fractional R–ideal A prime to l defines a class [A] in Cl−∞, we can embed the ideal group of fractional
ideals prime to l into Cl−∞. We write Calg for its image. Thus the projection of [Q] in Cl−n is [Q]n
as specified for the integral ideal Q above. Then ∆alg = ∆− ∩ Calg is generated by prime ideals
of M ramified over F . We choose a complete representative set for ∆alg made of product of prime
ideals in M ramified over F prime to pl. We may choose this set as {R−1|r ∈ R}, where R is made
of square-free product of primes non-principal outside l in F ramifying in M/F , and R is a unique
ideal in M with R2 = r. Note that {R|r ∈ R} is a complete representative set for 2–torsion elements
in the quotient Cl−0 .

In [H04] and [H07], we used Cln in place of Cl−n ; so, we had to choose a complete representative
set S of the image ClF of ClF in Cln, which is not necessary. Indeed, since f([A]) = f([sA]) for an

O-ideal s by our choice of λ, we have hf([A]) =
∑

s∈S f([sA]) for h := |ClF |, and if we make our

choice of λ, this implies the triviality of the measure if p|h. To avoid this, we do not sum over S.
We fix a character ψ : ∆− → F×, and define

(4.7) fψ =
∑

r∈R
λψ−1(R)f |[r].

In [H04] and [H07], fψ is defined by

∑

r∈R
λψ−1(R)

(∑

s∈S
ψλ−1(s)f |〈s〉

)
∣∣[r],

and we do not follow this definition.
Choose a complete representative set Q for Cl−∞/Γ∆alg made of primes Q of M split over F

outside pl except for the trivial element R representing 1 ∈ Cl−∞/Γ∆alg. Thus q := NM/F (Q) is a

prime ideal of O if Q 6= R (and q = O if Q = R). We choose η
(p)
n out of the base (w1, w2) of R̂n

so that at q = Q ∩ F , w1,q = (1, 0) ∈ RQ × RQc = Rq and w2,q = (0, 1) ∈ RQ × RQc = Rq. Since
all operators 〈s〉, [q] and [r] commute with U(l), fψ|[q] is still an eigenform of U(l) with the same

eigenvalue as f . Thus in particular, we have a measure ϕfψ|[q]. We then define another measure ϕψf
on Γ by

(4.8)

∫

Γn

φdϕψf =
∑

Q∈Q
λψ−1(Q)

∫

Γn

φ|Qdϕfψ|[q],

where φ|Q(y) = φ(y[Q]Γ) for the projection [Q]Γ in Γ of the class [Q] ∈ Cl−∞. As already remarked,
φ 7→ φ|Q is a transcendental action unless Q = R. If Q = R, φ|Q = φ and f |[q] = f .
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Lemma 4.2. If χ : Γn → F× and ψ : ∆− → F× are characters, we have∫

Γn

χdϕψf =

∫

Cl−n

χψdϕf .

Here recall the image Γn of Γ in Cl−n .

Proof. For a proper Rn–ideal A, by the above definition of these operators,

f |[r]|[q]([A]) = λ(A)−1f(x(Q−1R−1A)).

Since χ = ψ on ∆−, we have∫

Γn

χdϕψf =
∑

Q∈Q

∑

r∈R
(λχ−1ψ−1)(QR)

∑

A∈Γn

χ(A)f |[r]|[q]([A])

=
∑

A,Q,r
χψ(Q−1R−1A)f([Q−1R−1A]) =

∫

Cl−n

χψdϕf ,

because Cl−n =
⊔

QR[Q−1R−1]Γn. �

We write Fq := Fq [ψ] ⊂ F for the field of rationality of ψ over Fq . Then σ ∈ Gal(F/Fq) preserves

dϕψf . Then (4.6) shows that if χ is a character of Γ, for σ ∈ Gal(F/Fq),

(4.9)

∫

Γn

χ(x)dϕψf (x) = 0 ⇐⇒
∫

Γn

σ ◦ χ(x)dϕψf (x) = 0.

4.3. Trace relation. For any finite extensions κ/κ′/Fq[µ`], we consider the trace map: Trκ/κ′ (ξ) =∑
σ∈Gal(κ/κ′) σ(ξ) for ξ ∈ κ. Recall the image Γn of Γ in Cln. Define

(4.10) fQψ ([A]) =
∑

Q∈Q
ψ(Q)−1fψ([AQ−1][Q]Γ) for the projection [Q]Γ ∈ Γ of [Q].

Let χ : Γn → F× be a character. Suppose that Im(χ) ∩ Fq[µ`]
×

has order `r and that χ has order
`ν . Note that 1 ≤ r ∈ Z. Fix j ≥ r, and write

(4.11) Φ = Φn := Γn ∩ χ−1(Fq[µ`j ]
×)

and [Ay] = [Ay]n for the image of y ∈ Γ in Γn. By (3.3), we have an isomorphism of O-modules:

(4.12) O/lj ∼= Φn by u 7→ %(u/$j)x(Rn+j).

Note that [Rn−1Ay]n = [Ay]n−1 for all n. Recall a ∈ F× defined in Remark 4.1. If ν ≥ j, for

d = [Fq[χ] : Fq[µ`j ]] = [Im(χ) : Im(χ) ∩ Fq[µ`]
×] = `ν−j ,

(4.13)

∫

Γn

TrFq[χ]/Fq[χ(`),µ`] ◦ χ(y−1x)dϕψf (x)

=
d

an

∑

A∈Γn:Ay−1∈Φn

χ(y−1A)fQψ ([A]) =
d

an

∑

[A]∈Φn

χ(A)fQψ ([A][Ay]),

because for an `–power root of unity and a finite extension κ/Fq[µ`j ], ζ ∈ µ`ν − µ`j ,

(4.14) Trκ[µ`ν ]/κ[µ
`j

](ζ
s) =

{
`ν−jζs if ζs ∈ κ[µ`j ] and κ[µ`] ∩ µ`∞ = µ`j

0 otherwise.

Thus by (4.9), we have

(4.15)
∑

[A]∈Φn

χ(A)fQψ ([A][Ay]) = 0 if

∫

Cl−n

χψdϕf = 0.

Let F(Φn[Ay],F) be the space of functions φ : Φn[Ay] → F. Consider the linear form `χ :
F(Φn[Ay],F) → F given by `χ(φ) =

∑
[A]∈Φn

χ([A])φ([A][Ay]). Since the orthogonal complement

of the space spanned by {`χσ}σ∈Gal(Q[µ`ε ]/Q) in F(Φn,F) under the pairing

〈φ, φ′〉 =
∑

[A]∈Φn

φ([A][Ay])φ′([A])
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is spanned by characters of order ≤ `ε−1. If ε = 1, the orthogonal complement is made of con-
stant functions on Φn. Thus assuming that the integral (4.13) vanishes with Φn ∼= µ` and that
Gal(Fq[µ`]/Fq) = Gal(Q[µ`]/Q), [A] 7→ fQψ ([A][Ay]) is a constant function of [A] whose value is

f([Ay ]), for α1 = diag[1, $l], we have

`fQψ ([Ay]n) =
∑

[B]∈Φny

fQψ ([B]n) =
∑

u mod l

fQψ |(%(u/$l)α1)([Ay]n−1) = afQψ ([Ay]n−1).

This is easy to see if we choose Ay prime to l (i.e., Ay,l = Rn,l). Hereafter exclusively the latter r
for the integer defined by

(4.16) µ`∞ ∩ Fq[µ`]
× = µ`r .

5. Proof of Theorem 0.1

Write Ĝm/Z` for the formal completion over Z` at the origin of Gm(F`). Let Hom(Γ, µ`∞) embed

into Gd
m/Z`

and Ĝd
m/Z`

by choosing a basis (γ1, . . . , γd) of Γ over Z` and sending χ ∈ Hom(Γ, µ`∞)

to (χ(γ1), . . . , χ(γd)). A subset S of Hom(Γ, µ`∞) therefore has its Zariski closure S (resp. Ŝ) in

Gd
m(Q`) (resp. Ĝd

m(Q`)). Since Aut(Ĝd
m) = GLd(Z`), the isomorphism class of Ŝ is independent of

the choice of the basis. As we will see later for our choice of S that dim Ŝ = dimS, and hence S
being a proper Zariski closed set is independent of the choice of basis.

Fix a character ψ : ∆→ F×. Let

X = Xψ := {χ ∈ Hom(Γ, µ`∞)|
∫

Cl−n

χψdϕf 6= 0 for some n}.

If a = 0, as seen in Remark 4.1,
∫
Cl−n

χψdϕf 6= 0 for one value n; in other words, for n given by

cond(χ) = ln, the integral is not defined over Cln′ for n′ < n and the integral vanishes for n′ > n.
On the contrary, if a 6= 0, the vanishing (and non-vanishing) of the integral is independent of n as
long as it is well defined.

Assume the following condition:

(5.1) The Zariski closure Xψ in Gd
m(Q`) of the set Xψ has dimension < d,

and we are going to deduce absurdity.

5.1. Proof. We prepare a lemma. Let C` be the `-adic completion of Q`. Let W be a discrete
valuation ring finite over the Witt vector ring W (F`) inside C` for an algebraic closure F` of F`, and

write K for its quotient field. For a formal subscheme X of Ĝm/W , we write X(C`) := X(W) for

the integral closure W of W in C`. The map t 7→ tzn is an automorphism of µ`n for zn ∈ (Z/`nZ)×.
Take a sequence of zn ∈ Z lifting zn and assuming {zn} converges to z ∈ Z×

` . Then ζ 7→ tzn gives

rise to an automorphism z ∈ Z×
` of µ`∞ . In this way, `-adic unit z acts on µd`∞ . If z ∈ Q∩Z×

` prime

to `, this automorphism of µd`∞ extends to an isogeny t 7→ tz of Gd
m. If we identify µ`∞ = Q`/Z`,

t 7→ tz turns into a multiplication τ 7→ zτ by z on Q`/Z`. In the following lemma, we take z = pm

for m ∈ Z and a prime p 6= `.

Lemma 5.1. Let p and ` be distinct primes and r > 0 be an integer. Let X be a subset of µd`∞ and

X be the Zariski closure of X in Gd
m(Q`) for d ≥ 1. Suppose that X is a subscheme stable under

t 7→ tp
rn

for all n ∈ Z and a fixed r > 0 (this means X p
r

⊂ X ). Assume dimX < d. Identify
µd`∞(Q`) with (Q`/Z`)

d as `–divisible groups. Then, for a given d-tuple (a1, . . . , ad) of non-negative
integers, we can find a sufficiently large pr–power P = pj with an r-multiple j = rj′ and a positive
integer N such that there exists a sequence of subsets {Υn}∞n=N outside X (Q`) such that

Υn =

{
(
P k1e1
`n+a1

+ · · ·+ P kded
`n+ad

) mod Zd`

∣∣∣(ki) ∈ Zd
}

if we choose a base {ei} of Zd` suitably.

Proof. We choose the pr–power P so that P ≡ 1 mod `. Let ΓP = P Z` ⊂ Z×
` , which is an open

subgroup of 1 + `Z`. Let X [`∞] := X (Q`) ∩ µd`∞(Q`). Since X p
r

⊂ X , we have X [`∞]p
r ⊂ X [`∞];

so, the Zariski closure of X [`∞] is stable under t 7→ tp
r

. We may replace X by the Zariski closure of
X [`∞] as the lemma only concerns about X (Q`)∩µd`∞(Q`), and after the replacement, the stability
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X p
r

⊂ X is intact. If X (Q`) ∩ µd`∞(Q`) is a finite set, the assertion plainly follows; so, we may

assume that X (Q`)∩µd`∞(Q`) is infinite. Since X is noetherian, we may also assume that dimX > 0

as otherwise, X (Q`) is finite.
The variety X is defined over a finite extension K of Frac(W (F`)). Write W be the `-adic integer

ring of K with maximal ideal mW. Let X /W be the schematic closure of X /K in Gd
m/W . Writing

Gd
m/W = Spec(R) for R = W[t1, t

−1
1 , . . . , td, t

−1
d ] and X = Spec((R ⊗W K)/a) with an ideal a of

R⊗W K, X /W = Spec(R/A) for A := a ∩R. Thus X /W is flat over W. Let

m = mW + (t1 − 1, . . . , td − 1) ⊂W[t1, t
−1
1 , . . . , td, t

−1
d ]

and Â be the m-adic closure of a in R̂ = W[[T1, . . . , Td]] = lim←−n R/m
n with Ti = ti − 1. We write

M̂ for m-adic completion of an R-module M and gr(M) =
⊕∞

j=0 mnM/mn+1M (the graded module

over gr(R)). Note that Ĝd
m/W = Spf(R̂) is the formal completion of Gd

m/W along the identity of

Ĝm/F`
. Define X̂ := Spf(A) for A := W [[T1, . . . , Td]]/Â, which is a formal subscheme of Ĝd

m/W over

W. Since A = R/A⊗R W [[T1, . . . , Tn]] = R̂/A, X̂ is a flat over W. Since dim(A) = dimgr(A) =

dimgr(R/A) = dim(R/A) (e.g., [CRT, Theorem 15.7]), we find dim X̂ = dimX < d.

Since X (Q`) ∩ µd`∞(Q`) 6= ∅ and µd`∞ ×W F` has only one geometric point, we see X̂ (W[µ`∞ ]) ⊃
X (Q`) ∩ µd`∞(Q`). Since X p

r

⊂ X , we still have X̂ pr ⊂ X̂ inside Ĝd
m/W . Thus X̂ is stable under

an open subgroup U of 1 + `Z`. Here an element s ∈ 1 + `Z` acts on Ĝd
m by t 7→ ts. Since X̂

is noetherian, it has finitely many geometrically irreducible components, and U permutes them.
Thus replacing U by its open subgroup, we may assume that U fix each geometrically irreducible
component. By extending scalars, we may assume that each geometrically irreducible component is

defined over W. Then by Lemma 5.5 below, X̂ =
⋃
ζ∈Z,i ζTζ,i, where Tζ,i is a formal subtorus of

Ĝd
m/W and Z is a finite subset of µd`∞(W[µ`∞ ]).

We first assume that Z = {1}. By this assumption, X̂ is a union of subtori {Ti}i∈J with |J | <∞
and dimTi < d. Thus we have its `-adic Tate module TTi = lim←−n T [`n] ⊂ T := Tµd`∞ . Put T X̂ :=⋃
i TTi We identify µd`n = `−nT/T ∼= T/`nT ; so, µd`∞ = Q`T/T . In particular, X [`n] = X ∩ µd`n

is the image of
⋃
i Q`TTi in µd`n = `−nT/T . Then we can choose a base {e1, . . . , en} of T over Z`

outside T X̂ so that Z`e ∩ T X̂ = {0} for e = e1 + e2 + · · ·+ ed. Then the `–adic distance from the

Q`-span Q`T X̂ =
⋃
i Q`TTi to the point e

`n is larger than or equal to c`n for a positive constant c
independent of n. Thus we can find sufficiently large power P of pr (`–adically very close to 1) so
that Un = ΓP

e1
`a1+n + · · ·+ ΓP

ed
`ad+n

for ΓP = P Z` gives rise to an open neighborhood of e
`n

disjoint

from Q`T X̂ . Then the image Υn of Un in µd`∞ is disjoint from X̂ [`∞] and hence from X for all n ≥ 1.
When Z 6= {1}, we consider the subgroup 〈Z〉 of µd`∞ generated by Z. The group 〈Z〉 is finite.

Consider the projection π : Ĝdm → Ĝdm/〈Z〉. The image of π(X̂ ) under π is a union of formal subtori
and hence stable under scalar multiplication by elements in Z`. Using the result proven under the

condition Z = {1} applied to π(X̂ ), we write Υ′
n for the sets constructed for π(µd`∞) = µ`∞/〈Z〉.

Then we find that for n > N any ΓdP–orbit of an element in the pull-back image Υn := π−1(Υ′
n)

gives a desired set Υn ⊂ µd`∞(Q`). This finishes the proof. �

Choose a Z`-basis γ1, . . . , γd for d = rankZ` Γ. Then identify Hom(Γ, µ`∞) with µd`∞ by χ 7→
(χ(γ1), . . . , χ(γd)) ∈ µd`∞ ⊂ Gd

m. Here is a more accurate version of Theorem 0.1.

Theorem 5.2. Suppose that for a given class v ∈ (Ol/l
j)× with a sufficiently large j ≥ r > 0 for

r as in Theorem 0.1 and a cusp (a, b), there exists ξ ∈ ab ∩ −v such that a(ξ, fψ) 6= 0 in F. Then
the set of characters χ ∈ Hom(Γ, µ`∞) with v(χ) = v and non-vanishing

∫
Cln

ψχdϕf 6= 0 for n > 0

given by cond(χ) = ln is Zariski dense in Gd
m(Q`). If rankZ` Γ = 1, we can take j = r for r as in

(4.16).

Though the minimal possible r depends on l, the assumption in the theorem is in appearance
weaker than

(h) There exists a strict ideal class c of F such that c(Q−1R−1s) is in c for some (Q,R, s) ∈
Q × S × R and for any given integer j ≥ r > 0, the N(l)j modular forms fψ,c| ( 1 u

0 1 ) for
u ∈ l−j/O are linearly independent,
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which is assumed in [H04, Theorem 3.3].

Proof. Let

X = {χ ∈ Hom(Γ, µ`∞) ↪→ Gd
m/Q`

|
∫

Γ

χdϕψf 6= 0 and v(χ) = v}

and X̂ (resp. X ) be the formal Zariski (resp. Zariski) closure of X in Ĝd
m/W (resp. Gd

m). Note that

X P ⊂ X and X̂ P ⊂ X̂ . Suppose X is a proper Zariski closed subset of Gd
m and get a contradiction.

First suppose d = 1. Then X is a finite set. Take j := r in (4.11) and (4.12). So there exists B > 0
such that if the conductor of a character χ is ln with n > B, by (4.15), identifying Φn = Ol/(lOl)

r

as in (4.12) by x(Au) = %(u/`r)x(Rn+r)↔ Ol/(lOl)
r,

∫

Γ

χdϕQ
f =

∑

[A]∈Φn

χ(A)fQψ |%(u/$ν
l )([AAy]) =

∑

u mod lν

ζvur fQψ |%(u/`r)([AAy]) = 0.

Here [Ay] is any element in Γn. Let Ξn = {x([A])|[A] ∈ Γn} and Ξ :=
⊔
n>B Ξn ∩ V . Then Ξ is

associated to an infinite arithmetic progression of difference m (for minimal exponent lm is generated
by NM/F (R)).

Since χ|Φn : O/lν → F× is an arbitrary character of order `r, we may fix a character χv(u) = ζvur
for v ∈ (O/lν)× independent of n > B as an additive character of O/lν. Writing

(5.2) gv :=
∑

u∈O/lν
χv(u)fψ|%(u/$ν

l ),

we find
∑

Q∈Q ψ
−1(Q)gv|[q]([A][Q]Γ) = 0 for all [A] ∈ Ξ. By Corollary 2.11, Ξ is Zariski dense in

V = V Q, and hence we conclude gv|[q] = 0. Since the q-expansion of a modular form h|[q] at (a, b)
is given by the q-expansion of h at (qa, b); so, by q-expansion principle, gv|[q] = 0 ⇔ gv = 0 (e.g.,
[H10, (5.10)]). Note a(ξ, gv) = N(l)ra(ξ, fψ) as long as ξ ≡ −v mod lν . Since v is arbitrary, we can
choose v so that ξ as in the theorem satisfies ξ ≡ −v mod lν; so, gv 6= 0, a contradiction.

We now assume d ≥ 2. Take a base γ1, . . . , γd of Γ of Γ over Z`, which gives rise to an identification
Hom(Γ, µ`∞) = µd`∞ by χ 7→ (χ(γ1), . . . , χ(γd)). Regard µd`∞ ⊂ Gd

m/Q`
and apply Lemma 5.1 to

X ⊂ Gd
m. Thus we have the base e1, . . . , ed as in Lemma 5.1 of the Tate module THom(Γ, µ`∞) =

lim←−nHom(Γ, µ`n). We rewrite the corresponding basis of Γ as γ1, . . . , γd; so, the Z`-module γZ`
i is

sent isomorphically onto Z`ei for each i. Recall Cl−∞ = lim←−n Cl
−
n and Cl∞ = Γ×∆ for a finite group

∆. Pick the smallest integer 0 < a ∈ Z so that Ker(Cl∞ → Cla) ⊂ Γ. Choose a1, · · · , ad so that∏
i γ

`ai+nZ`
i = Ker(Cl∞ → Cla+n) for n ≥ 0. Let P = pj with j ≥ r as in Lemma 5.1.

Suppose lm is principal generated by $ = ϕϕc for ϕ ∈ R. Then Υ =
⋃
i≥N Υi is disjoint from

X by Lemma 5.1 for some positive integer N . Put Ξa+im = {x(A)|A ∈ Ker(Cla+im → Cla)},
replacing m by a positive multiple so that m ≥ N − a. Define an infinite arithmetic progression
n := {a+ im|i = 1, 2, . . .}. Then Ta,m acts transitively on Ξ, and by Theorem 2.6 and the proof of
[H04, Proposition 2.8], Ξ embedded in V Q by A 7→ x([A]) := (x([A][Q]Γ))Q∈Q is Zariski dense.

For each χ ∈ Υ, ∑

Q

ψ(Q)−1
∑

A∈yeχ−1(µd
`j

)

χ(A)fψ,c([AQ−1][Q]Γ) = 0

holds by (4.15) (see also [H04, page 770]) for A with x([A]) ∈ Ξn.

Identify again Φn = Ol/(lOl)
j . Let gv :=

∑
u∈O/lj χv(u)fψ|%(u/$j

l ) for χv(u) = ζ
Tr(vu)
j for

Tr := TrOl/Z` . Then

(5.3)
∑

Q

ψ(Q)−1
∑

A∈Φn

gv|[q]([A][Q]Γ) = 0 for x([A]) ∈ Ξ.

By Zariski density of Ξ in V v, we conclude gv|[q] = 0. Since [q] ∈ Aut(Sh(p)), we conclude gv = 0.
For a chosen class v ∈ (O/lj), we find ξ such that ξ ∈ −v and a(ξ, fψ) 6= 0 ⇔ a(ξ, gv) 6= 0, and

from this we conclude contradiction against a(ξ, fψ) 6= 0. �

Here is an obvious corollary of the proof of Theorem 5.2:
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Corollary 5.3. Let the notation be as in Theorem 5.2. Suppose d = 1 and a(ξ, fψ) 6= 0 for
some ξ ∈ −v for a given v ∈ (O/lν)×. For a character χ ∈ Hom(Γ, µ`∞(F)), define n(χ) by
Ker(χ) = Ker(Γ→ Cln(χ)). Define a subset of Z by

nv := {n(χ)|v(χ) = v and

∫

Cl−
n(χ)

χψdϕΓ = 0}.

Then nv cannot contain any infinite arithmetic progression.

We can interpret heuristically the above corollary into a natural density 0 result. Let

n = {0 < n0 < n1 < n2 < · · · < ni < · · · }
be an infinite sequence of integers. We define the density of n by

D(n) := lim
|x|→∞

|{j|nj ≤ |x|}|
|x| .

Consider the function φ = φn : j 7→ nj defined on the set of natural numbers N := {n ∈ Z|n > 0}.
We study D(n) in terms of φ. Suppose

(E) n does not contain any arithmetic progression.

Let ∆φ(x) = φ(x + 1) − φ(x). Suppose that ∆φ(x) is bounded by an integer B > 0. Then the
map Z 3 x 7→ φ(x) mod B has a fiber F over a ∈ [0, B) ∩ Z with infinitely many element by the
pigeon hole principle. Arrange the set F ′ := {m|a+mB ∈ F } in increasing order, if F ′ contains an
additive subgroup, then n contains an arithmetic progression, a contradiction to (E). Thus ∆φ(x)
is unbounded. Therefore limx→∞ φ(x)/Bx =∞ for all B > 0, and we have |∆φ(x)| ≤ B for x� 0.
This implies D(n) = 0 if n does not contains arithmetic progression. Thus it is perhaps reasonable
to expect

Conjecture 5.4. Let the notation and the assumption be as in Corollary 5.3. Then D(nv) = 0.

5.2. A rigidity lemma. We study formal subschemes of Ĝ := Ĝn
m/W stable under the action of

t 7→ tz for all z in an open subgroup U of Z×
` . We recall with a proof the following result used in

the proof of Theorem 0.1 from [H14, Lemma 4.1]:

Lemma 5.5. Let K be a finite extension of Frac(W (F`)) and W be the integral closure of W (F`) in

K. Let T = Spf(T ) be a closed formal subscheme of Ĝ = Ĝn
m/W flat geometrically irreducible over

W (i.e., T ∩Q` = W). Suppose there exists an open subgroup U of Z×
` such that T is stable under

the action Ĝ 3 t 7→ tu ∈ Ĝ for all u ∈ U . If T contains a Zariski dense subset Ω ⊂ T (C`)∩µn`∞(C`),
then we have ω ∈ Ω and a formal subtorus T such that T = Tω.

A similar assertion is not valid for a formal group Ĝ2
m/K = Spec(K[[T, T ′]]) over a characteristic

0 field K. Writing t = 1 + T and t′ = 1 + T ′ for multiplicative variables, the formal subscheme Z
defined by tlog(t′) = 1 is not a formal torus, but it is stable under (t, t′) 7→ (tm, t′m) for any m ∈ Z.
See [C02, Remark 6.6.1 (iv)] for an optimal expected form of the assertion similar to the above
lemma.

Proof. Let Ts be the singular locus of the associated scheme T sh = Spec(T ) over W, and put
T ◦ = T sh \ Ts. The scheme Ts is a closed formal subscheme of T with dimTs < dimT as T is
excellent [CRT, §32]. To see this, we note, by the structure theorem of complete noetherian ring,
that T is finite over a power series ring W[[X1, . . . , Xd]] ⊂ T for d = dimW T (cf. [CRT, §29]). The
sheaf of continuous differentials ΩT /Spf(W[[X1,...,Xd]]) is a torsion T -module, and Ts is the support
of the formal sheaf of ΩT /Spf(W[[X1,...,Xd]]) (which is a closed formal subscheme of T ). The regular

locus T ◦ of T is open dense in the generic fiber T sh/K := T sh ×W K of T sh. Then Ω◦ := T ◦ ∩ Ω is

Zariski dense in T sh/K.

In this proof, by extending scalars, we always assume that W is sufficiently large so that for ζ ∈ Ω

we focus on, we have ζ ∈ Ĝ(W) and that we have a plenty of elements of infinite order in T (W)
and in T ◦(K) ∩ T (W), which we simply write as T ◦(W) := T ◦(K) ∩ T (W).

Note that the stabilizer Uζ of ζ ∈ Ω in U is an open subgroup of U . Indeed, if the order of ζ is
equal to `a, then Uζ = U ∩ (1 + paZ`). Thus making a variable change t 7→ tζ−1 (which commutes

with the action of Uζ), we may assume that the identity 1 of Ĝ is in Ω◦.
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Let Ĝan, Tan and T san be the rigid analytic spaces associated to T and T s (in Berthelot’s sense
in [J95, §7]). We put T ◦

an = Tan \ T san, which is an open rigid analytic subspace of Tan. Then

we apply the logarithm log : Ĝan(C`) → Cn` = Lie(Ĝan/C`
) sending (ti)i ∈ Ĝan(C`) (the `-adic

open unit ball centered at 1 = (1, 1, . . . , 1)) to (log`(ti))i) ∈ Cn` for the `-adic Iwasawa logarithm
map log` : C×

` → C`. Then for each smooth point x ∈ T ◦(W), taking a small analytic open

neighborhood Vx of x (isomorphic to an open ball in Wd for d = dimW T ) in T ◦(W), we may

assume that Vx = Gx ∩ T ◦(W) for an n-dimensional open ball Gx in Ĝ(W) centered at x ∈ Ĝ(W).
Since Ω◦ 6= ∅, log(T ◦(W)) contains the origin 0 ∈ Cn` . Take ζ ∈ Ω◦. Write Tζ for the Tangent space
at ζ of T . Then Tζ ∼= Wd for d = dimW T . The space Tζ ⊗W C` is canonically isomorphic to the
tangent space T0 of log(Vζ) at 0.

If dimW T = 1, there exists an infinite order element t1 ∈ T (W). We may (and will) assume that

U = (1 + `mZ`) for 0 < m ∈ Z. Then T is the (formal) Zariski closure tU1 of

tU1 = {t1+`mz
1 |z ∈ Z`} = t1{t`

mz
1 |z ∈ Z`},

which is a coset of a formal subgroup Z. The group Z is the Zariski closure of {t`mz1 |z ∈ Z`}; in
other words, regarding tu1 as a W-algebra homomorphism tu1 : T → C`, we have t1Z = Spf(Z)
for Z = T /⋂u∈U Ker(tu1 ). Since tU1 is an infinite set, we have dimW Z > 0. From geometric

irreducibility and dimW T = 1, we conclude T = t1Z and Z ∼= Ĝm. Since T contains roots of unity
ζ ∈ Ω ⊂ µn`∞(W), we confirm that T = ζZ for ζ ∈ Ω ∩ µn

`m′ for m′ � 0. Replacing t1 by t`
m

1

for m as above if necessary, we have the translation Z` 3 s 7→ ζts1 ∈ Z of one parameter subgroup

Z` 3 s 7→ ts1. Thus we have log(t1) =
dts1
ds |s=0 ∈ Tζ , which is sent by “log : Ĝ→ Cn` ” to log(t1) ∈ T0.

This implies that log(t1) ∈ T0 and hence log(t1) ∈ Tζ for any ζ ∈ Ω◦ (under the identification of the

tangent space at any x ∈ Ĝ with Lie(Ĝ)). Therefore Tζ ’s over ζ ∈ Ω◦ can be identified canonically.
This is natural as Z is a formal torus, and the tangent bundle on Z is constant, giving Lie(Z).

Suppose that d = dimW T > 1. Consider the Zariski closure Y of tU for an infinite order element
t ∈ Vζ (for ζ ∈ Ω◦). Since U permutes finitely many geometrically irreducible components, each
component of Y is stable under an open subgroup of U . Therefore Y =

⋃
ζ′Tζ′ is a union of

formal subtori Tζ′ of dimension ≤ 1, where ζ′ runs over a finite set inside µn`∞(C`) ∩ T (C`). Since
dimW Y = 1, we can pick Tζ′ of dimension 1 which we denote simply by T . Then T contains tu for
some u ∈ U . Applying the argument in the case of dimW T = 1 to T , we find u log(t) = log(tu) ∈ Tζ ;
so, log(t) ∈ Tζ for any ζ ∈ Ω◦ and t ∈ Vζ . Summarizing our argument, we have found

(t) The Zariski closure of tU in T for an element t ∈ Vζ of infinite order contains a coset ξT of

one dimensional subtorus T , ξ`
m′

= 1 and t`
m′

∈ T for some m′ > 0;
(D) Under the notation as above, we have log(t) ∈ Tζ for all ζ ∈ Ω◦.

Moreover, the image V ζ of Vζ in Ĝ/T is isomorphic to (d − 1)-dimensional open ball. If d > 1,

therefore, we can find t
′ ∈ V ζ of infinite order. Pulling back t

′
to t′ ∈ Vζ , we find log(t), log(t′) ∈ Tζ ,

and log(t) and log(t′) are linearly independent in Tζ . Inductively arguing this way, we find infinite
order elements t1, . . . , td in Vζ such that log(ti) span over the quotient field K of W the tangent
space Tζ/K = Tζ ⊗W K ↪→ T0 (for any ζ ∈ Ω◦). We identify T1/K ⊂ T0 with Tζ/K ⊂ T0. Thus the
tangent bundle over T ◦

/K is constant as it is constant over the Zariski dense subset Ω◦. Therefore T ◦

is close to an open dense subscheme of a coset of a formal subgroup. We pin-down this fact.
Take ti ∈ Vζ as above (i = 1, 2, . . . , d) which give rise to a basis {∂i = log(ti)}i of the tangent space

of Tζ/K = T1/K . Note that tui ∈ T and u∂i = log(tui ) = u log(ti) ∈ T1/K for u ∈ U . The embedding

log : Vζ ↪→ T1 ⊂ Lie(Ĝ/W) is surjective onto a open neighborhood of 0 ∈ T1 (by extending scalars
if necessary). For t ∈ Vζ , if we choose t closer to ζ, log(t) getting closer to 0. Thus by replacing
t1, . . . , td inside Vζ to elements in Vζ closer to ζ, we may assume that log(ti) ± log(ti) for all i 6= j
is in log(Vζ).

So, for each pair i 6= j, we can find ti±j ∈ Vζ such that log(tit
±1
j ) = log(ti)± log(tj) = log(ti±j).

The element log(ti±j) is uniquely determined in log(Ĝan(C`)) ∼= Ĝan(C`)/µ
n
`∞(C`). Thus we con-

clude ζ′i±jtit
±1
j = ti±j for some ζ′i±j ∈ µn`N for sufficiently large N . Replacing T by its image under

the `-power isogeny Ĝ 3 t 7→ t`
N ∈ Ĝ and ti by t`

N

i , we may assume that tit
±1
j = ti±j all in

T . Since tUi ⊂ T , by (t), for a sufficiently large m′ ∈ Z, we find a one dimensional subtorus Ĥi
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containing t`
m′

i such that ζiĤi ⊂ T with some ζi ∈ µn`m′ for all i. Thus again replacing T by the

image of the `-power isogeny Ĝ 3 t 7→ t`
m′

∈ Ĝ, we may assume that the subgroup Ĥ (Zariski)
topologically generated by t1, . . . , td is contained in T . Since {log(ti)}i is linearly independent, we

conclude dimW Ĥ ≥ d = dimW T , and hence T must be the formal subgroup Ĥ of Ĝ. Since T is

geometrically irreducible, Ĥ = T is a formal subtorus. Pulling it back by the `-power isogenies we

have used, we conclude T = ζĤ for the original T and ζ ∈ µn
`m

′N (W). Since Ω is Zariski dense in
T , we may assume that ζ ∈ Ω. This finishes the proof. �

5.3. Semi-group action. Though we do not need it, we add here an explicit determination of the
action of αm and α−1

m on the point x(A) defined in [H04, §2.1]. More generally we consider a pair

(L, η : Ô2 ∼= L̂) of an O-lattice L of M and an Ô-linear isomorphism η : (F
(p∞)
A )2 ∼= L̂ ⊗O F (p∞)

A

with η((Ô(p))2) = L̂(p). We suppose that Lp = Rp. We define Lg = Im(η ◦ g(Ô2)) ∩ M and

(L, η)g := (Lg, η ◦ g). The pair gives rise to a point x(L) ∈ Sh(p)
/W .

Choose a prime element $l of Ol and if l ramifies in R, we suppose that Rl = Ol +
√
$lOl. Recall

Rn = O + lnR. If ` is odd or ` dose not split in R, we write Rl = Ol + δOl so that δ =
√
$l if

l ramifies in R and δ =
√
d for d ∈ O×

l if l is unramified (d = δ2 is square if l = LLc splits and
d = (δ,−δ) ∈ RL × RLc = Rl). If ` = 2 and ` splits in R, we define R′

l = {x ∈ Rl|x ≡ xc mod 2}
and we start with this order, which has basis 1 and (1,−1) ∈ Ol × Ol = Rl. We note in this case
R1 = R′

l ∩
⋂

q6=l Rq for primes q in O, and we put δ = (1,−1) ∈ R1,L (so,we start with non-maximal

order R1). Then we put αl =
(

1 0
0 $l

)
∈ GL2(Ol). We often regard αl ∈ G(A) so that its component

at a prime q 6= l is equal to 1. We simply write Rn for the pair (Rn, ηn) with ηn(a, b) = a+$n
l b at

l and outside l, we choose the basis given in [H04, page 741] and define η accordingly.
Then we put α±1

l (x(Rn)) = x(Rnα
±1
l ) under the action defined above. This action depends only

on local component at l. As seen in [H04, page 760], we have

(5.4) αl(x(Rn)) = x(Rn+1) and α−1
l (x(Rn)) = x(Rn−1) if n > 0.

Note

α−n
l [ 1

δ ] =
[

1
$−n

l
δ

]
= $−n

l δ
[
$n

l
δ−1

1

]

at l, we need to change the original ηn to η′n given by η′n(a, b) = $−n
l δ−1(a$n

l δ
−1 + b) at l and

outside l, the choice is the same as ηn. The lattice will change as follows

(unr) Rl 7→ l−nRn,l with R0 = R if l remains prime or l is odd and split in R;
(ram) Rl 7→ l−nLRn,l with R0 = R if l = L2 in R;
(sp2) R0,l 7→ l−nRn,l with R0 = R1 if l|2 and l splits in R.

Denote x′(A) = (A, η′n) with Al equal to the ideal as in (unr), (ram) and (sp2). Since

Cln =
{fractional projective Rn-ideals}

{principal Rn-ideals} ,

we may allow Rn-ideals not prime to l. For an Rn-fractional ideal A prime to l, we denote An (resp.
A′
n) by the Rn-fractional ideal An (resp. A′

n) with An,l = Rn,l (resp. A′
n,l given as in (unr), (ram)

and (sp2)), and outside l, it is equal to the given A. We have the following effect of αml on the points
x(An) and x′(A′

n);

(+) αml (x(An)) = x(An+m) and α−m
l (x′(A′

n)) = x′(A′
n+m) if n > 0 and m ≥ 0;

(0) αml (x′(A′
n)) = x(Am−n) and α−m

l (x(An)) = x′(A′
m−n) if m ≥ n;

(−) αml (x′(A′
n)) = x′(A′

n−m) and α−m
l (x(An)) = x(An−m) if n > m.

6. A key step in the proof of anticyclotomic main conjecture in [H06]

A key step towards the proof of the anticyclotomic main conjecture is the following divisibility in
the introduction of [H06]:

(L) (h(M)/h(F ))L−
p (ψ−)

∣∣H(ψ−)in W [[Γ−
M ]].

Here h(M) (resp. h(F )) is the class number of M (resp. F ), and ΓM is the Galois group over M of
the composite of all Zp-extensions of M and Γ−

M is its anti-cyclotomic projection. In [H06], H(ψ−)
is written as H(ψ), though it depends essentially only on ψ− (strictly speaking, its is defined for ψ
with minimal conductor giving a fixed ψ−). All the ingredients in the above formula are described
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in the introduction of [H06]. In particular, L−
p (ψ−) is the anti-cyclotomic Katz p-adic L-function

with branch character ψ−, H(ψ−) is a congruence power series associated to the p-adic analytic
family θ(ψ) of modular form containing the theta series of ψ with anticyclotomic projection ψ−

(see [H06] for precise definition). In [H06], this is attributed to [H07, Corollary 5.6], whose proof
relies on the stronger version [H07, Theorem 4.7] of Corollary 5.3 asserting finiteness of nv (actually
the density 0 expectation in Conjecture 5.4 is sufficient). In [H06], this corollary was quoted as
Corollary 5.5, but it became Corollary 5.6 after publication of [H07] one year after the publication
of [H06]. This stronger version is still an open question. However the proof of (L) is valid intact if
the analytic density 0 result in Conjecture 5.4 holds. In any case, we can give two different proofs
of the anticyclotomic main conjecture in the following ways (without assuming any conjecture).

Here is the first on relying on the vanishing of the µ-invariant of Katz p-adic L-functions [H11].
Indeed, in [HT93, Theorem I], (L) is proven under the vanishing of the µ-invariant of the Katz p-adic
L functions, which was proven in [H11] 18 years later.

The second argument is a modification of the argument in [H07]. For a Hecke character ϕ of M
of type A0, regarding it as a character of Gal(Q/M) by class field theory, we write ϕc(σ) = ϕ(cσc)
for complex conjugation c and ϕ− = ϕ/ϕc. Following the technique of [HT93], the following formula
was proven in [H07, Theorem 5.5]:

(K0)
L

H(ψ−)
=
Lp(ψ−1ϕ)Lp(ψ−1ϕc)

(h(M)/h(F ))L−
p (ψ−)

,

Here ψ is a given finite order branch character of M with conductor made of split primes of M/F
for which we want to prove (L) and ϕ is a character of order `-power of conductor l-power. The
numerator L ∈ W [[ΓM ]] interpolating Rankin product of the two CM families θ(ψ) and θ(ϕ).
The numerator of the right-hand-side of the product of the two Katz p-adic L-functions Lp(ψ−1ϕ)
and Lp(ψ−1ϕc) with branch characters ψ−1ϕ and ψ−1ϕc, respectively. If the stronger version of
Corollary 5.3 (or Conjecture 5.4) is valid, choosing l so that rankZ` Γ = 1, we can arrange the two

Katz p-adic L-functions Lp(ψ−1ϕ) and Lp(ψ−1ϕc) to be units in W [[ΓM ]] and (L) follows. Whether
the actual Corollary 5.3 is sufficient for this argument is not clear. However there is a way-out.
We choose one more CM quadratic extension M1/F disjoint from M . For a Hecke character ϕ
of X = M,M1 and the composite K = MM1, write ϕ̂ := ϕ ◦ NK/X as a Hecke character of K.
Adjusting the notation to the formula (K0), in [H09, Theorem 3.5] (where slightly different notation
was used), the following formula generalizing (K0) is proven:

(K1)
L

H(ψ−)
=

Lp(ψ̂−1 ξ̂)

(h(M)/h(F ))L−
M (ψ−)

,

where ξ is a branch Hecke character of M1 whose conductor is an l-power for a split prime l of

M1/F , L ∈ W [[ΓM × ΓM1 ]] and Lp(ψ̂−1ξ̂) is the Katz p-adic L-function in W [[ΓK]] projected to

W [[ΓM × ΓM1 ]] by NK/M ×NK/M1
. The formula in [H09] is more general including the case where

the conductor of ψ can have inert or ramified primes, and in such a case, there is an extra factor
in the denominator of the right-hand-side. By Theorem 0.1 applied to Hilbert modular Eisenstein

series for the maximal real subfield of K, one can find ξ for which Lp(ψ̂−1ξ̂) is a unit in W [[ΓK]]

and is a unit in W [[ΓM × ΓM1 ]] after the projection. This shows (L) also.
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