UCLA Logo

 UCLA Seal
 






Publication List

Papers under review:

  1. J. von Brecht and D. Uminsky. On soccer balls and linearized inverse statistical mechanics. Submitted.
  2. G. Rousseaux, R. Levy, D. Uminsky. Cetacean flukeprints form dispersive white holes. Submitted.

Published papers:

  1. D. Uminsky, C.E. Wayne, A. Barbaro. A multi-moment vortex method for 2D viscous fluids. To appear in Journal of Computational Physics, 2011.
  2. H. Sun, D. Uminsky, A. Bertozzi. Generalized Birkhoff-Rott equation for 2D active scalar problems.  To appear in SIAM Journal on Applied Mathematics, 2011.
  3. J. von Brecht, D. Uminsky, T. Kolokolnikov, A. Bertozzi. Predicting pattern formation in particle interactions. To appear in  Mathematical Models & Methods in Applied Sciences, 2011.
  4. R. Levy, D. Uminsky. Formation of ocean surface patterns by cetacean fluke oscillations. To appear in IMA Volume on Natural Locomotion in Fluids and on Surfaces: Swimming, Flying, and Sliding, 2011.
  5. T. Kolokolnikov, H. Sun, D. Uminsky, A. Bertozzi. A theory of complex patterns arising from 2D particle interactions. Physical Review E, Rapid Communications, 84(1), 015203(R), 2011.
  6. R. Levy, D. Uminsky, A. Park, J. Calambokidis. A theory for the hydrodynamic origins of whale flukeprints. International Journal of Non-Linear Mechanics, Volume 46, Issue 4, May 2011, Pages 616-626.
  7. G. Van Baalen, D. Kreimer, D. Uminsky, K. Yeats. The QCD beta function from global solutions to Dyson-Schwinger equations. Annals of Physics, Volume 325, Issue 2, February 2010, Pages 300-324.
  8. R. Nagem, G. Sandri, D. Uminsky, C.E. Wayne. Generalized Helmholtz/Kirchoff Model for Two-Dimensional Distributed Vortex Motion. SIAM Journal on Applied Dynamical Systems, 8(1), 2009, 160-179.
  9. D. Kreimer, G. Van Baalen, D. Uminsky, K. Yeats. The QED beta function from global solutions to Dyson-Schwinger equations. Annals of Physics, Volume 324, Issue 1, January 2009, Pages 205-219.
  10. A. Gallegos, T. Plummer, D. Uminsky, C. Vega, C. Wickman, M. Zawoiski. A Mathematical Model of a Crocodilian Population Using Delay-Differential Equations. Journal of Mathematical Biology. 57(5), 2008, 737-754.
  11. R. Devaney, M. Holzer, D. Look, M. Moreno Rocha, D. Uminsky. Singular Perturbations of zn. In Transcendental Dynamics and Complex Analysis. eds. P. Rippon and G. Stallard. Cambridge University Press, 2008, 111-137.
  12. R. Nagem, G. Sandri, D. Uminsky. Vorticity Dynamics and Sound Generation in Two-Dimensional Incompressible Fluid Flow. The Journal of the Acoustical Society of America. 122(1), July 2007.
  13. D. Uminsky, K. Yeats. Unbounded Regions of Infinitely Logconcave Sequences. Electronic Journal of Combinatorics. 14(1), November 2007.
  14. R. Devaney, M. Holzer, D. Uminsky. Blowup Points and Baby Mandelbrot Sets for Singularly Perturbed Families of Rational Maps.  In Complex Dyanamics: Twenty-Five Years  after the Appearance of the Mandelbrot Set. Eds. R. Devaney and L. Keen. American Mathematical Society, 2006, 51-62.
  15. P. Blanchard, R. Devaney, D. Look, M. Moreno Rocha, P. Seal, S. Siegmund, D. Uminsky. Sierpinski Carpets and Gaskets As Julia Sets of Rational Maps.  In Dynamics on the Riemann Sphere: A Bodil Branner Festschrift. Eds. P. Horth and C. Petersen. European Mathematical Society, 2006, 97-119.
  16. B. Lawson, M. Orrison, D. Uminsky.  Spectral Analysis of the Supreme Court. Mathematics Magazine. 79(5), 2006, 340-346.
  17. R. Devaney,  D. Look, D. Uminsky. The Escape Trichotomy for Singularly Perturbed Rational MapsIndiana University Mathematics Journal, 54, Dec. 2005, 1621-1634.
  18. E. Huerta-Sanchez, A. Lopez, D. Uminsky. Iteration of an Even-Odd Splitting Map Can Make Integration Easier .  Pi Mu Epsilon Journal.  11(5), Fall 2001, 241-250.

My Ph.D. Thesis:

The Viscous N Vortex Problem: A Generalized Helmholtz/Kirchhoff Approach

Thesis Advisor: C. Eugene Wayne, Professor of Mathematics, Boston University
Second Reader:
Tasso Kapper, Professor of Mathematics, Boston University
Third Reader: Ray Nagem, Associate Professor Mechanical Engineering, Boston University


My undergraduate thesis:

 Generalized Spectral Analysis for Large Sets of Approval Voting Data

Thesis Advisor: Prof. Michael Orrison, Associate Professor of Mathematics, Harvey Mudd College
Second Reader: Prof. Francais Su , Professor of Mathematics, Harvey Mudd college