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The mathematical problem (notation)

1 Signal of interest f ∈ Cd(= CN×N)

2 Measurement operator A : Cd → Cm.

3 Measurements y = Af + ξ.

y

 =

 A




f

+

ξ


4 Problem: Reconstruct signal f from measurements y
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Sparsity

Measurements y = Af + ξ.

y

 =

 A




f

+

ξ


Assume f is sparse:

In the coordinate basis: ‖f ‖0
def
= | supp(f )| ≤ s � d

In orthonormal basis: f = Bx where ‖x‖0 ≤ s � d

In other dictionary: f = Dx where ‖x‖0 ≤ s � d

In practice, we encounter compressible signals.
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Digital Cameras

Save your pennies to buy the new digital camera?

Deanna Needell Robust image recovery via total-variation minimization



Defining Sparsity
Imaging

New Results

Background and Notation
Other sparsity types

Digital Cameras

Save your pennies to buy the new digital camera?

Deanna Needell Robust image recovery via total-variation minimization



Defining Sparsity
Imaging

New Results

Background and Notation
Other sparsity types

MRI

Feeling claustrophobic?

It’ll only last a quick 45 minutes...
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Pediatric MRI
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Many more...

Radar

Error Correction

Computational Biology (DNA Microarrays)

Geophysical Data Analysis

Data Mining, classification

Neuroscience

Imaging

...
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Sparsity...

Sparsity in coordinate basis: f=x
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Reconstructing the signal f from measurements y

`1-minimization [Candès-Romberg-Tao]

Let A satisfy the Restricted Isometry Property and set:

f̂ = argmin
g
‖g‖1 such that ‖Af − y‖2 ≤ ε,

where ‖ξ‖2 ≤ ε. Then we can stably recover the signal f :

‖f − f̂ ‖2 . ε+
‖x − xs‖1√

s
.

This error bound is optimal.
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Restricted Isometry Property

A satisfies the Restricted Isometry Property (RIP) when there
is δ < c such that

(1− δ)‖f ‖2 ≤ ‖Af ‖2 ≤ (1 + δ)‖f ‖2 whenever ‖f ‖0 ≤ s.

Gaussian or Bernoulli measurement matrices satisfy the RIP
with high probability when

m & s log d .

Random Fourier and others with fast multiply have similar
property: m & s log4 d .
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Sparsity...

In orthonormal basis: f = Bx
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Natural Images

Images are compressible in Wavelet bases.

X =
N∑

j ,k=1

cj ,kHj ,k , cj ,k = 〈X ,Hj ,k〉 , ‖X‖2 = ‖c‖2,

Figure: Haar basis functions

Wavelet transform is orthonormal and multi-scale. Sparsity level of
image is higher on detail coefficients.
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Natural images

Images are compressible in Wavelet bases.

Figure: Boats image, 2D Haar transform, and compression from 10% of
Haar coefficients

X = H−1H(X ) =
∑N

j ,k=1 cj ,kHj ,k

X is s-sparse (in Haar basis) if ‖c‖0 ≤ s

Xw
s is the best s-term approximation to X in Haar basis

Image compression: X → Xw
s
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Sparsity in orthonormal basis B

L1-minimization Method

For orthonormal basis B, f = Bx with x sparse, one may solve the
`1-minimization program:

f̂ = argmin
f̃ ∈Cn

‖B−1f̃ ‖1 subject to ‖Af̃ − y‖2 ≤ ε.

Same results hold.
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Sparsity...

In arbitrary dictionary: f = Dx
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The CS Process
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Example: Oversampled DFT

n × n DFT: dk(t) = 1√
n

e−2πikt/n

Sparse in the DFT → superpositions of sinusoids with
frequencies in the lattice.

Instead, use the oversampled DFT:

Then D is an overcomplete frame with highly coherent
columns → conventional CS does not apply.
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Example: Gabor frames

Gabor frame: Gk(t) = g(t − k2a)e2πik1bt

Radar, sonar, and imaging system applications use Gabor
frames and wish to recover signals in this basis.

Then D is an overcomplete frame with possibly highly
coherent columns → conventional CS does not apply.
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Example: Curvelet frames

A Curvelet frame has some properties of an ONB but is
overcomplete.

Curvelets approximate well the curved singularities in images
and are thus used widely in image processing.

Again, this means D is an overcomplete dictionary →
conventional CS does not apply.
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Example: UWT

The undecimated wavelet transform has a translation
invariance property that is missing in the DWT.

The UWT is overcomplete and this redundancy has been
found to be helpful in image processing.

Again, this means D is a redundant dictionary → conventional
CS does not apply.
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`1-Synthesis Method

For arbitrary tight frame D, one may solve the `1-synthesis
program:

f̂ = D

(
argmin
x̃∈Cn

‖x̃‖1 subject to ‖ADx̃ − y‖2 ≤ ε
)
.

Some work on this method [Candès et.al., Rauhut et.al., Elad
et.al.,...]

Deanna Needell Robust image recovery via total-variation minimization



Defining Sparsity
Imaging

New Results

Background and Notation
Other sparsity types

`1-Synthesis Method

For arbitrary tight frame D, one may solve the `1-synthesis
program:

f̂ = D

(
argmin
x̃∈Cn

‖x̃‖1 subject to ‖ADx̃ − y‖2 ≤ ε
)
.

Some work on this method [Candès et.al., Rauhut et.al., Elad
et.al.,...]

Deanna Needell Robust image recovery via total-variation minimization



Defining Sparsity
Imaging

New Results

Background and Notation
Other sparsity types

`1-Analysis Method

For arbitrary tight frame D, one may solve the `1-analysis program:

f̂ = argmin
f̃ ∈Cn

‖D∗f̃ ‖1 subject to ‖Af̃ − y‖2 ≤ ε.
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Condition on A?

D-RIP

We say that the measurement matrix A obeys the restricted
isometry property adapted to D (D-RIP) if there is δ < c such that

(1− δ)‖Dx‖2
2 ≤ ‖ADx‖2

2 ≤ (1 + δ)‖Dx‖2
2

holds for all s-sparse x .

Similarly to the RIP, many classes of random matrices satisfy the
D-RIP with m ≈ s log(d/s). Randomly perturbed RIP matrices
satisfy D-RIP [Krahmer-Ward ’11], or similar property, Weibull
matrices [Foucart ’12], ...
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CS with tight frame dictionaries

Theorem [Candès-Eldar-N-Randall]

Let D be an arbitrary tight frame and let A be a measurement
matrix satisfying D-RIP. Then the solution f̂ to `1-analysis satisfies

‖f̂ − f ‖2 . ε+
‖D∗f − (D∗f )s‖1√

s
.

Deanna Needell Robust image recovery via total-variation minimization



Defining Sparsity
Imaging

New Results

Background and Notation
Other sparsity types

Implications

In other words,

This result says that `1-analysis is very accurate when D∗f has
rapidly decaying coefficients and D is a tight frame. This is the
case in for example applications using the Oversampled DFT,
Gabor frames, Undecimated WT, and Curvelet frames.
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Experimental Setup

n = 8192,m = 400, d = 491, 520
A: m × n Gaussian, D: n × d Gabor

Figure: The signal is a superposition of 6 radar pulses, each of which
being about 200 ns long, and with frequency carriers distributed between
50 MHz and 2.5 GHz (top plot). As can be seen, three of these pulses
overlap in the time domain.
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Experimental Results

Figure: Portion of the matrix D∗D, in log-scale (left). Sorted analysis
coefficients (in absolute value) of the signal from Figure 3 (right).
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Experimental Results

Figure: Recovery in both the time (below) and frequency (above)
domains by `1-analysis. Blue denotes the recovered signal, green the
actual signal, and red the difference between the two.
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Implications

In other words,

This result says that `1-analysis is very accurate when D∗f has
rapidly decaying coefficients and D is a tight frame. This is the
case in for example applications using the Oversampled DFT,
Gabor frames, Undecimated WT, and Curvelet frames.

Other sparsifying transforms for images?
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Other sparsifying transforms for images?
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Natural images

Sparse...

256× 256 “Boats” image
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Natural images

Sparse wavelet representation...
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Natural images

Images are compressible in discrete gradient.
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Natural images

Images are compressible in discrete gradient.

The discrete directional derivatives of an image f ∈ CN×N are

fx : CN×N → C(N−1)×N , (fx)j ,k = fj ,k − fj−1,k ,

fy : CN×N → CN×(N−1), (fy )j ,k = fj ,k − fj ,k−1,

the discrete gradient operator is

∇[f ] = (fx , fy )
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Natural Notation

Images are compressible in discrete gradient.

‖f ‖p :=
(∑N

j=1

∑N
k=1 |fj,k |p

)1/p

f is s-sparse if ‖f ‖0 := {#(j , k) : fj,k 6= 0} ≤ s

fs is the best s-sparse approximation to f

“Phantom”: ‖∇[f ]‖0 = .03N2

“Boats”: ‖∇[f ]−∇[f ]s‖2 decays quickly in s
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Sparsity in gradient

CS Theory

The gradient operator ∇ is not an orthonormal basis or a tight
frame.
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Comparison of two compressed sensing reconstruction
algorithms

Haar-minimization (L1-Haar)

f̂Haar = argmin ‖H(Z )‖1 subject to ‖AZ − y‖2 ≤ ε

Total Variation minimization (TV)

f̂TV = argmin ‖∇[Z ]‖1 subject to ‖AZ − y‖2 ≤ ε, where

‖Z‖TV = ‖∇[Z ]‖1 is the total-variation norm.
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Imaging via compressed sensing

(a) Original

(b) TV (c) L1-Haar

Figure: Reconstruction using m = .2N2
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(a) Original

(b) TV (c) L1-Haar

Figure: Reconstruction using m = .2N2 measurements.
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Imaging via compressed sensing

(a) (Quantization)

(b) TV (c) L1-Haar

Figure: Reconstruction using m = .2N2 measurements
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Imaging via compressed sensing

(a) (Gaussian)

(b) TV (c) L1-Haar

Figure: Reconstruction using m = .2N2 measurements
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Imaging via compressed sensing

InView (Austin TX)

Figure: SWIR Reconstruction using m = .5N2 measurements
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Imaging via compressed sensing

InView (Austin TX)

Figure: InView SWIR camera
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Empirical → Theoretical?

TV Works

Empirically, it has been well known that

f̂TV = argmin ‖Z‖TV subject to ‖AZ − y‖2 ≤ ε, (TV )

provides quality, stable image recovery.

No provable stability guarantees.
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Stable signal recovery using total-variation minimization

Theorem (N-Ward ’12)

From m & s log(N) linear RIP measurements, for any f ∈ CN×N ,

f̂ = argmin ‖Z‖TV such that ‖A(Z )− y‖2 ≤ ε,

satisfies

‖f − f̂ ‖TV . ‖∇[f ]−∇[f ]s‖1 +
√

sε (gradient error)

and

‖f − f̂ ‖2 . log(N) ·
[‖∇[f ]−∇[f ]s‖1√

s
+ ε
]

(signal error)

This error guarantee is optimal up to the log(N) factor
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Higher dimensional objects

Movies, higher dimensional objects?

Theorem (N-Ward ’12, In preparation.)

From m & s log(Nd) linear RIP measurements, for any f ∈ CNd
,

f̂ = argmin ‖Z‖TV such that ‖A(Z )− y‖2 ≤ ε,

satisfies

‖f − f̂ ‖TV . ‖∇[f ]−∇[f ]s‖1 +
√

sε (gradient error)

and

‖f − f̂ ‖2 . log(Nd/s) ·
[‖∇[f ]−∇[f ]s‖1√

s
+ ε
]

(signal error)

This error guarantee is optimal up to the log(Nd/s) factor
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Proof Sketch

Strengthened Sobolev inequalities for random subspaces
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Discrete Sobolev inequalities

Proposition (Sobolev inequality for discrete images)

Let X ∈ RN×N be mean-zero. Then

‖X‖2 ≤ ‖X‖TV

Proposition (New: Strengthed Sobolev inequality)

With probability ≥ 1− e−cm, the following holds for all images
X ∈ RN×N in the null space of an m×N2 random Gaussian matrix

‖X‖2 .
[log(N)]3/2

√
m

‖X‖TV
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Strengthened Sobolev inequalities

Proof ingredients:

1 [CDPX 99:] Denote the bivariate Haar wavelet coefficients of
X ∈ RN×N by c(1) ≥ c(2) ≥ · · · ≥ c(N2). Then

|c(k)| .
‖X‖TV

k

That is, the sequence is in weak-`1.

2 If Φ : Rd → Rm has (properly normalized) i.i.d. Gaussian
entries then with probability exceeding 1− e−cm, Φ has the
RIP of order s ∼ m

log d :

3

4
‖f ‖2 ≤ ‖Φf ‖2 ≤

5

4
‖f ‖2 for all s-sparse f .
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Strengthened Sobolev inequalities: proof

Let Φ : Rd → Rm be a Gaussian matrix and ΦX = 0.

Suppose that Ψ = ΦH∗ : Rd → Rm has the RIP of order 2s.

Decompose c = HX into s-sparse blocks c = cS0 + cS1 + cS2 + . . .

Then Ψc = ΦH∗HX = ΦX = 0 and

0 ≥ ‖Ψ(cS0 + cS1)‖2 −
∑
j≥2

‖ΨcSj‖2

(RIP of Ψ) ≥ 3

4
‖cS0 + cS1‖2 −

5

4

∑
j≥2

‖cSj‖2

(block trick) ≥ 3

4
‖cS0‖2 −

5/4√
s

∑
j≥1

‖cSj‖1

(c in weak `1) ≥ 3

4
‖cS0‖2 −

5/4√
s
‖X‖TV log(d/s)
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Strengthened Sobolev inequalities: proof

So

1 ‖cS0‖2 ≤ 1√
s
‖X‖TV log(d/s),

2 ‖c − cS0‖2 ≤ 1√
s
‖X‖TV (c is in weak `1)

Then

‖X‖2 = ‖c‖2 ≤ ‖cS0‖2 + ‖c − cS0‖2

≤ log(d/s)√
s
‖X‖TV

Proof is complete, because with probability 1− ε−cm, RIP of ΦH∗
holds with s ∼ m/ log(d).
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Stable signal recovery using total-variation minimization

Method of proof:

1 First prove stable gradient recovery

2 Translate stable gradient recovery to stable signal recovery
using the strengthened Sobolev inequality.
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Open questions

1 Remove the log factor?

2 Our results do not immediately hold for vectors. What about
stable (1D) signal recovery?

3 [Patel, Maleh, Gilbert, Chellappa ’11] Images are even sparser
in individual directional derivatives fx , fy . If we minimize
separately over directional derivatives, can we still prove stable
recovery?

4 Other optimization problems
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Movies are very sparse!

Movies are very sparse in all three dimensions

Silicon Retina (Institute of Neuroinformatics) is the design of
a camera that mimics retinas

Dynamic Vision Sensor (DVS) from Silicon Retina, Institute of
Neuroinformatics, Zurich
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Fast vision in bad lighting

Figure: (“RoboGoalie”, Silicon Retina, Institute of Neuroinformatics)
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Fluid Particle Tracking Velocimetry

Figure: (“PTV”, Silicon Retina, Institute of Neuroinformatics)
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Mobile Robotics

Figure: (“Robotic Driver”, Silicon Retina, Institute of Neuroinformatics)
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Sleep disorder research

Figure: (“Sleeping Mouse”, Silicon Retina, Institute of Neuroinformatics)
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Thank you!

E-mail:

dneedell@cmc.edu

Web:

www.cmc.edu/pages/faculty/DNeedell
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