Recovering overcomplete sparse representations from structured sensing

Deanna Needell

Claremont McKenna College

Feb. 2015

CLAREMONT MCKENNA -C O L L E G E-

Support: Alfred P. Sloan Foundation and NSF CAREER #1348721. Joint work with Felix Krahmer (Univ. of Göttingen) and Rachel Ward (UT Austin)

(日) (國) (필) (필) (필) 표

Outline

Compressed Sensing and MRI

- 2 Compressed Sensing with Dictionaries
- Beyond Incoherence
 - 4 Total variation minimization
- 5 Main Results

Outline

Compressed Sensing and MRI

- 2 Compressed Sensing with Dictionaries
- 3 Beyond Incoherence
- 4 Total variation minimization
- 5 Main Results

- Magnetic Resonance Imaging (MRI): Imaging method for medical diagnostics
- Mathematical model: For an image f ∈ L₂([0,1]²), MRI measures 2D-Fourier series coefficients

$$\mathcal{F}f(\omega_1,\omega_2) = \iint f(x,y) \exp(2\pi i(\omega_1 x + \omega_2 y)) dx dy.$$

• Discretize to obtain expansion of a *discrete image* $f \in \mathbb{C}^{N \times N}$ in the *discrete Fourier basis* consisting of the vectors

$$\varphi_{\omega_1,\omega_2}(t_1,t_2) = rac{1}{N} e^{i 2 \pi (t_1 \omega_1 + t_2 \omega_2)/N}, \quad -N/2 + 1 \leq t_1, t_2 \leq N/2.$$

• Model can also be used for other applications.

- Model assumption: the image x ∈ C^{N²}, is approximately s-sparse in a representation system {b_i}, i.e., x ≈ ∑_{j=1}^s x_{kj} b_{kj}.
- Suitable systems: Wavelets, shearlets, ...
- Intuition: Low dimensionality due to image structure, but nonlinear.

- Model assumption: the image x ∈ C^{N²}, is approximately s-sparse in a representation system {b_i}, i.e., x ≈ ∑_{i=1}^s x_{ki}b_{ki}.
- Suitable systems: Wavelets, shearlets, ...
- Intuition: Low dimensionality due to image structure, but nonlinear.
- Goal: Reconstruction of x from $m \ll N^2$ linear measurements, that is, from y = Ax, where $A \in \mathbb{C}^{m \times N^2}$.
- Underdetermined system \Rightarrow Many solutions.
- Sufficient condition for robust recovery via convex optimization:
 - $m \gtrsim s \log^{\alpha} N$ random measurements
 - Incoherence between measurements and basis elements.

Feb. 2015 5 / 29

Definition (Candès-Romberg-Tao (2006))

A matrix $A \in \mathbb{C}^{m \times n}$ has the *Restricted Isometry Property* of order *s* and level $\delta \in (0, 1)$ (in short, (s, δ) -RIP), if one has

 $(1-\delta)\|x\|_2^2 \le \|Ax\|_2^2 \le (1+\delta)\|x\|_2^2 \qquad \text{for all \mathfrak{s}-sparse $x \in \mathbb{C}^n$}$

The Restricted Isometry Constant $\delta_s(A)$ is the smallest δ satisfying (1).

- Idea: Any submatrix of *s* columns is well-conditioned.
- Typical result: If A ∈ C^{m×n} has the (2k, δ)-RIP with δ ≤ 1/√2 and the equation y = Ax has a k-sparse solution x[#], then one has x[#] = argmin ||z||₁ (e.g., Cai et al. (2014)).
- Guarantee only works for basis representations

Donoho-Lustig-Pauly (2007):

Use compressed sensing to reduce number of MRI measurements needed.

Main issue to address:

• Lack of incoherence between Fourier measurements and good bases for image representation

In this talk: address this issue, provide reconstruction guarantees

Compressed Sensing and MRI

2 Compressed Sensing with Dictionaries

3 Beyond Incoherence

- 4 Total variation minimization
- 5 Main Results

Definition

A set $\mathbf{D} = \{d_1, \dots, d_N\} \subset \mathbb{C}^n$ is called a *tight frame* if there exists A > 0such that for all $x \in \mathbb{C}^n$ $\sum_{i=1}^N |\langle d_i, x \rangle|^2 = A \|x\|_2^2$

- Interpretation: Dictionary, the d_i's represent different features of the signal.
- Only few features active: Sparsity
- Redundancy N > n allows for sparser representations.

Analysis vs. Synthesis Sparsity

- A signal x ∈ Cⁿ is synthesis s-sparse with respect to a dictionary D if there exist {z_i}^N_{i=1} such that x = ∑^N_{i=1} z_id_i.
- A signal x ∈ Cⁿ is analysis s-sparse with respect to a dictionary D if D^{*}x is s-sparse in C^N.
- For many tight frames that appear in applications, synthesis sparse signals are also approximately analysis sparse.

Definition

For a dictionary $\mathbf{D} \in \mathbb{C}^{n \times N}$ and a sparsity level s, we define the *localization factor* as

$$\eta_{s,\mathbf{D}} = \eta \stackrel{\text{def}}{=} \sup_{\|\mathbf{D}\mathbf{z}\|_2 = 1, \|\mathbf{z}\|_0 \le s} \frac{\|\mathbf{D}^*\mathbf{D}\mathbf{z}\|_1}{\sqrt{s}}.$$

• Assumption: Localization factor not too large.

D-RIP

- If **D** is coherent, that is some *d_i* are very close, it may be impossible to recover **z** even from complete knowledge of **Dz**.
- Consequently, RIP based guarantees cannot work.
- Important observation: No need to find z, x = Dz suffices.

Definition (Candès-Eldar-N-Randall (2010))

Fix a dictionary $\mathbf{D} \in \mathbb{C}^{n \times N}$ and matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$. The matrix \mathbf{A} satisfies the **D**-RIP with parameters δ and s if

$$(1 - \delta) \|\mathbf{D}\mathbf{x}\|_2^2 \le \|\mathbf{A}\mathbf{D}\mathbf{x}\|_2^2 \le (1 + \delta) \|\mathbf{D}\mathbf{x}\|_2^2$$

for all *s*-sparse vectors $\mathbf{x} \in \mathbb{C}^n$.

• Examples of **D**-RIP matrices:

Subgaussian matrices [Candès-Eldar-N-Randall (2010)], RIP matrices with random column signs [Krahmer-Ward (2011)]

Deanna Needell (CMC)

Feb. 2015 11 / 29

Theorem (Candès-Eldar-N-Randall (2010))

For **A** that has the **D**-RIP and a measurement vector $\mathbf{y} = \mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{D}\mathbf{z}$ consider the minimization problem

$$\label{eq:constraint} \hat{\mathbf{x}} = \underset{\tilde{\mathbf{x}} \in \mathbb{C}^n}{\operatorname{argmin}} \| \mathbf{D}^* \tilde{\mathbf{x}} \|_1 \quad \text{subject to} \quad \mathbf{A} \tilde{\mathbf{x}} = \mathbf{y}.$$

Then the minimizer $\hat{\boldsymbol{x}}$ satisfies

$$\|\hat{\mathbf{x}} - \mathbf{x}\|_2 \le C \frac{\|\mathbf{D}^*\mathbf{x} - (\mathbf{D}^*\mathbf{x})_s\|_1}{\sqrt{s}}$$

- Small localization factor \Rightarrow small error bound
- In this talk: provide D-RIP constructions closer to applications

Outline

1 Compressed Sensing and MRI

2 Compressed Sensing with Dictionaries

Beyond Incoherence

4 Total variation minimization

5 Main Results

6 Discussion

Uniform sampling

The mutual coherence of two bases $\{\varphi_k\}$ and $\{b_j\}$ is defined to be $\mu = \sup_{j,k} |\langle b_j, \varphi_k \rangle|.$

Theorem (Rudelson-Vershynin (2006), Rauhut (2007))

Consider the matrix $A = \Phi_{\Omega} B^* \in \mathbb{C}^{m \times N}$ with entries

$$A_{\ell,k} = \langle \varphi_{j_{\ell}}, b_k \rangle, \quad \ell \in [m], k \in [N],$$
(2)

where the $\varphi_{j_{\ell}}$ are independent samples drawn uniformly at random from an ONB $\{\varphi_j\}_{j=1}^N$ incoherent with the sparsity basis $\{b_j\}$ in the sense that $\mu \leq KN^{-1/2}$. Then once, for some $s \gtrsim \log(N)$,

$$m \ge C\delta^{-2}K^2s\log^3(s)\log(N), \tag{3}$$

with probability at least $1 - N^{-\gamma \log^3(s)}$, the restricted isometry constant δ_s of $\frac{1}{\sqrt{m}}A$ satisfies $\delta_s \leq \delta$. The constants $C, \gamma > 0$ are universal.

Deanna Needell (CMC)

[Lustig-Donoho-Pauly (2007)]: "For a better performance with real images, one should be undersampling less near the k-space origin and more in the periphery of k-space. For example, one may choose samples randomly with sampling density scaling according to a power of distance from the origin."

- Idea by Puy-Vandergheynst-Wiaux (2011):
 - Variable density sampling can reduce coherence.
 - Strategy: Find optimal weights using convex optimization.
 - Work with problem specific discretization level.
 - No theoretical recovery guarantees.

- *Empirical observation of Puy et al.:* Often only few Fourier basis vectors have high coherence with the sparsity basis. Changing the weights can compensate for this inhomogeneity.
- We introduce the *local coherence* to address this issue.

Definition (Local coherence)

The *local coherence* of an ONB $\{\varphi_j\}_{j=1}^N$ of \mathbb{C}^N with respect to another ONB $\{\psi_k\}_{k=1}^N$ of \mathbb{C}^N is the function $\mu_{loc}(j) = \sup_{1 \le k \le N} |\langle \varphi_j, \psi_k \rangle|.$

Theorem (Consequence of Rauhut-Ward '12)

Assume the local coherence of an ONB $\Phi = \{\varphi_j\}_{j=1}^N$ with respect to an ONB $\Psi = \{\psi_k\}_{k=1}^N$ is pointwise bounded by the function κ , that is, $\sup_{1 \le k \le N} |\langle \varphi_j, \psi_k \rangle| \le \kappa_j$. Consider the matrix $A \in \mathbb{C}^{m \times N}$ with entries

$$A_{\ell,k} = \langle \varphi_{j_{\ell}}, \psi_k \rangle, \quad j \in [m], k \in [N],$$
(4)

where the j_{ℓ} are drawn independently according to $\nu_{\ell} = \mathbb{P}(\ell_j = \ell) = \frac{\kappa_{\ell}^2}{\|\kappa\|_2^2}$. Suppose that

$$m \ge C\delta^{-2} \|\kappa\|_2^2 s \log^3(s) \log(N), \tag{5}$$

and let $D = diag(d_{j,j})$, where $d_{j,j} = \|\kappa\|_2/\kappa_j$. Then with probability at least $1 - N^{-\gamma \log^3(s)}$, the preconditioned matrix $\frac{1}{\sqrt{m}}DA$ has a restricted isometry constant $\delta_s \leq \delta$. The constants $C, \gamma > 0$ are universal.

1 Compressed Sensing and MRI

- 2 Compressed Sensing with Dictionaries
- 3 Beyond Incoherence
- 4 Total variation minimization
 - 5 Main Results

6 Discussion

Total variation

- Discrete image $\mathbf{x} = (x_{j,k}) \in \mathbb{C}^{n^2}$, $(j,k) \in \{1,2,\ldots,n\}^2 := [n]^2$
- Discrete directional derivatives

$$(x_u)_{j,k} = x_{j,k+1} - x_{j,k},$$

 $(x_v)_{j,k} = x_{j+1,k} - x_{j,k},$

• Discrete gradient $\nabla \mathbf{x} = (x_u, x_v)$ is very close to sparse.

- Not a basis representation, does not allow stable image reconstruction
- Total variation (TV): $\|\mathbf{x}\|_{TV} = \|\nabla \mathbf{x}\|_{\ell^1}$.

Deanna Needell (CMC)

Proposition (N-Ward (2012))

Let (\mathbf{a}_j) be an orthonormal basis for \mathbb{C}^{n^2} that is incoherent with the bivariate Haar basis (\mathbf{w}_j) ,

$$\sup_{j,k} |\langle \mathbf{a}_j, \mathbf{w}_k \rangle| \leq C/n.$$

Let $A_u : \mathbb{C}^{n^2} \to \mathbb{C}^m$ consist of $m \gtrsim s \log^6(n)$ uniformly subsampled bases \mathbf{a}_j as rows. Then with high probability, the following holds for all $\mathbf{X} \in \mathbb{C}^{n^2}$: If $y = A_u \mathbf{X} + \xi$ with $\|\xi\|_2 \leq \varepsilon$ and

$$\hat{\mathbf{X}} = \underset{\mathbf{Z}}{\operatorname{argmin}} \|\mathbf{Z}\|_{TV} \quad such \ that \quad \|\mathcal{F}_{u}\mathbf{Z} - y\|_{2} \leq \varepsilon$$

then

$$\|\hat{X} - X\|_2 \lesssim (\frac{\|\nabla X - (\nabla X)_s\|_1}{\sqrt{s}} + \varepsilon$$

1 Compressed Sensing and MRI

- 2 Compressed Sensing with Dictionaries
- 3 Beyond Incoherence
- 4 Total variation minimization
- 5 Main Results

Theorem (Krahmer-Ward (2014))

Fix $\delta \in (0, 1/3)$ and integers $N = 2^p$, m, and s such that $m \gtrsim s \log^3 s \log^5 N$.

Select m discrete frequencies (Ω^j_1, Ω^j_2) independently according to

$$\mu(\omega_1,\omega_2):=\mathbb{P}\big[(\Omega_1^j,\Omega_2^j)=(\omega_1,\omega_2)\big]\propto\min\left(1,\frac{C'}{\omega_1^2+\omega_2^2}\right),\quad -\frac{N}{2}+1\leq\omega_1,\omega_2\leq\frac{N}{2},$$

and let $\mathcal{F}_{\Omega} : \mathbb{C}^{N^2} \to \mathbb{C}^m$ be the DFT matrix restricted to $\{(\Omega_1^j, \Omega_2^j)\}$. Then with high probability, the following holds for all $f \in \mathbb{C}^{N \times N}$. Given measurements $y = \mathcal{F}_{\Omega}f$, the TV-minimizer

 $f^{\#} = \operatorname*{argmin}_{g \in \mathbb{C}^{N imes N}} \|g\|_{TV}$ such that $\mathcal{F}_{\Omega}g = y$,

approximates f to within the best s-term approximation error of ∇f :

$$||f - f^{\#}||_2 \le C \frac{||\nabla f - (\nabla f)_s||_1}{\sqrt{s}}$$

Numerical Simulations

(c) Sample $\propto (k_1^2 + k_2^2)^{-1}$ (d) Sample $\propto (k_1^2 + k_2^2)^{-3/2}$

Figure : Reconstruction using m = 12,000 noiseless partial DFT measurements with frequencies $\Omega = (k_1, k_2)$ sampled from various distributions.

 \bullet Relative reconstruction errors (b) .18, (c) .21, and (d) .19

Which sampling density to choose?

(a) Reconstruction errors by various power-law density sampling at low noise (filled line) and high noise (dashed line)

• Are all the reconstructions of comparable quality?

Really all the same?

(b) The *wet paint* reconstructions indicated by the circled errors on the error plot, zoomed in on the paint sign.

At high noise level, inverse quadratic-law sampling (left) still reconstructs fine details of the image better than low frequency-only sampling (right).

Theorem (Krahmer-N-Ward (2014))

Fix a sparsity level s < N, and constant $0 < \delta < 1$. Let $\mathbf{D} \in \mathbb{C}^{n \times N}$ be a tight frame, let $\mathbf{A} = \{a_1, \ldots, a_n\}$ be an ONB of \mathbb{C}^n , and $\kappa \in \mathbb{R}^n_+$ an entrywise upper bound of the local coherence, that is,

$$\mu_i^{loc}(\mathbf{A},\mathbf{D}) = \sup_{j\in[N]} |\langle a_i,d_j\rangle| \leq \kappa_i.$$

Consider the localization energy η . Construct $\tilde{\mathbf{A}} \in \mathbb{C}^{m \times n}$ by sampling vectors from \mathbf{A} at random according to the probability distribution ν given by $\nu(i) = \frac{\kappa_i^2}{\|\kappa\|_2^2}$ and normalizing by $\sqrt{n/m}$. Then as long as

$$m \geq C\delta^{-2}s \|\kappa\|_2^2(\eta)^2 \log^3(s\eta^2) \log(N), \text{ and}$$

$$m \geq C\delta^{-2}s \|\kappa\|_2^2 \eta^2 \log(1/\gamma)$$
(6)

then with probability $1 - \gamma$, \tilde{A} satisfies the **D**-RIP with parameters s and δ .

- Recovery guarantees for Fourier measurements and Haar wavelet frames of redundancy 2 by previous local coherence analysis.
- Constant local coherence: Implies incoherence based guarantees (for example for oversampled Fourier dictionary).

1 Compressed Sensing and MRI

- 2 Compressed Sensing with Dictionaries
- 3 Beyond Incoherence
- 4 Total variation minimization
- 5 Main Results

- Compressive imaging via variable density sampling
- Uniform recovery guarantees for approximately Haar- and Gradient-sparse images
- First guarantees for Fourier measurements and dictionary sparsity
- Goals:
 - Basis-independent error bounds via continuous total variation.
 - Why is cubic decay better than quadratic?
 - Sharper error bounds using shearlets, curvelets
 - What is the right noise model?