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The mathematical problem

1. Signal of interest f ∈Cd (=CN×N )

2. Measurement operator A :Cd →Cm (m ¿ d)

3. Measurements y =A f +ξ

y

=

 A




f

+

ξ


4. Problem: Reconstruct signal f from measurements y



Sparsity

Measurements y =A f +ξ.

y

=

 A




f

+

ξ


Assume f is sparse:

G In the coordinate basis: ‖ f ‖0
def= |supp( f )| ≤ s ¿ d

G In orthonormal basis: f = B x where ‖x‖0 ≤ s ¿ d

In practice, we encounter compressible signals.
F fs is the best s-sparse approximation to f



Many applications...

G Radar, Error Correction

G Computational Biology, Geophysical Data Analysis

G Data Mining, classification

G Neuroscience

G Imaging

G Sparse channel estimation, sparse initial state estimation

G Topology identification of interconnected systems

G ...



Notation

G `p-norms: ‖z‖p
def= (∑

i |zi |p
)1/p

G Usual (Euclidean `2) distance: ‖z‖2
def= (∑

i |zi |2
)1/2

G `1 (Taxicab) distance: ‖z‖1
def= (∑

i |zi |
)

G The `2-ball: {z : ‖z‖2 ≤ 1} (circle/sphere)

G The `1-ball: {z : ‖z‖1 ≤ 1} (diamond/octahedron)

G For signal f , fs ( f B
s ) is its best s-sparse representation (in basis B)

G f̂ will denote the reconstruction of f

G h = argminz g (z) is the argument z which minimizes g (z)



Sparsity...

Sparsity in coordinate basis: f=x



How should we reconstruct f ?

F Easy Theorem:

Assume A is one-to-one on all s-sparse signals. Assume there is no noise.
Reconstruct an s-sparse signal f by:

f̂ = argmin
z

‖z‖0 such that Az = y.

Then we reconstruct f perfectly: f̂ = f .

F Unfortunately, this problem is NP-Hard!
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How should we reconstruct f ?



Was that contrived?

Will the picture always look this way?



Was that contrived?

{z : Az=y}

But in higher dimensions, for “sufficiently random” operators A, this picture
happens with extremely low probability!



What about noise?

Recall y = A f +ξ.



What about noise?

Recall y = A f +ξ.



Reconstructing the signal f from
measurements y

F `1-minimization [Candès-Romberg-Tao]

Let A satisfy the Restricted Isometry Property and set:

f̂ = argmin
g

‖g‖1 such that ‖A f − y‖2 ≤ ε,

where ‖ξ‖2 ≤ ε. Then we can stably recover the signal f :

‖ f − f̂ ‖2 . ε+ ‖x −xs‖1p
s

.

This error bound is optimal.



Restricted Isometry Property

G A satisfies the Restricted Isometry Property (RIP) when there is δ< c

such that

(1−δ)‖ f ‖2 ≤ ‖A f ‖2 ≤ (1+δ)‖ f ‖2 whenever ‖ f ‖0 ≤ s.

G m ×d Gaussian or Bernoulli measurement matrices satisfy the RIP with
high probability when

m & s logd .

G Random Fourier and others with fast multiply have similar property:
m & s log4 d .



Sparsity...

In orthonormal basis: f = B x



Natural Images

Images are compressible in Wavelet bases.

f =
N∑

j ,k=1

x j ,k H j ,k, x j ,k =
〈

f , H j ,k

〉
, ‖ f ‖2 = ‖x‖2,

Figure 1: Haar basis functions

Wavelet transform is orthonormal and multi-scale. Sparsity level of image
is higher on detail coefficients.



Sparsity in orthonormal basis B

F L1-minimization Method

For orthonormal basis B , f = B x with x sparse, one may solve the
`1-minimization program:

f̂ = argmin
f̃ ∈Cn

‖B−1 f̃ ‖1 subject to ‖A f̃ − y‖2 ≤ ε.

Same results hold.



Iterative methods too

COSAMP (N-Tropp)

input: Sampling operator A, measurements y , sparsity level s
initialize: Set x0 = 0, i = 0.
repeat

signal proxy: Set p = A∗(y − Ax i ), Ω= supp(p2s), T =Ω∪ supp(x i ).
signal estimation: Using least-squares, set b|T = A†

T y and b|T c = 0.
prune and update: Increment i and to obtain the next approximation,
set x i = bs.
output: s-sparse reconstructed vector x̂ = x i



Sparsity...

In arbitrary dictionary: f = Dx



The CS Process



Example: Oversampled DFT

G n ×n DFT: dk(t ) = 1p
n

e−2πi kt/n

G Sparse in the DFT → superpositions of sinusoids with frequencies in
the lattice.

G Instead, use the oversampled DFT :

G Then D is an overcomplete frame with highly coherent columns →
conventional CS does not apply .



Example: Gabor frames

G Gabor frame: Gk(t ) = g (t −k2a)e2πi k1bt

G Radar, sonar, and imaging system applications use Gabor frames and
wish to recover signals in this basis.

G Then D is an overcomplete frame with possibly highly coherent columns
→ conventional CS does not apply .



Example: Curvelet frames

G A Curvelet frame has some properties of an ONB but is overcomplete.

G Curvelets approximate well the curved singularities in images and are
thus used widely in image processing.

G Again, this means D is an overcomplete dictionary → conventional CS
does not apply .



Example: UWT

G The undecimated wavelet transform has a translation invariance
property that is missing in the DWT.

G The UWT is overcomplete and this redundancy has been found to be
helpful in image processing.

G Again, this means D is a redundant dictionary → conventional CS does
not apply .



`1-Synthesis Method

F For arbitrary tight frame D, one may solve the `1-synthesis program:

f̂ = D

(
argmin

x̃∈Cn
‖x̃‖1 subject to ‖A Dx̃ − y‖2 ≤ ε

)
.

Some work on this method [Candès et.al., Rauhut et.al., Elad et.al.,...]

F Open: Understand the `1-synthesis problem, necessary assumptions,
recovery guarantees.



`1-Analysis Method

F For arbitrary tight frame D, one may solve the `1-analysis program:

f̂ = argmin
f̃ ∈Cn

‖D∗ f̃ ‖1 subject to ‖A f̃ − y‖2 ≤ ε.



Condition on A?

F D-RIP

We say that the measurement matrix A obeys the restricted isometry
property adapted to D (D-RIP) if there is δ< c such that

(1−δ)‖Dx‖2
2 ≤ ‖A Dx‖2

2 ≤ (1+δ)‖Dx‖2
2

holds for all s-sparse x.
F Similarly to the RIP, many classes of m ×d random matrices satisfy the
D-RIP with m ≈ s log(d/s). In fact, any matrix that satisfies RIP will satisfy
D-RIP after applying random signs to the columns [Krahmer-Ward ’11]



CS with tight frame dictionaries

F Theorem [Candès-Eldar-N-Randall]

Let D be an arbitrary tight frame and let A be a measurement matrix
satisfying D-RIP. Then the solution f̂ to `1-analysis satisfies

‖ f̂ − f ‖2 . ε+ ‖D∗ f − (D∗ f )s‖1p
s

.

F In other words, This result says that `1-analysis is very accurate when
D∗ f has rapidly decaying coefficients and D is a tight frame. F For a
dictionary D ∈Cn×N and a sparsity level s, we define the unrecoverable
energy as

ε?s,D = ε? def= sup
‖Dz‖2=1,‖z‖0≤s

‖D∗Dz − (D∗Dz)s‖1p
s

.



`1-analysis: Experimental Setup

n = 8192,m = 400,d = 491,520

A: m ×n Gaussian, D: n ×d Gabor
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`1-analysis: Experimental Results



Other algorithms

F `1-analysis is very accurate when D∗ f has rapidly decaying
coefficients and D is a tight frame. This is precisely because this method
operates in “analysis” space.

F Open: analysis methods for non-tight frames, without decaying
analysis coefficients (concatenations), other models

F What about operating in signal or coefficient space?



Is it really a pipe?

(Thanks to M. Davenport for this clever analogy.)



CoSaMP

COSAMP (N-Tropp)

input: Sampling operator A, measurements y , sparsity level s
initialize: Set x0 = 0, i = 0.
repeat

signal proxy: Set p = A∗(y − Ax i ), Ω= supp(p2s), T =Ω∪ supp(x i ).
signal estimation: Using least-squares, set b|T = A†

T y and b|T c = 0.
prune and update: Increment i and to obtain the next approximation,
set x i = bs.
output: s-sparse reconstructed vector x̂ = x i



Signal Space CoSaMP

SIGNAL SPACE COSAMP (Davenport-N-Wakin)

input: A, D, y, s, stopping criterion
initialize: r =y, x0 = 0, `= 0, Γ=;
repeat

proxy: h=A∗r
identify: Ω=SD(h,2s)
merge: T =Ω∪Γ
update: x̃= argminz ‖y−Az‖2 s.t. z ∈R(DT )

Γ=SD(x̃, s)
x`+1 =PΓx̃

r =y−Ax`+1

`= `+1
output: x̂=x`



Signal Space CoSaMP

F Here we must contend with

Λopt(z, s) := argmin
Λ:|Λ|=s

‖z−PΛz‖2 , PΛ :Cn →R(DΛ).

F Estimate by SD(z, s) with |SD(z, s)| = s, that satisfies

∥∥PΛopt(z,s)z−PSD(z,s)z
∥∥

2
≤ min

(
ε1

∥∥PΛopt(z,s)z
∥∥

2
,ε2

∥∥z−PΛopt(z,s)z
∥∥

2

)
for some constants ε1,ε2 ≥ 0.



Approximate Projection

F Practical choices for SD(z, s) :

G Any sparse recovery algorithm!

G OMP

G CoSaMP

G `1-minimization followed by hard thresholding



Signal Space CoSaMP

F Theorem [Davenport-N-Wakin] Let D be an arbitrary tight frame, A be a
measurement matrix satisfying D-RIP, and f a sparse signal with respect
to D. Then the solution f̂ from Signal Space CoSaMP satisfies

‖ f̂ − f ‖2 . ε.

(And similar results for approximate sparsity, depending on the
approximation method used for Λopt(z, s).)

F Open: Design approximation methods that satisfy necessary recovery
bounds (sparse approximation).



Signal Space CoSaMP: Experimental Results

Figure 2: Performance in recovering signals having a s = 8 sparse representation in a
dictionary D with orthogonal, but not normalized, columns.



Signal Space CoSaMP: Experimental Results

(a) (b)

Figure 3: Results with s = 8 sparse representation in a 4× overcomplete DFT dictionary:
(a) well-separated coefficients, (b) clustered coefficients.



Signal Space CoSaMP: Experimental Results

Figure 4: Left: separations represent the number of zeros between two clusters size
s/2. Right: separations represent the number of zeros between each nonzero entry.
Measurements and sparsity are m = 100 and s = 8, respectively with a 4× overcomplete
DFT dictionary.



Signal Space CoSaMP: Experimental Results

Figure 5: SSCoSaMP recovering a sparse vector with a hybrid sparse support: a block
of s/2 nonzeros with the remaining s/2 nonzeros spaced at least 8 slots apart from all other
nonzeros.



Signal Space CoSaMP: Experimental Results

“Ad-hoc Neighborly Methods” (NOMP, ε-OMP)

Figure 6: Percent perfect recovery of clustered signals (left) and well separated signals
(right) and hybrid signals (bottom).



Signal Space CoSaMP: Experimental Results

Ad-hoc “Union” Methods (USSCoSaMP)

Figure 7: Left: Clustered. Right: Well-Separated. Bottom: Hybrid signal.



Signal Space CoSaMP: Recent improvements

F Recently improved results [Giryes-N and Hegde-Indyk-Schmidt] which
relax the assumptions on the approximate projections.

F These results show that at least for RIP/incoherent dictionaries,
standard algorithms like CoSaMP/OMP/IHT suffice for the approximate
projections.

Open:
F The interesting/challenging case is when the dictionary does not satisfy
such a condition. Are there methods which provide these approximate
projections? Or are they not even necessary?



Natural images

Sparse...

256×256 “Boats" image



Natural images

Sparse wavelet representation...



Natural images

Images are compressible in discrete gradient.



Natural images

Images are compressible in discrete gradient.

The discrete directional derivatives of an image f ∈CN×N are

fx :CN×N →C(N−1)×N , ( fx) j ,k = f j ,k − f j−1,k,

fy :CN×N →CN×(N−1), ( fy) j ,k = f j ,k − f j ,k−1,

the discrete gradient operator is

∇[ f ] = ( fx, fy)



Sparsity in gradient

F CS Theory

The gradient operator ∇ is not an orthonormal basis or a tight frame. In
fact, it is extremely ill-conditioned!



Comparison of two compressed sensing
reconstruction algorithms

F Haar-minimization (L1-Haar)

f̂H aar = argmin‖H(Z )‖1 subject to ‖A Z − y‖2 ≤ ε

F Total Variation minimization (TV)

f̂T V = argmin‖∇[Z ]‖1 subject to ‖A Z − y‖2 ≤ ε, where ‖Z‖T V = ‖∇[Z ]‖1

is the total-variation norm.



Imaging via compressed sensing

(a) Original

(b) TV (c) L1-Haar

Figure 8: Reconstruction using m = .2N 2



Imaging via compressed sensing

(a) Original

(b) TV (c) L1-Haar

Figure 9: Reconstruction using m = .2N 2 measurements



Imaging via compressed sensing

(a) Original

(b) TV (c) L1-Haar

Figure 10: Reconstruction using m = .2N 2 measurements.



Imaging via compressed sensing

(a) (Quantization)

(b) TV (c) L1-Haar

Figure 11: Reconstruction using m = .2N 2 measurements



Imaging via compressed sensing

InView (Austin TX)

Figure 12: SWIR Reconstruction using m = .5N 2 measurements



Imaging via compressed sensing

InView (Austin TX)

Figure 13: InView SWIR camera



Empirical → Theoretical?

F TV Works

Empirically, it has been well known that

f̂T V = argmin‖Z‖T V subject to ‖A Z − y‖2 ≤ ε, (T V )

provides quality, stable image recovery.

F No provable stability guarantees.



Stable signal recovery using total-variation
minimization

Theorem 1. [N-Ward] From m & s log(N ) linear RIP measurements, for
any f ∈CN×N ,

f̂ = argmin‖Z‖T V such that ‖A (Z )− y‖2 ≤ ε,

satisfies
‖ f − f̂ ‖T V . ‖∇[ f ]−∇[ f ]s‖1+

p
sε (gradient error)

and
‖ f − f̂ ‖2 . log(N ) ·

[‖∇[ f ]−∇[ f ]s‖1p
s

+ε
]

(signal error)

This error guarantee is optimal up to the log(N ) factor



Higher dimensional objects

Movies, higher dimensional objects?

Theorem 2. [N-Ward] From m & s log(N d ) linear RIP measurements, for
any f ∈CN d

,

f̂ = argmin‖Z‖T V such that ‖A (Z )− y‖2 ≤ ε,

satisfies
‖ f − f̂ ‖T V . ‖∇[ f ]−∇[ f ]s‖1+

p
sε (gradient error)

and
‖ f − f̂ ‖2 . log(N d /s) ·

[‖∇[ f ]−∇[ f ]s‖1p
s

+ε
]

(signal error)

This error guarantee is optimal up to the log(N d /s) factor



Stable signal recovery using total-variation
minimization

Method of proof:

G First prove stable gradient recovery

G Translate stable gradient recovery to stable signal recovery using the
strengthened Sobolev inequality.

Open:
F Remove logarithmic factors, design more efficient measurement
schemes.

F Incorporate wavelets, Laplacian, etc. for optimal performance.

F Prove for 1-d signals!



Re-visiting the D-RIP

(1−δ)‖Dx‖2
2 ≤ ‖A Dx‖2

2 ≤ (1+δ)‖Dx‖2
2

G Required for most recovery guarantees using frames

G If a matrix A satisfies RIP then Ã obtained by applying random signs to
the columns satisfies D-RIP

G This implies (sub)Gaussian matrices, Bernoulli matrices, etc. still satisfy
the D-RIP

G But for structured matrices (e.g. Fourier), we need to apply column
signs...

G Not always feasible in practice!



Uniform sampling

The mutual coherence of two bases {ϕk} and {b j } is defined to be

µ= sup
j ,k

|〈b j ,ϕk〉|.

F Theorem [Rudelson-Vershynin ’06, Rauhut ’07]

Consider the matrix A =ΦΩB∗ ∈Cm×N with entries

A`,k = 〈ϕ j`,bk〉, ` ∈ [m],k ∈ [N ], (1)

where the ϕ j` are independent samples drawn uniformly at random from an ONB {ϕ j }N
j=1

incoherent with the sparsity basis {b j } in the sense that µ≤ K N−1/2. Then once, for some
s & log(N ),

m ≥Cδ−2K 2s log3(s) log(N ), (2)

with probability at least 1−N−γ log3(s), the restricted isometry constant δs of 1p
m

A satisfies

δs ≤ δ. The constants C ,γ> 0 are universal.



Variable density sampling

[Lustig-Donoho-Pauly ’07]: “For a better performance with real images, one should be

undersampling less near the k-space origin and more in the periphery of k-space. For

example, one may choose samples randomly with sampling density scaling according to a

power of distance from the origin."

G Idea by Puy-Vandergheynst-Wiaux ’11:

G Variable density sampling can reduce coherence.
G Strategy: Find optimal weights using convex optimization.
G Work with problem specific discretization level.
G No theoretical recovery guarantees.



Local coherence

G Empirical observation of Puy et al.:
Often only few Fourier basis vectors have high coherence with the
sparsity basis. Changing the weights can compensate for this
inhomogeneity.

G We introduce the local coherence to address this issue.

F The local coherence of an ONB {ϕ j }N
j=1 of CN with respect to another

ONB {ψk}N
k=1 of CN is the function µloc( j ) = sup

1≤k≤N
|〈ϕ j ,ψk〉|.



RIP for variable density subsampling

F Theorem [Consequence of Rauhut-Ward ’12]

Assume the local coherence of an ONB Φ= {ϕ j }N
j=1 with respect to an ONB Ψ= {ψk}N

k=1 is
pointwise bounded by the function κ, that is, sup

1≤k≤N
|〈ϕ j ,ψk〉| ≤ κ j . Consider the matrix

A ∈Cm×N with entries
A`,k = 〈ϕ j`,ψk〉, j ∈ [m],k ∈ [N ], (3)

where the j` are drawn independently according to ν` =P(` j = `) = κ2
`

‖κ‖2
2
. Suppose that

m ≥Cδ−2‖κ‖2
2s log3(s) log(N ), (4)

and let D = di ag (d j , j ), where d j , j = ‖κ‖2/κ j . Then with probability at least 1−N−γ log3(s),

the preconditioned matrix 1p
m

D A has a restricted isometry constant δs ≤ δ. The constants

C ,γ> 0 are universal.



F Theorem [Krahmer-N-Ward ’15]

Fix a sparsity level s < N , and constant 0 < δ< 1. Let D ∈Cn×N be a tight frame, let
A = {a1, . . . , an} be an ONB of Cn, and κ ∈Cn

+ an entrywise upper bound of the local
coherence, that is,

µloc
i (A ,D) = sup

j∈[N ]
|〈ai ,d j 〉| ≤ κi .

Consider the unrecoverable energy ε?. Construct Ã ∈Cm×n by sampling vectors from A

at random according to the probability distribution ν given by ν(i ) = κ2
i

‖κ‖2
2

and normalizing

by
p

n/m. Then as long as

m ≥ Cδ−2s‖κ‖2
2(1+ε?)2 log3(s(1+ε?)2) log(N ), and

m ≥ Cδ−2s‖κ‖2
2(1+ε?)2 log(1/γ) (5)

then with probability 1−γ, Ã satisfies the D-RIP with parameters s and δ.



Consequences

G Recovery guarantees for Fourier measurements and Haar wavelet
frames of redundancy 2 by previous local coherence analysis.

G Constant local coherence: Implies incoherence based guarantees (for
example for oversampled Fourier dictionary).

G No need to apply random column signs anymore.



Thank you!

E-mail:
G dneedell@cmc.edu

Web:
G www.cmc.edu/pages/faculty/DNeedell
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Problem setting
Data sets are normally represented as point clouds
{x1, . . . ,xn} ⊂ R

ℓ, for ℓ large;
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Problem setting
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Problem setting
Data sets are normally represented as point clouds
{x1, . . . ,xn} ⊂ R

ℓ, for ℓ large;

but they are often intrinsically low dimensional.

The handwritten digit 1 The human facial images
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This observation/assumption is commonly exploited for
effectively modeling real data.

Data-dependent dictionary learning



Orthogonal basis modeling
The simplest way is to use an orthogonal basis B = {bi}:

x =
∑

cibi, where ci =
(x,bi)

‖bi‖22

that is

either designed analytically: Fourier, Wavelet, etc.

or learned from data:
PCA: Model data by a single subspace;
Hybrid linear modeling: Use a union of subspaces
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Data-dependent dictionary learning



Orthogonal basis modeling
Pros:

Mathematically very simple to operate

Good performance (when assumption is satisfied)

Cons:

Very limited expressiveness

No clear interpretation for the basis

Too simplistic for real data

Data-dependent dictionary learning



Overcomplete basis modeling
The idea is to represent data using a (large) redundant
collection of (linearly dependent) vectors di:

x =
∑

αidi = Dα.

Data-dependent dictionary learning



Overcomplete basis modeling
The idea is to represent data using a (large) redundant
collection of (linearly dependent) vectors di:

x =
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αidi = Dα.

This relaxes the linear independence condition for bases
and gives us great flexibility in choosing which subset of
di to represent x.

Data-dependent dictionary learning



Overcomplete basis modeling
The idea is to represent data using a (large) redundant
collection of (linearly dependent) vectors di:

x =
∑

αidi = Dα.

This relaxes the linear independence condition for bases
and gives us great flexibility in choosing which subset of
di to represent x.

What kind of D should we use?

Data-dependent dictionary learning



Overcomplete basis modeling
Two different types of requirements for D:

Impose the frame condition on the collection D:

A‖x‖22 ≤ ‖D
T
x‖22 ≤ B‖x‖22, for all x

to make it a spanning set with good theoretical
properties, or
Add a sparsity constraint to the coefficient α (only for
given signals x) in order to promote simplicity and
easy interpretability.

Data-dependent dictionary learning



Overcomplete basis modeling
Two different types of requirements for D:

Impose the frame condition on the collection D:

A‖x‖22 ≤ ‖D
T
x‖22 ≤ B‖x‖22, for all x

to make it a spanning set with good theoretical
properties, or
Add a sparsity constraint to the coefficient α (only for
given signals x) in order to promote simplicity and
easy interpretability.

These two considerations lead to, respectively, frames
and dictionaries.

Data-dependent dictionary learning



Ways to produce dictionaries
Depending on how they are obtained, dictionaries can
be divided into two categories:

Analytically designed: frames (Xlets for digital images)
Learned from data: trained dictionaries

Data-dependent dictionary learning –
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Analytic: supported by theory, fast transform, but
works only when assumptions are satisfied
Trained: adapts better to data, better performance, but
computationally intensive and hard to analyze due to
lack of structure
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Ways to produce dictionaries
Depending on how they are obtained, dictionaries can
be divided into two categories:

Analytically designed: frames (Xlets for digital images)
Learned from data: trained dictionaries

Both have pros and cons:
Analytic: supported by theory, fast transform, but
works only when assumptions are satisfied
Trained: adapts better to data, better performance, but
computationally intensive and hard to analyze due to
lack of structure

We focus on trained dictionaries; such research is called
data-dependent dictionary learning.

Data-dependent dictionary learning –



Data-dependent DL

Problem definition . Given training signals x1, . . . ,xn ∈ R
ℓ,

we learn a dictionary D consisting of atomic signals
d1, . . . ,dm, in order to represent each given signal as a
linear combination of few atoms:

min
D,α1,...,αn

∑

||αi||0 subject to ||xi −Dαi||2 ≤ ǫ

in which

D = [d1, . . . ,dm] ∈ R
ℓ×m: (long) dictionary matrix;

||αi||0: # nonzeros in the coefficient vector αi;

ǫ: desired precision
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Data-dependent DL

Problem definition . Given training signals x1, . . . ,xn ∈ R
ℓ,

we learn a dictionary D consisting of atomic signals
d1, . . . ,dm, in order to represent each given signal as a
linear combination of few atoms:

min
D,α1,...,αn

∑

||αi||0 subject to ||xi −Dαi||2 ≤ ǫ

in which

D = [d1, . . . ,dm] ∈ R
ℓ×m: (long) dictionary matrix;

||αi||0: # nonzeros in the coefficient vector αi;

ǫ: desired precision

This is the fixed-precision, minimal-cost formulation.
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Alternative formulations
Fixed cost, minimal error

min
D,α1,...,αn

n∑

i=1

||xi −Dαi||
2
2 subject to ||αi||0 ≤ s
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2
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Unified version

min
D,α1,...,αn

∑
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2
2 + λ||αi||0
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min
D,α1,...,αn

∑

||xi −Dαi||
2
2 + λ||αi||1
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Alternative formulations
Fixed cost, minimal error

min
D,α1,...,αn

n∑

i=1

||xi −Dαi||
2
2 subject to ||αi||0 ≤ s

Unified version

min
D,α1,...,αn

∑

||xi −Dαi||
2
2 + λ||αi||0

Convex relaxation

min
D,α1,...,αn

∑

||xi −Dαi||
2
2 + λ||αi||1

Matrix form

min
D,A
||X−DA||2F + λ||A||1,1, ||A||1,1 =

∑

||αi||1
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Analogy to natural languages

Take the English language as an example:

There is a dictionary which is a large collection of words
(atoms)

Each sentence, an ordered list of words, can be
regarded as a signal

There is normally more than one way to express
something, but the most concise sentence is preferred

The DL task can be thought of as reconstructing the
English dictionary from many sentences
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Related fields
PCA and hybrid linear modeling : The dictionary model
is the most flexible because it uses all possible
combinations of the atoms
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Related fields
PCA and hybrid linear modeling : The dictionary model
is the most flexible because it uses all possible
combinations of the atoms

Frame design : Dictionary combines the sparsity notion,
and is more application oriented (much less theory)

Sparse coding (D known):

min
α
||x−Dα||22 + λ||α||0

Can be efficiently solved by pursuit algorithms (greedy
methods or convex optimization)
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Related fields
PCA and hybrid linear modeling : The dictionary model
is the most flexible because it uses all possible
combinations of the atoms

Frame design : Dictionary combines the sparsity notion,
and is more application oriented (much less theory)

Sparse coding (D known):

min
α
||x−Dα||22 + λ||α||0

Can be efficiently solved by pursuit algorithms (greedy
methods or convex optimization)

Compressive sensing (D: designed sensing matrix):
The CS problem is to recover the sparse signal α from
its compressed measurements x = Dα.
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Application to image processing
Assume that we observe a noisy, degraded version of a
clean image t:

x = Ht+ e,

in which

e: additive noise;

H: identity or a linear degradation operator representing
a blur, downsampling, or masking.
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Application to image processing
Assume that we observe a noisy, degraded version of a
clean image t:

x = Ht+ e.

We would like to recover the clean image t from x.

The problem is correspondingly referred to as image
denoising, deblurring, super-resolution, and inpainting.
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The dictionary model for images
Assuming that all images t are generated from a large
dictionary D (i.e. t = Dα), we rewrite

x = HDα + e

The clean image t is recovered from its noisy, degraded
version x by first solving

α̂ = argminα ‖x− (HD)α‖22 + λ||α||0

and then using t̂ = Dα̂.

Data-dependent dictionary learning –



The dictionary model for images
Assuming that all images t are generated from a large
dictionary D (i.e. t = Dα), we rewrite

x = HDα + e

The clean image t is recovered from its noisy, degraded
version x by first solving

α̂ = argminα ‖x− (HD)α‖22 + λ||α||0

and then using t̂ = Dα̂.

H is known, but D is unknown:

Typically, it is trained on many (similar) natural images

Sometimes, it can be self-learned (by operating on the
patches of t)
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Existing DL methods
Algorithms that have been developed:

Iterative methods (based on optimization using previous
formulations)

Method of optimal directions (Engan et al., ICASSP
99’)
K-SVD (Elad et al., SPARSE 05’)
Online dictionary learning (Mairal et al., ICML 09’)

Bayesian method (Carin et al., NIPS 09’)

Geometric method (with Maggioni, CISS 10’)
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The K-SVD algorithm
K-SVD represents the current state of the art.

Data-dependent dictionary learning –



The K-SVD algorithm
K-SVD represents the current state of the art.

It is a sort of generalization of the K-means algorithm,
and thus has many similar properties.
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The K-SVD algorithm
K-SVD represents the current state of the art.

It is a sort of generalization of the K-means algorithm,
and thus has many similar properties.

With an initial guess of the dictionary, it solves

min
D,α1,...,αn

∑

||xi −Dαi||
2
2 subject to ||αi||0 ≤ s

by alternating between two steps:
Sparse coding (given D): use pursuit algorithms such
as OMP
Dictionary update (given all αi): update one atom
each time, using only those training signals that need
this atom at that step
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Example: K-SVD denoising

Original clean image
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Example: K-SVD inpainting
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Strengths & weaknesses of K-SVD
Advantages:

Simple to implement and relatively fast to run

Some sort of local convergence is expected

Applied successfully to many imaging tasks

Data-dependent dictionary learning –



Strengths & weaknesses of K-SVD
Advantages:

Simple to implement and relatively fast to run

Some sort of local convergence is expected

Applied successfully to many imaging tasks

Disadvantages:

Convergence depends on the initial dictionary used

Dictionary size and sparsity are often arbitrarily picked

Output dictionary is completely unconstrained and
unstructured (making sparse coding very costly)
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Overview of GMRA
We build data-dependent dictionaries that are without the
previously-mentioned disadvantages.

We assume that the data follows a manifold model.
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We assume that the data follows a manifold model.

We construct the dictionary explicitly from data.

We extend wavelets for 1D signals and PCA for
subspaces to nonlinear manifolds in higher dimensions.

Data-dependent dictionary learning –



Overview of GMRA
We build data-dependent dictionaries that are without the
previously-mentioned disadvantages.

We assume that the data follows a manifold model.

We construct the dictionary explicitly from data.

We extend wavelets for 1D signals and PCA for
subspaces to nonlinear manifolds in higher dimensions.

We obtain a structured dictionary which is hierarchically
organized.

Data-dependent dictionary learning –



Overview of GMRA
We build data-dependent dictionaries that are without the
previously-mentioned disadvantages.

We assume that the data follows a manifold model.

We construct the dictionary explicitly from data.

We extend wavelets for 1D signals and PCA for
subspaces to nonlinear manifolds in higher dimensions.

We obtain a structured dictionary which is hierarchically
organized.

We show that with our dictionary sparse coding
becomes a trivial task.
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Overview of GMRA
We build data-dependent dictionaries that are without the
previously-mentioned disadvantages.

We assume that the data follows a manifold model.

We construct the dictionary explicitly from data.

We extend wavelets for 1D signals and PCA for
subspaces to nonlinear manifolds in higher dimensions.

We obtain a structured dictionary which is hierarchically
organized.

We show that with our dictionary sparse coding
becomes a trivial task.

We derive theoretical guarantees on the dictionary size
and coefficient sparsity.
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Main steps
Our construction is based on a geometric multiresolution
analysis (GMRA) of the data:

1. A multiscale (nested) spatial decomposition ofM into
dyadic cubes at a total of J scales
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Main steps
Our construction is based on a geometric multiresolution
analysis (GMRA) of the data:

1. A multiscale (nested) spatial decomposition ofM into
dyadic cubes at a total of J scales

2. A d-dimensional affine approximation in each cube,
yielding a sequence of piecewise linear setsMj

M
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M
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Main steps
Our construction is based on a geometric multiresolution
analysis (GMRA) of the data:

1. A multiscale (nested) spatial decomposition ofM into
dyadic cubes at a total of J scales

2. A d-dimensional affine approximation in each cube,
yielding a sequence of piecewise linear setsMj

3. A construction of dictionary atoms encoding differences
betweenMj andMj+1

M
3

M
4

M
5
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The partition tree
There is a natural tree structure associated to the family of
dyadic cubes {Cj,k}, with each node representing a cube.
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Scaling & wavelet bases
In every node Cj,k of the tree we perform rank-d SVD
(after removing the local mean cj,k). The resulting basis,
denoted by Φj,k, is called the scaling basis.
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Scaling & wavelet bases
In every node Cj,k of the tree we perform rank-d SVD
(after removing the local mean cj,k). The resulting basis,
denoted by Φj,k, is called the scaling basis.

For any Cj+1,k′ ⊂ Cj,k, define

Wj+1,k′ := (I − Φj,kΦ
T
j,k) colspan(Φj+1,k′)

and let Ψj+1,k′ be an orthonormal basis for Wj+1,k′. The
Ψj+1,k′ is the “wavelet basis” associated to Cj+1,k′.

 

 
<Φ

j,k
>

<Φ
j+1,k

>
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Encoding the differences
Let xi represent the projection of x at scale i, for all i. We
can show that

xj+1 − xj
︸ ︷︷ ︸

diff across scales

= Ψj+1,k′

︸ ︷︷ ︸

wavelet basis

· qj+1
︸︷︷︸

wavelet coeff

+ ωj+1,k′

︸ ︷︷ ︸

wavelet const

,

in which

qj+1 := ΨT
j+1,k′

(
xj+1 − cj+1,k′

)
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Encoding the differences
Let xi represent the projection of x at scale i, for all i. We
can show that

xj+1 − xj
︸ ︷︷ ︸

diff across scales

= Ψj+1,k′

︸ ︷︷ ︸

wavelet basis

· qj+1
︸︷︷︸

wavelet coeff

+ ωj+1,k′

︸ ︷︷ ︸

wavelet const

,

in which

qj+1 := ΨT
j+1,k′

(
xj+1 − cj+1,k′

)

This defines a discrete geometric wavelet transform (GWT):

x ∈M 7−→ (qJ , qJ−1, . . . , q1, q0) ∈ R
≤(J+1)d
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GMRA (X, d, ǫ)

1) Construct the dyadic cubes Cj,k and form a tree T .
2) J ← finest scale with the ǫ-approximation property.
3) Compute the scaling bases Φj,k for all leaf nodes
4) for j = J − 1 down to 1

for each nonleaf node Cj,k

Calculate the associated scaling basis Φj,k.
For each child Cj+1,k′ ⊂ Cj,k, find the wavelet basis
Ψj+1,k′ and constant ωj+1,k′.

end

end

5) Set Ψ0,1 = Φ0,1 at the root node.
6) Return GMRA = {Ψj,k, cj,k, ωj,k}.
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Geometric wavelet transforms
{qj} =ForwardGWT(GMRA, x)

k ← index of “nearest” leaf node to x

for j = J down to 0

qj = ΨT
j,k · (x− cj,k)

x = x− (Ψj,k · qj + wj,k)

k ← parent(k)

end

x̂ =InverseGWT(GMRA,{qj})

Initialization: x̂ = 0

for j = 0 : J

x̂ = x̂+ (Ψj,k · qj + wj,k)

end
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Theoretical guarantees
Theorem . Let (M, g) be a compact C2 manifold of
dimension d in R

D. Assume vol(M) = 1 such that there is
only one cube at scale 0. Suppose we sample n points from
M, and fix a precision ǫ > 0. Then

The number of scales needed is J ≤ 1
2 log2

1
ǫ
.

The size of the GWT for each x is ≤ (J + 1)d.

The total cost for storing all coefficients is ≤ nd(J + 1).

The dictionary size is ≤ 2dǫ−
d

2 .
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Theoretical guarantees
Theorem . Let (M, g) be a compact C2 manifold of
dimension d in R

D. Assume vol(M) = 1 such that there is
only one cube at scale 0. Suppose we sample n points from
M, and fix a precision ǫ > 0. Then

The number of scales needed is J ≤ 1
2 log2

1
ǫ
.

The size of the GWT for each x is ≤ (J + 1)d.

The total cost for storing all coefficients is ≤ nd(J + 1).

The dictionary size is ≤ 2dǫ−
d

2 .

Compare with PCA for linear subspaces:

The dictionary size is d;

The total cost for storing all coefficients is nd.
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Demonstrations
1D circle in R

50, 3000 samples, without noise

5000 images of the MNIST digit 1, each of size 28× 28
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Circle: Wavelet coefficients
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Circle: Wavelet coefficients

Magnitudes of wavelet coefficients in log
10
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Circle: Wavelet coefficients
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Digit1: Wavelet coefficients
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Digit1: Reconstruction of a point
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Digit1: Atoms used
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Summary and beyond
Introduced the DL problem + two algorithms

What is next step in DL?
Theoretical justification of DL algorithms
Introducing structure to dictionary atoms
Imposing structure to representation coefficients
Developing next-generation models
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Thank you for your attention
References:

Lecture notes (available online)

Dictionary learning : Dictionaries for sparse representation modeling. Elad et al.,
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Applications to image processing : On the role of sparse and redundant
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K-SVD: K-SVD: An algorithm for designing of overcomplete dictionaries for sparse
representation. Elad et al., IEEE Transactions on Signal Processing, 2006.

GMRA: Multiscale Geometric Methods for Data Sets II: Geometric Multi-Resolution
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Future directions : Sparse and redundant representation modeling – what next?
M. Elad, IEEE Signal Processing Letters, 2012.

Website: www.math.sjsu.edu/~gchen

Email: guangliang.chen@sjsu.edu
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