Practical compressive sampling with frames

Deanna Needell

Jan. 2015 2015 Joint Math Meetings

Outline

- Part I : Compressed sensing with frames
 - Mathematical Formulation & Methods
 - ♦ Practical CS
 - ♦ Other notions of sparsity
 - ♦ The need for frames
 - ♦ Algorithmic results and challenges
 - New theoretical results for recovery with frames
- ♦ Part II (G. Chen) : Dictionary Learning
 - ♦ Background and description
 - ♦ Applications
 - Existing approaches (K-SVD, GMRA)
 - ♦ Summary

The mathematical problem

- 1. Signal of interest $f \in \mathbb{C}^d (= \mathbb{C}^{N \times N})$
- 2. Measurement operator $\mathscr{A} : \mathbb{C}^d \to \mathbb{C}^m \ (m \ll d)$
- 3. Measurements $y = \mathscr{A}f + \xi$ $\begin{bmatrix} y \\ y \end{bmatrix} = \begin{bmatrix} \mathscr{A} \\ & \end{bmatrix} \begin{bmatrix} f \\ & \\ & \end{bmatrix} + \begin{bmatrix} \xi \\ & \\ & \end{bmatrix}$
- 4. *Problem:* Reconstruct signal *f* from measurements *y*

r 1

Measurements $y = \mathscr{A}f + \xi$.

$$\begin{bmatrix} y \end{bmatrix} = \begin{bmatrix} & \mathscr{A} & & \end{bmatrix} \begin{bmatrix} f \\ + \begin{bmatrix} \xi \end{bmatrix}$$

Assume *f* is *sparse*:

♦ In the coordinate basis: $||f||_0 \stackrel{\text{def}}{=} |\operatorname{supp}(f)| \le s \ll d$

♦ In orthonormal basis: f = Bx where $||x||_0 \le s \ll d$

In practice, we encounter *compressible* signals.

• f_s is the best *s*-sparse approximation to *f*

Many applications...

- ♦ Radar, Error Correction
- Computational Biology, Geophysical Data Analysis
- ♦ Data Mining, classification
- ♦ Neuroscience
- ♦ Imaging
- Sparse channel estimation, sparse initial state estimation
- Topology identification of interconnected systems

Notation

$$\boldsymbol{\diamond} \ \ell_p$$
-norms: $\|\boldsymbol{z}\|_p \stackrel{\text{\tiny def}}{=} \left(\sum_i |z_i|^p\right)^{1/p}$

- ♦ Usual (Euclidean ℓ_2) distance: $||z||_2 \stackrel{\text{def}}{=} (\sum_i |z_i|^2)^{1/2}$
- ♦ ℓ_1 (Taxicab) distance: $||z||_1 \stackrel{\text{def}}{=} (\sum_i |z_i|)$
- ♦ The ℓ_2 -ball: { $z: ||z||_2 \le 1$ } (circle/sphere)
- ♦ The ℓ_1 -ball: $\{z : ||z||_1 \le 1\}$ (diamond/octahedron)
- ♦ For signal f, f_s (f_s^B) is its best *s*-sparse representation (in basis B)
- $\Leftrightarrow \hat{f}$ will denote the reconstruction of f
- ♦ $h = \operatorname{argmin}_{z} g(z)$ is the *arg*ument *z* which *min*imizes g(z)

Sparsity...

Sparsity in coordinate basis: f=x

How should we reconstruct f?

Easy Theorem:

Assume A is one-to-one on all s-sparse signals. Assume there is no noise. Reconstruct an s-sparse signal f by:

$$\hat{f} = \underset{z}{\operatorname{argmin}} \|z\|_0$$
 such that $Az = y$.

Then we reconstruct f perfectly: $\hat{f} = f$.

Unfortunately, this problem is NP-Hard!

How should we reconstruct f?

Will the picture always look this way?

Was that contrived?

But in higher dimensions, for "sufficiently random" operators *A*, this picture happens with extremely low probability!

Recall $y = Af + \xi$.

Recall $y = Af + \xi$.

Reconstructing the signal *f* **from measurements** *y*

\bullet ℓ_1 -minimization [Candès-Romberg-Tao]

Let A satisfy the *Restricted Isometry Property* and set:

$$\hat{f} = \underset{g}{\operatorname{argmin}} \|g\|_1$$
 such that $\|\mathscr{A}f - y\|_2 \leq \varepsilon$,

where $\|\xi\|_2 \leq \varepsilon$. Then we can stably recover the signal *f*:

$$\|f - \hat{f}\|_2 \lesssim \varepsilon + \frac{\|x - x_s\|_1}{\sqrt{s}}$$

This error bound is optimal.

$$(1-\delta) \|f\|_2 \le \|\mathscr{A}f\|_2 \le (1+\delta) \|f\|_2$$
 whenever $\|f\|_0 \le s$.

 $\Leftrightarrow m \times d$ Gaussian or Bernoulli measurement matrices satisfy the RIP with high probability when

 $m \gtrsim s \log d$.

♦ Random Fourier and others with fast multiply have similar property: $m \gtrsim s \log^4 d.$

Sparsity...

In orthonormal basis: f = Bx

Natural Images

Images are compressible in *Wavelet bases*.

Figure 1: Haar basis functions

Wavelet transform is *orthonormal* and multi-scale. Sparsity level of image is higher on detail coefficients.

Sparsity in orthonormal basis B

L1-minimization Method

For orthonormal basis *B*, f = Bx with *x* sparse, one may solve the ℓ_1 -minimization program:

$$\hat{f} = \underset{\tilde{f} \in \mathbb{C}^n}{\operatorname{argmin}} \|B^{-1}\tilde{f}\|_1 \quad \text{subject to} \quad \|\mathscr{A}\tilde{f} - y\|_2 \leq \varepsilon.$$

Same results hold.

Iterative methods too

COSAMP (N-Tropp)

input: Sampling operator *A*, measurements *y*, sparsity level *s* **initialize:** Set $x^0 = 0$, i = 0. **repeat signal proxy:** Set $p = A^*(y - Ax^i)$, $\Omega = \operatorname{supp}(p_{2s})$, $T = \Omega \cup \operatorname{supp}(x^i)$. **signal estimation:** Using least-squares, set $b|_T = A_T^{\dagger}y$ and $b|_{T^c} = 0$. **prune and update:** Increment *i* and to obtain the next approximation, set $x^i = b_s$. **output:** *s*-sparse reconstructed vector $\hat{x} = x^i$

Sparsity...

In arbitrary dictionary: f = Dx

Example: Oversampled DFT

$$\Rightarrow n \times n \text{ DFT: } d_k(t) = \frac{1}{\sqrt{n}} e^{-2\pi i k t/n}$$

- ♦ Instead, use the oversampled DFT:
- ♦ Then D is an overcomplete frame with highly coherent columns → conventional CS does not apply.

Example: Gabor frames

- ♦ Gabor frame: $G_k(t) = g(t k_2 a)e^{2\pi i k_1 b t}$
- Radar, sonar, and imaging system applications use Gabor frames and wish to recover signals in this basis.
- ♦ Then D is an overcomplete frame with possibly highly coherent columns $\rightarrow conventional CS does not apply.$

Example: Curvelet frames

- ♦ A Curvelet frame has some properties of an ONB but is overcomplete.
- Curvelets approximate well the curved singularities in images and are thus used widely in image processing.
- Again, this means *D* is an overcomplete dictionary → *conventional CS does not apply*.

Example: UWT

- The undecimated wavelet transform has a translation invariance property that is missing in the DWT.
- The UWT is overcomplete and this redundancy has been found to be helpful in image processing.
- Again, this means *D* is a redundant dictionary → *conventional CS does not apply*.

ℓ_1 -Synthesis Method

+ For arbitrary tight frame D, one may solve the ℓ_1 -synthesis program:

$$\hat{f} = D\left(\underset{\tilde{x} \in \mathbb{C}^n}{\operatorname{argmin}} \| \tilde{x} \|_1 \quad \text{subject to} \quad \| \mathscr{A} D \tilde{x} - y \|_2 \le \varepsilon \right).$$

Some work on this method [Candès et.al., Rauhut et.al., Elad et.al.,...]

◆ *Open:* Understand the ℓ_1 -synthesis problem, necessary assumptions, recovery guarantees.

ℓ_1 -Analysis Method

+ For arbitrary tight frame D, one may solve the ℓ_1 -analysis program:

$$\hat{f} = \underset{\tilde{f} \in \mathbb{C}^n}{\operatorname{argmin}} \|D^* \tilde{f}\|_1$$
 subject to $\|\mathscr{A} \tilde{f} - y\|_2 \le \varepsilon$.

Condition on A?

D-RIP

We say that the measurement matrix \mathscr{A} obeys the *restricted isometry* property adapted to D (D-RIP) if there is $\delta < c$ such that

$$(1-\delta) \|Dx\|_2^2 \le \|\mathscr{A}Dx\|_2^2 \le (1+\delta) \|Dx\|_2^2$$

holds for all *s*-sparse *x*.

◆ Similarly to the RIP, many classes of $m \times d$ random matrices satisfy the D-RIP with $m \approx s \log(d/s)$. In fact, any matrix that satisfies RIP will satisfy D-RIP after applying random signs to the columns [Krahmer-Ward '11]

CS with tight frame dictionaries

Theorem [Candès-Eldar-N-Randall]

Let *D* be an arbitrary tight frame and let \mathscr{A} be a measurement matrix satisfying D-RIP. Then the solution \hat{f} to ℓ_1 -analysis satisfies

$$\|\hat{f} - f\|_2 \lesssim \varepsilon + \frac{\|D^*f - (D^*f)_s\|_1}{\sqrt{s}}.$$

♦ In other words, This result says that ℓ_1 -analysis is very accurate when D^*f has rapidly decaying coefficients and D is a tight frame. ◆ For a dictionary $D \in \mathbb{C}^{n \times N}$ and a sparsity level s, we define the *unrecoverable energy* as

$$\varepsilon_{s,D}^{\star} = \varepsilon^{\star} \stackrel{\text{def}}{=} \sup_{\|Dz\|_2 = 1, \|z\|_0 \le s} \frac{\|D^* Dz - (D^* Dz)_s\|_1}{\sqrt{s}}$$

ℓ_1 -analysis: Experimental Setup

n = 8192, m = 400, d = 491, 520A: $m \times n$ Gaussian, D: $n \times d$ Gabor

ℓ_1 -analysis: Experimental Setup

n = 8192, m = 400, d = 491, 520A: $m \times n$ Gaussian, D: $n \times d$ Gabor

ℓ_1 -analysis: Experimental Results

Other algorithms

◆ ℓ_1 -analysis is very accurate when D^*f has rapidly decaying coefficients and *D* is a tight frame. This is precisely because this method operates in "analysis" space.

♦ Open: analysis methods for non-tight frames, without decaying analysis coefficients (concatenations), other models

What about operating in signal or coefficient space?

Is it really a pipe?

(Thanks to M. Davenport for this clever analogy.)

CoSaMP

COSAMP (N-Tropp)

input: Sampling operator *A*, measurements *y*, sparsity level *s* **initialize:** Set $x^0 = 0$, i = 0. **repeat signal proxy:** Set $p = A^*(y - Ax^i)$, $\Omega = \text{supp}(p_{2s})$, $T = \Omega \cup \text{supp}(x^i)$. **signal estimation:** Using least-squares, set $b|_T = A_T^{\dagger}y$ and $b|_{T^c} = 0$. **prune and update:** Increment *i* and to obtain the next approximation, set $x^i = b_s$. **output:** *s*-sparse reconstructed vector $\hat{x} = x^i$

Signal Space CoSaMP

Signal Space CoSaMP

Here we must contend with

$$\Lambda_{\mathsf{opt}}(\boldsymbol{z}, \boldsymbol{s}) := \underset{\Lambda:|\Lambda|=s}{\operatorname{argmin}} \|\boldsymbol{z} - \mathscr{P}_{\Lambda} \boldsymbol{z}\|_{2}, \quad \mathscr{P}_{\Lambda}: \mathbb{C}^{n} \to \mathscr{R}(\boldsymbol{D}_{\Lambda}).$$

• Estimate by $\mathscr{S}_D(z, s)$ with $|\mathscr{S}_D(z, s)| = s$, that satisfies

$$\left\|\mathscr{P}_{\Lambda_{\mathsf{opt}}(\boldsymbol{z},s)}\boldsymbol{z} - \mathscr{P}_{\mathscr{P}_{\boldsymbol{D}}(\boldsymbol{z},s)}\boldsymbol{z}\right\|_{2} \le \min\left(\epsilon_{1} \left\|\mathscr{P}_{\Lambda_{\mathsf{opt}}(\boldsymbol{z},s)}\boldsymbol{z}\right\|_{2}, \epsilon_{2} \left\|\boldsymbol{z} - \mathscr{P}_{\Lambda_{\mathsf{opt}}(\boldsymbol{z},s)}\boldsymbol{z}\right\|_{2}\right)$$

for some constants $\epsilon_1, \epsilon_2 \ge 0$.

Approximate Projection

- Practical choices for $\mathscr{S}_D(z,s)$:
- ♦ Any sparse recovery algorithm!
- ♦ OMP
- ♦ CoSaMP
- $\diamond \ell_1$ -minimization followed by hard thresholding

◆ Theorem [Davenport-N-Wakin] Let *D* be an arbitrary tight frame, *A* be a measurement matrix satisfying D-RIP, and *f* a sparse signal with respect to *D*. Then the solution \hat{f} from *Signal Space CoSaMP* satisfies

 $\|\hat{f}-f\|_2 \lesssim \varepsilon.$

(And similar results for approximate sparsity, depending on the approximation method used for $\Lambda_{opt}(z, s)$.)

◆ Open: Design approximation methods that satisfy necessary recovery bounds (sparse approximation).

Figure 2: Performance in recovering signals having a s = 8 sparse representation in a dictionary D with orthogonal, but not normalized, columns.

Figure 3: Results with s = 8 sparse representation in a 4× overcomplete DFT dictionary: (a) well-separated coefficients, (b) clustered coefficients.

Figure 4: Left: separations represent the number of zeros between two clusters size s/2. Right: separations represent the number of zeros between each nonzero entry. Measurements and sparsity are m = 100 and s = 8, respectively with a $4 \times$ overcomplete DFT dictionary.

Figure 5: SSCoSaMP recovering a sparse vector with a hybrid sparse support: a block of *s*/2 nonzeros with the remaining *s*/2 nonzeros spaced at least 8 slots apart from all other nonzeros.

"Ad-hoc Neighborly Methods" (NOMP, ϵ -OMP)

Figure 6: Percent perfect recovery of clustered signals (left) and well separated signals (right) and hybrid signals (bottom).

Ad-hoc "Union" Methods (USSCoSaMP)

Figure 7: Left: Clustered. Right: Well-Separated. Bottom: Hybrid signal.

Signal Space CoSaMP: Recent improvements

 Recently improved results [Giryes-N and Hegde-Indyk-Schmidt] which relax the assumptions on the approximate projections.

These results show that at least for RIP/incoherent dictionaries, standard algorithms like CoSaMP/OMP/IHT suffice for the approximate projections.

Open:

The interesting/challenging case is when the dictionary does not satisfy such a condition. Are there methods which provide these approximate projections? Or are they not even necessary?

Sparse...

 256×256 "Boats" image

Sparse wavelet representation...

Images are compressible in *discrete gradient*.

Images are compressible in *discrete gradient*.

The discrete directional derivatives of an image $f \in \mathbb{C}^{N \times N}$ are

$$f_x : \mathbb{C}^{N \times N} \to \mathbb{C}^{(N-1) \times N}, \qquad (f_x)_{j,k} = f_{j,k} - f_{j-1,k},$$
$$f_y : \mathbb{C}^{N \times N} \to \mathbb{C}^{N \times (N-1)}, \qquad (f_y)_{j,k} = f_{j,k} - f_{j,k-1},$$

the discrete gradient operator is

$$\nabla[f] = (f_x, f_y)$$

Sparsity in gradient

CS Theory

The gradient operator ∇ is not an orthonormal basis or a tight frame. In fact, it is extremely ill-conditioned!

Comparison of two compressed sensing reconstruction algorithms

+ Haar-minimization (L_1 -Haar)

 $\hat{f}_{Haar} = \operatorname{argmin} \|H(Z)\|_1$ subject to $\|\mathscr{A}Z - y\|_2 \le \varepsilon$

★ Total Variation minimization (TV) $\hat{f}_{TV} = \operatorname{argmin} \|\nabla[Z]\|_1 \quad \text{subject to} \quad \|\mathscr{A}Z - y\|_2 \leq \varepsilon, \text{ where } \|Z\|_{TV} = \|\nabla[Z]\|_1$ is the *total-variation norm*.

(a) Original

(c) L_1 -Haar

Figure 8: Reconstruction using $m = .2N^2$

(a) Original

(b) TV (c) L_1 -Haar

Figure 9: Reconstruction using $m = .2N^2$ measurements

(a) Original

Figure 10: Reconstruction using $m = .2N^2$ measurements.

(a) (Quantization)

(c) L_1 -Haar

Figure 11: Reconstruction using $m = .2N^2$ measurements

InView (Austin TX)

Figure 12: SWIR Reconstruction using $m = .5N^2$ measurements

InView (Austin TX)

Figure 13: InView SWIR camera

Empirical -> Theoretical?

TV Works

Empirically, it has been well known that

$$\hat{f}_{TV} = \operatorname{argmin} \|Z\|_{TV}$$
 subject to $\|\mathscr{A}Z - y\|_2 \le \varepsilon$, (TV)

provides quality, stable image recovery.

✤ No provable stability guarantees.

Stable signal recovery using total-variation minimization

Theorem 1. [N-Ward] From $m \gtrsim s \log(N)$ linear RIP measurements, for any $f \in \mathbb{C}^{N \times N}$,

 $\hat{f} = \operatorname{argmin} \|Z\|_{TV}$ such that $\|\mathscr{A}(Z) - y\|_2 \leq \varepsilon$,

satisfies

$$\|f - \hat{f}\|_{TV} \lesssim \|\nabla[f] - \nabla[f]_s\|_1 + \sqrt{s}\varepsilon$$
 (gradient error)

and

$$\|f - \hat{f}\|_2 \lesssim \log(N) \cdot \left[\frac{\|\nabla[f] - \nabla[f]_s\|_1}{\sqrt{s}} + \varepsilon\right]$$
 (signal error)

This error guarantee is optimal up to the log(N) factor

Higher dimensional objects

Movies, higher dimensional objects?

Theorem 2. [N-Ward] From $m \gtrsim s \log(N^d)$ linear RIP measurements, for any $f \in \mathbb{C}^{N^d}$,

 $\hat{f} = \operatorname{argmin} \|Z\|_{TV}$ such that $\|\mathscr{A}(Z) - y\|_2 \le \varepsilon$,

satisfies

$$\|f - \hat{f}\|_{TV} \lesssim \|\nabla[f] - \nabla[f]_s\|_1 + \sqrt{s}\varepsilon$$
 (gradient error)

and

$$\|f - \hat{f}\|_2 \lesssim \log(N^d / s) \cdot \left[\frac{\|\nabla[f] - \nabla[f]_s\|_1}{\sqrt{s}} + \varepsilon\right]$$
 (signal error)

This error guarantee is optimal up to the $\log(N^d/s)$ factor

Stable signal recovery using total-variation minimization

Method of proof:

- ♦ First prove stable *gradient* recovery
- Translate stable gradient recovery to stable signal recovery using the strengthened Sobolev inequality.

Open:

 Remove logarithmic factors, design more efficient measurement schemes.

✦ Incorporate wavelets, Laplacian, etc. for optimal performance.

Prove for 1-d signals!

Re-visiting the D-RIP

$(1-\delta) \|Dx\|_2^2 \le \|\mathscr{A}Dx\|_2^2 \le (1+\delta) \|Dx\|_2^2$

- Required for most recovery guarantees using frames
- ♦ If a matrix A satisfies RIP then \tilde{A} obtained by applying random signs to the columns satisfies D-RIP
- This implies (sub)Gaussian matrices, Bernoulli matrices, etc. still satisfy the D-RIP
- But for structured matrices (e.g. Fourier), we need to apply column signs...
- ♦ Not always feasible in practice!

Uniform sampling

The *mutual coherence* of two bases $\{\varphi_k\}$ and $\{b_j\}$ is defined to be

 $\mu = \sup_{j,k} |\langle b_j, \varphi_k \rangle|.$

Theorem [Rudelson-Vershynin '06, Rauhut '07]

Consider the matrix $A = \Phi_{\Omega} B^* \in \mathbb{C}^{m \times N}$ with entries

$$A_{\ell,k} = \langle \varphi_{j_{\ell}}, b_k \rangle, \quad \ell \in [m], k \in [N], \tag{1}$$

where the $\varphi_{j_{\ell}}$ are independent samples drawn uniformly at random from an ONB $\{\varphi_j\}_{j=1}^N$ incoherent with the sparsity basis $\{b_j\}$ in the sense that $\mu \leq KN^{-1/2}$. Then once, for some $s \gtrsim \log(N)$,

$$m \ge C\delta^{-2}K^2 s \log^3(s) \log(N), \tag{2}$$

with probability at least $1 - N^{-\gamma \log^3(s)}$, the restricted isometry constant δ_s of $\frac{1}{\sqrt{m}}A$ satisfies $\delta_s \leq \delta$. The constants $C, \gamma > 0$ are universal.

Variable density sampling

[Lustig-Donoho-Pauly '07]: "For a better performance with real images, one should be undersampling less near the k-space origin and more in the periphery of k-space. For example, one may choose samples randomly with sampling density scaling according to a power of distance from the origin."

- Idea by Puy-Vandergheynst-Wiaux '11:
 - ♦ Variable density sampling can reduce coherence.
 - Strategy: Find optimal weights using convex optimization.
 - ♦ Work with problem specific discretization level.
 - ♦ No theoretical recovery guarantees.

Local coherence

Empirical observation of Puy et al.:

Often only few Fourier basis vectors have high coherence with the sparsity basis. Changing the weights can compensate for this inhomogeneity.

♦ We introduce the *local coherence* to address this issue.

◆ The *local coherence* of an ONB $\{\varphi_j\}_{j=1}^N$ of \mathbb{C}^N with respect to another ONB $\{\psi_k\}_{k=1}^N$ of \mathbb{C}^N is the function $\mu_{loc}(j) = \sup_{1 \le k \le N} |\langle \varphi_j, \psi_k \rangle|$.
RIP for variable density subsampling

Theorem [Consequence of Rauhut-Ward '12]

Assume the local coherence of an ONB $\Phi = \{\varphi_j\}_{j=1}^N$ with respect to an ONB $\Psi = \{\psi_k\}_{k=1}^N$ is pointwise bounded by the function κ , that is, $\sup_{1 \le k \le N} |\langle \varphi_j, \psi_k \rangle| \le \kappa_j$. Consider the matrix $A \in \mathbb{C}^{m \times N}$ with entries

$$A_{\ell,k} = \langle \varphi_{j_{\ell}}, \psi_k \rangle, \quad j \in [m], k \in [N],$$
(3)

where the j_{ℓ} are drawn independently according to $v_{\ell} = \mathbb{P}(\ell_j = \ell) = \frac{\kappa_{\ell}^2}{\|\kappa\|_2^2}$. Suppose that

$$m \ge C\delta^{-2} \|\kappa\|_2^2 s \log^3(s) \log(N), \tag{4}$$

and let $D = diag(d_{j,j})$, where $d_{j,j} = \|\kappa\|_2/\kappa_j$. Then with probability at least $1 - N^{-\gamma \log^3(s)}$, the preconditioned matrix $\frac{1}{\sqrt{m}}DA$ has a restricted isometry constant $\delta_s \leq \delta$. The constants $C, \gamma > 0$ are universal.

Theorem [Krahmer-N-Ward '15]

Fix a sparsity level s < N, and constant $0 < \delta < 1$. Let $D \in \mathbb{C}^{n \times N}$ be a tight frame, let $\mathscr{A} = \{a_1, \ldots, a_n\}$ be an ONB of \mathbb{C}^n , and $\kappa \in \mathbb{C}^n_+$ an entrywise upper bound of the local coherence, that is,

$$\mu_i^{loc}(\mathscr{A}, D) = \sup_{j \in [N]} |\langle a_i, d_j \rangle| \leq \kappa_i.$$

Consider the unrecoverable energy ε^* . Construct $\mathscr{A} \in \mathbb{C}^{m \times n}$ by sampling vectors from \mathscr{A} at random according to the probability distribution v given by $v(i) = \frac{\kappa_i^2}{\|\kappa\|_2^2}$ and normalizing by $\sqrt{n/m}$. Then as long as

$$m \geq C\delta^{-2}s \|\kappa\|_2^2 (1+\varepsilon^*)^2 \log^3(s(1+\varepsilon^*)^2) \log(N), \text{ and}$$
$$m \geq C\delta^{-2}s \|\kappa\|_2^2 (1+\varepsilon^*)^2 \log(1/\gamma)$$
(5)

then with probability $1 - \gamma$, $\tilde{\mathscr{A}}$ satisfies the *D*-RIP with parameters *s* and δ .

- Recovery guarantees for Fourier measurements and Haar wavelet frames of redundancy 2 by previous local coherence analysis.
- Constant local coherence: Implies incoherence based guarantees (for example for oversampled Fourier dictionary).
- ♦ No need to apply random column signs anymore.

Thank you!

E-mail:

♦ dneedell@cmc.edu

Web:

www.cmc.edu/pages/faculty/DNeedell

References:

- E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 59(8):1207Öś223, 2006.
- E. J. Candès, Y. C. Eldar, D. Needell and P. Randall. Compressed sensing with coherent and redundant dictionaries. Applied and Computational Harmonic Analysis, 31(1):59-73, 2010.
- M. A. Davenport, D. Needell and M. B. Wakin. Signal Space CoSaMP for Sparse Recovery with Redundant Dictionaries, submitted.
- ♦ P. Indyk, E. Price and D. Woodruff. On the Power of Adaptivity in Sparse Recovery, FOCS 2011.
- D. Needell and R. Ward. Stable image reconstruction using total variation minimization. J. Fourier Analysis and Applications, to appear.
- D. Needell and R. Ward. Total variation minimization for stable multidimensional signal recovery, submitted.
- F. Krahmer, D. Needell and R. Ward. Compressed sensing with redundant dictionaries and structured measurements, in preparation.

An Intro. to Dictionary Learning

– AMS Short Course on Finite Frame Theory San Antonio, TX

Guangliang Chen San Jose State University

January 9, 2015

Data-dependent dictionary learning

Outline of the presentation

- The problem
 - Background
 - Problem formulations
 - Applications
- Existing approaches
 - K-SVD
 - GMRA
- Summary

Problem setting

Data sets are normally represented as point clouds $\{x_1, \ldots, x_n\} \subset \mathbb{R}^{\ell}$, for ℓ large;

Problem setting

- Data sets are normally represented as point clouds $\{x_1, \ldots, x_n\} \subset \mathbb{R}^{\ell}$, for ℓ large;
- but they are often intrinsically low dimensional.

The human facial images

Problem setting

- Data sets are normally represented as point clouds $\{x_1, \ldots, x_n\} \subset \mathbb{R}^{\ell}$, for ℓ large;
- but they are often intrinsically low dimensional.

This observation/assumption is commonly exploited for effectively modeling real data.

Orthogonal basis modeling

The simplest way is to use an orthogonal basis $\mathcal{B} = \{\mathbf{b}_i\}$:

$$\mathbf{x} = \sum c_i \mathbf{b}_i, \quad \text{where} \quad c_i = \frac{(\mathbf{x}, \mathbf{b}_i)}{\|\mathbf{b}_i\|_2^2}$$

that is

- either designed analytically: Fourier, Wavelet, etc.
- or learned from data:
 - PCA: Model data by a single subspace;
 - Hybrid linear modeling: Use a union of subspaces

Orthogonal basis modeling

Pros:

- Mathematically very simple to operate
- Good performance (when assumption is satisfied)

Cons:

- Very limited expressiveness
- No clear interpretation for the basis
- Too simplistic for real data

The idea is to represent data using a (large) redundant collection of (linearly dependent) vectors d_i :

$$\mathbf{x} = \sum \alpha_i \mathbf{d}_i = \mathbf{D}\alpha.$$

The idea is to represent data using a (large) redundant collection of (linearly dependent) vectors d_i:

$$\mathbf{x} = \sum \alpha_i \mathbf{d}_i = \mathbf{D}\alpha.$$

This relaxes the linear independence condition for bases and gives us great flexibility in choosing which subset of d_i to represent x.

The idea is to represent data using a (large) redundant collection of (linearly dependent) vectors d_i:

$$\mathbf{x} = \sum \alpha_i \mathbf{d}_i = \mathbf{D}\alpha.$$

- This relaxes the linear independence condition for bases and gives us great flexibility in choosing which subset of d_i to represent x.
- What kind of D should we use?

- **•** Two different types of requirements for D:
 - Impose the frame condition on the collection D:

 $A \|\mathbf{x}\|_{2}^{2} \le \|\mathbf{D}^{T}\mathbf{x}\|_{2}^{2} \le B \|\mathbf{x}\|_{2}^{2}, \text{ for all } \mathbf{x}$

to make it a spanning set with good theoretical properties, or

 Add a sparsity constraint to the coefficient α (only for given signals x) in order to promote simplicity and easy interpretability.

- Two different types of requirements for D:
 - Impose the frame condition on the collection D:

 $A \|\mathbf{x}\|_{2}^{2} \le \|\mathbf{D}^{T}\mathbf{x}\|_{2}^{2} \le B \|\mathbf{x}\|_{2}^{2}, \text{ for all } \mathbf{x}$

to make it a spanning set with good theoretical properties, or

- Add a sparsity constraint to the coefficient α (only for given signals x) in order to promote simplicity and easy interpretability.
- These two considerations lead to, respectively, frames and dictionaries.

Ways to produce dictionaries

- Depending on how they are obtained, dictionaries can be divided into two categories:
 - Analytically designed: frames (Xlets for digital images)
 - Learned from data: trained dictionaries

Ways to produce dictionaries

- Depending on how they are obtained, dictionaries can be divided into two categories:
 - Analytically designed: frames (Xlets for digital images)
 - Learned from data: trained dictionaries
- Both have pros and cons:
 - Analytic: supported by theory, fast transform, but works only when assumptions are satisfied
 - Trained: adapts better to data, better performance, but computationally intensive and hard to analyze due to lack of structure

Ways to produce dictionaries

- Depending on how they are obtained, dictionaries can be divided into two categories:
 - Analytically designed: frames (Xlets for digital images)
 - Learned from data: trained dictionaries
- Both have pros and cons:
 - Analytic: supported by theory, fast transform, but works only when assumptions are satisfied
 - Trained: adapts better to data, better performance, but computationally intensive and hard to analyze due to lack of structure
- We focus on trained dictionaries; such research is called data-dependent dictionary learning.

Data-dependent DL

Problem definition. Given training signals $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^{\ell}$, we learn a dictionary D consisting of *atomic* signals $\mathbf{d}_1, \ldots, \mathbf{d}_m$, in order to represent each given signal as a *linear* combination of *few* atoms:

 $\min_{\mathbf{D},\alpha_1,\ldots,\alpha_n} \sum ||\alpha_i||_0 \quad \text{subject to} \quad ||\mathbf{x}_i - \mathbf{D}\alpha_i||_2 \le \epsilon$

in which

- $\mathbf{D} = [\mathbf{d}_1, \dots, \mathbf{d}_m] \in \mathbb{R}^{\ell \times m}$: (long) dictionary matrix;
- $||\alpha_i||_0$: # nonzeros in the coefficient vector α_i ;
- ϵ : desired precision

Data-dependent DL

Problem definition. Given training signals $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^{\ell}$, we learn a dictionary D consisting of *atomic* signals $\mathbf{d}_1, \ldots, \mathbf{d}_m$, in order to represent each given signal as a *linear* combination of *few* atoms:

 $\min_{\mathbf{D},\alpha_1,\ldots,\alpha_n} \sum ||\alpha_i||_0 \quad \text{subject to} \quad ||\mathbf{x}_i - \mathbf{D}\alpha_i||_2 \le \epsilon$

in which

- $\mathbf{D} = [\mathbf{d}_1, \dots, \mathbf{d}_m] \in \mathbb{R}^{\ell \times m}$: (long) dictionary matrix;
- $||\alpha_i||_0$: # nonzeros in the coefficient vector α_i ;
- ϵ : desired precision

This is the fixed-precision, minimal-cost formulation.

Fixed cost, minimal error

$$\min_{\mathbf{D},\alpha_1,\dots,\alpha_n} \sum_{i=1}^n ||\mathbf{x}_i - \mathbf{D}\alpha_i||_2^2 \quad \text{subject to} \quad ||\alpha_i||_0 \le s$$

Fixed cost, minimal error

$$\min_{\mathbf{D},\alpha_1,\ldots,\alpha_n} \sum_{i=1}^n ||\mathbf{x}_i - \mathbf{D}\alpha_i||_2^2 \quad \text{subject to} \quad ||\alpha_i||_0 \le s$$

Unified version

$$\min_{\mathbf{D},\alpha_1,\ldots,\alpha_n} \sum ||\mathbf{x}_i - \mathbf{D}\alpha_i||_2^2 + \lambda ||\alpha_i||_0$$

Fixed cost, minimal error

$$\min_{\mathbf{D},\alpha_1,\dots,\alpha_n} \sum_{i=1}^n ||\mathbf{x}_i - \mathbf{D}\alpha_i||_2^2 \quad \text{subject to} \quad ||\alpha_i||_0 \le s$$

Unified version

$$\min_{\mathbf{D},\alpha_1,\ldots,\alpha_n} \sum ||\mathbf{x}_i - \mathbf{D}\alpha_i||_2^2 + \lambda ||\alpha_i||_0$$

Convex relaxation

$$\min_{\mathbf{D},\alpha_1,\ldots,\alpha_n} \sum ||\mathbf{x}_i - \mathbf{D}\alpha_i||_2^2 + \lambda ||\alpha_i||_1$$

Fixed cost, minimal error

$$\min_{\mathbf{D},\alpha_1,\dots,\alpha_n} \sum_{i=1}^n ||\mathbf{x}_i - \mathbf{D}\alpha_i||_2^2 \quad \text{subject to} \quad ||\alpha_i||_0 \le s$$

Unified version

$$\min_{\mathbf{D},\alpha_1,\ldots,\alpha_n} \sum ||\mathbf{x}_i - \mathbf{D}\alpha_i||_2^2 + \lambda ||\alpha_i||_0$$

Convex relaxation

$$\min_{\mathbf{D},\alpha_1,\ldots,\alpha_n} \sum ||\mathbf{x}_i - \mathbf{D}\alpha_i||_2^2 + \lambda ||\alpha_i||_1$$

Matrix form

$$\min_{\mathbf{D},\mathbf{A}} ||\mathbf{X} - \mathbf{D}\mathbf{A}||_F^2 + \lambda ||A||_{1,1}, \quad ||A||_{1,1} = \sum ||\alpha_i||_1$$

Analogy to natural languages

Take the English language as an example:

- There is a dictionary which is a large collection of words (atoms)
- Each sentence, an ordered list of words, can be regarded as a signal
- There is normally more than one way to express something, but the most concise sentence is preferred
- The DL task can be thought of as reconstructing the English dictionary from many sentences

PCA and hybrid linear modeling: The dictionary model is the most flexible because it uses all possible combinations of the atoms

- PCA and hybrid linear modeling: The dictionary model is the most flexible because it uses all possible combinations of the atoms
- Frame design: Dictionary combines the sparsity notion, and is more application oriented (much less theory)

- PCA and hybrid linear modeling: The dictionary model is the most flexible because it uses all possible combinations of the atoms
- Frame design: Dictionary combines the sparsity notion, and is more application oriented (much less theory)
- **Sparse coding** (D known):

$$\min_{\alpha} ||\mathbf{x} - \mathbf{D}\alpha||_2^2 + \lambda ||\alpha||_0$$

Can be efficiently solved by pursuit algorithms (greedy methods or convex optimization)

- PCA and hybrid linear modeling: The dictionary model is the most flexible because it uses all possible combinations of the atoms
- Frame design: Dictionary combines the sparsity notion, and is more application oriented (much less theory)
- **Sparse coding** (D known):

$$\min_{\alpha} ||\mathbf{x} - \mathbf{D}\alpha||_2^2 + \lambda ||\alpha||_0$$

Can be efficiently solved by pursuit algorithms (greedy methods or convex optimization)

• Compressive sensing (D: designed sensing matrix): The CS problem is to recover the sparse signal α from its compressed measurements $\mathbf{x} = \mathbf{D}\alpha$.

Application to image processing

Assume that we observe a noisy, degraded version of a clean image t:

$$\mathbf{x} = \mathbf{H}\mathbf{t} + \mathbf{e},$$

in which

- e: additive noise;
- H: identity or a linear degradation operator representing a blur, downsampling, or masking.

mage *inpainting* [2, 10, 20, 36] is the process ing data in a designated region of a still or lications range from removing objects froauching damaged paintings and photograph produce a revised image in which the i is seamlessly merged into the image in a detectable by a typical viewer. Traditional been done by professional artists? For phot , inpainting is used to revert distribution totographs or scratches and dust spots in fil move elements (e.g., removal of stamped of from photographs. The information artists are of n

Application to image processing

Assume that we observe a noisy, degraded version of a clean image t:

 $\mathbf{x} = \mathbf{H}\mathbf{t} + \mathbf{e}.$

We would like to recover the clean image t from x.

The problem is correspondingly referred to as *image denoising*, *deblurring*, *super-resolution*, and *inpainting*.

The dictionary model for images

Assuming that all images t are generated from a large dictionary D (i.e. $t = D\alpha$), we rewrite

 $\mathbf{x} = \mathbf{H}\mathbf{D}\alpha + \mathbf{e}$

The clean image ${\bf t}$ is recovered from its noisy, degraded version ${\bf x}$ by first solving

$$\hat{\alpha} = \arg\min_{\alpha} \|\mathbf{x} - (\mathbf{HD})\alpha\|_{2}^{2} + \lambda \|\alpha\|_{0}$$

and then using $\hat{\mathbf{t}} = \mathbf{D}\hat{\alpha}$.

The dictionary model for images

Assuming that all images t are generated from a large dictionary D (i.e. $t = D\alpha$), we rewrite

 $\mathbf{x} = \mathbf{H}\mathbf{D}\alpha + \mathbf{e}$

The clean image ${\bf t}$ is recovered from its noisy, degraded version ${\bf x}$ by first solving

$$\hat{\alpha} = \operatorname{arg\,min}_{\alpha} \|\mathbf{x} - (\mathbf{HD})\alpha\|_{2}^{2} + \lambda \|\alpha\|_{0}$$

and then using $\hat{\mathbf{t}} = \mathbf{D}\hat{\alpha}$.

H is known, but D is unknown:

- Typically, it is trained on many (similar) natural images
- Sometimes, it can be self-learned (by operating on the patches of t)

Existing DL methods

Algorithms that have been developed:

- Iterative methods (based on optimization using previous formulations)
 - Method of optimal directions (Engan et al., ICASSP 99')
 - K-SVD (Elad et al., SPARSE 05')
 - Online dictionary learning (Mairal et al., ICML 09')
- Bayesian method (Carin et al., NIPS 09')
- Geometric method (with Maggioni, CISS 10')

Existing DL methods

Algorithms that have been developed:

- Iterative methods (based on optimization using previous formulations)
 - Method of optimal directions (Engan et al., ICASSP 99')
 - **K-SVD** (Elad et al., SPARSE 05')
 - Online dictionary learning (Mairal et al., ICML 09')
- Bayesian method (Carin et al., NIPS 09')
- Geometric method (with Maggioni, CISS 10')
The K-SVD algorithm

K-SVD represents the current state of the art.

The K-SVD algorithm

- K-SVD represents the current state of the art.
- It is a sort of generalization of the K-means algorithm, and thus has many similar properties.

The K-SVD algorithm

- K-SVD represents the current state of the art.
- It is a sort of generalization of the K-means algorithm, and thus has many similar properties.
- With an initial guess of the dictionary, it solves

$$\min_{\mathbf{D},\alpha_1,\ldots,\alpha_n} \sum ||\mathbf{x}_i - \mathbf{D}\alpha_i||_2^2 \quad \text{subject to} \quad ||\alpha_i||_0 \le s$$

by alternating between two steps:

- Sparse coding (given D): use pursuit algorithms such as OMP
- Dictionary update (given all α_i): update one atom each time, using only those training signals that need this atom at that step

Example: K-SVD denoising

The dictionary trained on patches from the noisy image

Noisy image

Denoised image

Data-dependent dictionary learning

Example: K-SVD inpainting

mage inpainting [2, 10, 20, 38] is the process ing data in a designated region of a still or lications range from removing objects from which damaged paintings and photograph produce a revised image in which the i is seamlessly merged into the image in a detectable by a typical viewer. Traditional been done by professional artisp? For phot , inpainting is used to revert deterioration notographs or scratches and dust spots in fill move elements (e.g., removal of stamped of from photographs, the infamous "airbrushi enemies [20]). A current active area of n

Strengths & weaknesses of K-SVD

Advantages:

- Simple to implement and relatively fast to run
- Some sort of local convergence is expected
- Applied successfully to many imaging tasks

Strengths & weaknesses of K-SVD

Advantages:

- Simple to implement and relatively fast to run
- Some sort of local convergence is expected
- Applied successfully to many imaging tasks

Disadvantages:

- Convergence depends on the initial dictionary used
- Dictionary size and sparsity are often arbitrarily picked
- Output dictionary is completely unconstrained and unstructured (making sparse coding very costly)

We build data-dependent dictionaries that are without the previously-mentioned disadvantages.

We assume that the data follows a manifold model.

- We assume that the data follows a manifold model.
- We construct the dictionary explicitly from data.

- We assume that the data follows a manifold model.
- We construct the dictionary explicitly from data.
- We extend wavelets for 1D signals and PCA for subspaces to nonlinear manifolds in higher dimensions.

- We assume that the data follows a manifold model.
- We construct the dictionary explicitly from data.
- We extend wavelets for 1D signals and PCA for subspaces to nonlinear manifolds in higher dimensions.
- We obtain a structured dictionary which is hierarchically organized.

- We assume that the data follows a manifold model.
- We construct the dictionary explicitly from data.
- We extend wavelets for 1D signals and PCA for subspaces to nonlinear manifolds in higher dimensions.
- We obtain a structured dictionary which is hierarchically organized.
- We show that with our dictionary sparse coding becomes a trivial task.

- We assume that the data follows a manifold model.
- We construct the dictionary explicitly from data.
- We extend wavelets for 1D signals and PCA for subspaces to nonlinear manifolds in higher dimensions.
- We obtain a structured dictionary which is hierarchically organized.
- We show that with our dictionary sparse coding becomes a trivial task.
- We derive theoretical guarantees on the dictionary size and coefficient sparsity.

Main steps

Our construction is based on a *geometric multiresolution analysis (GMRA)* of the data:

1. A multiscale (nested) spatial decomposition of \mathcal{M} into dyadic cubes at a total of J scales

Main steps

Our construction is based on a *geometric multiresolution analysis (GMRA)* of the data:

- 1. A multiscale (nested) spatial decomposition of \mathcal{M} into dyadic cubes at a total of J scales
- 2. A *d*-dimensional affine approximation in each cube, yielding a sequence of piecewise linear sets M_j

Main steps

Our construction is based on a *geometric multiresolution analysis (GMRA)* of the data:

- 1. A multiscale (nested) spatial decomposition of \mathcal{M} into dyadic cubes at a total of J scales
- 2. A *d*-dimensional affine approximation in each cube, yielding a sequence of piecewise linear sets \mathcal{M}_j
- 3. A construction of dictionary atoms encoding differences between \mathcal{M}_j and \mathcal{M}_{j+1}

The partition tree

There is a natural tree structure associated to the family of dyadic cubes $\{C_{j,k}\}$, with each node representing a cube.

Scaling & wavelet bases

In every node $C_{j,k}$ of the tree we perform rank-d SVD (after removing the local mean $\overline{c}_{j,k}$). The resulting basis, denoted by $\Phi_{j,k}$, is called the scaling basis.

Scaling & wavelet bases

In every node $C_{j,k}$ of the tree we perform rank-d SVD (after removing the local mean $\overline{c}_{j,k}$). The resulting basis, denoted by $\Phi_{j,k}$, is called the scaling basis.

• For any
$$C_{j+1,k'} \subset C_{j,k}$$
, define

$$W_{j+1,k'} := (I - \Phi_{j,k} \Phi_{j,k}^T) \operatorname{colspan}(\Phi_{j+1,k'})$$

and let $\Psi_{j+1,k'}$ be an orthonormal basis for $W_{j+1,k'}$. The $\Psi_{j+1,k'}$ is the "wavelet basis" associated to $C_{j+1,k'}$.

Encoding the differences

Let x_i represent the projection of x at scale i, for all i. We can show that

in which

$$q_{j+1} := \Psi_{j+1,k'}^T \left(\mathbf{x}_{j+1} - \overline{c}_{j+1,k'} \right)$$

Encoding the differences

Let x_i represent the projection of x at scale i, for all i. We can show that

in which

$$q_{j+1} := \Psi_{j+1,k'}^T \left(\mathbf{x}_{j+1} - \overline{c}_{j+1,k'} \right)$$

This defines a discrete geometric wavelet transform (GWT):

$$x \in \mathcal{M} \longmapsto (q_J, q_{J-1}, \dots, q_1, q_0) \in \mathbb{R}^{\leq (J+1)d}$$

$\mathbf{GMRA}\left(X,d,\epsilon\right)$

Construct the dyadic cubes C_{j,k} and form a tree *T*.
J ← finest scale with the ε-approximation property.
Compute the scaling bases Φ_{j,k} for all leaf nodes
for j = J − 1 down to 1

for each nonleaf node $C_{j,k}$

Calculate the associated scaling basis $\Phi_{j,k}$.

For each child $C_{j+1,k'} \subset C_{j,k}$, find the wavelet basis $\Psi_{j+1,k'}$ and constant $\omega_{j+1,k'}$.

end

end

5) Set $\Psi_{0,1} = \Phi_{0,1}$ at the root node. 6) Return GMRA = { $\Psi_{j,k}, \overline{c}_{j,k}, \omega_{j,k}$ }.

Geometric wavelet transforms

 $\begin{array}{l} \{q_j\} = & \texttt{ForwardGWT}(\texttt{GMRA}, x) \\ k \leftarrow \texttt{index of "nearest" leaf node to } x \\ \texttt{for } j = J \texttt{ down to } 0 \\ q_j = \Psi_{j,k}^T \cdot (x - \overline{c}_{j,k}) \\ x = x - (\Psi_{j,k} \cdot q_j + w_{j,k}) \\ k \leftarrow \texttt{parent}(k) \end{array}$

end

 $\hat{x} = \texttt{InverseGWT}(\texttt{GMRA}, \{q_j\})$ Initialization: $\hat{x} = 0$ for j = 0: J $\hat{x} = \hat{x} + (\Psi_{j,k} \cdot q_j + w_{j,k})$

end

Theoretical guarantees

Theorem. Let (\mathcal{M}, g) be a compact \mathcal{C}^2 manifold of dimension d in \mathbb{R}^D . Assume $\operatorname{vol}(\mathcal{M}) = 1$ such that there is only one cube at scale 0. Suppose we sample n points from \mathcal{M} , and fix a precision $\epsilon > 0$. Then

- The number of scales needed is $J \leq \frac{1}{2} \log_2 \frac{1}{\epsilon}$.
- The size of the GWT for each \mathbf{x} is $\leq (J+1)d$.
- The total cost for storing all coefficients is $\leq nd(J+1)$.
- The dictionary size is $\leq 2d\epsilon^{-\frac{d}{2}}$.

Theoretical guarantees

Theorem. Let (\mathcal{M}, g) be a compact \mathcal{C}^2 manifold of dimension d in \mathbb{R}^D . Assume $\operatorname{vol}(\mathcal{M}) = 1$ such that there is only one cube at scale 0. Suppose we sample n points from \mathcal{M} , and fix a precision $\epsilon > 0$. Then

- The number of scales needed is $J \leq \frac{1}{2} \log_2 \frac{1}{\epsilon}$.
- The size of the GWT for each \mathbf{x} is $\leq (J+1)d$.
- The total cost for storing all coefficients is $\leq nd(J+1)$.
- The dictionary size is $\leq 2d\epsilon^{-\frac{d}{2}}$.

Compare with PCA for linear subspaces:

- The dictionary size is d;
- The total cost for storing all coefficients is nd.

Demonstrations

- 1D circle in \mathbb{R}^{50} , 3000 samples, without noise
- **•** 5000 images of the MNIST digit 1, each of size 28×28

Circle: Wavelet coefficients

Circle: Wavelet coefficients

Circle: Wavelet coefficients

Digit1: Wavelet coefficients

Data-dependent dictionary learning

Digit1: Reconstruction of a point

Data-dependent dictionary learning

Digit1: Atoms used

Summary and beyond

- Introduced the DL problem + two algorithms
- What is next step in DL?
 - Theoretical justification of DL algorithms
 - Introducing structure to dictionary atoms
 - Imposing structure to representation coefficients
 - Developing next-generation models

Thank you for your attention

References:

- Lecture notes (available online)
- Dictionary learning: Dictionaries for sparse representation modeling. Elad et al., Proceedings of the IEEE, 2010.
- Applications to image processing: On the role of sparse and redundant representations in image processing. Elad et al., Proceedings of the IEEE, 2010.
- K-SVD: K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representation. Elad et al., IEEE Transactions on Signal Processing, 2006.
- GMRA: Multiscale Geometric Methods for Data Sets II: Geometric Multi-Resolution Analysis, Appl. Comput. Harmon. Analysis, 2013
- Future directions: Sparse and redundant representation modeling what next? M. Elad, IEEE Signal Processing Letters, 2012.
- Website: www.math.sjsu.edu/~gchen
- Email: guangliang.chen@sjsu.edu