Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work

Compressive Sampling and Redundancy

Deanna Needell

Stanford University

MIT, March 14, 2011

E

∃ ⊳

DQC

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
00000					
Why CoSa?					

Digital cameras, for example

(Hard work to measure all pixels) (Compression) (Wasteful?)

Needell Compressive Sampling and Redundancy

590

B b

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
00000					
Why CoSa?					

Digital cameras, for example

(Hard work to measure all pixels) (Compression) (Wasteful?)

Needell Compressive Sampling and Redundancy

1

DQC

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
00000					
Why CoSa?					

Introducing, CoSa

The issue

Traditional data acquisition is wasteful.

The idea

Combine acquisition and compression.

The solution

Compressive sampling (CoSa) allows us to do this \rightarrow reconstruct a signal from its (compressed) measurements.

→ 同 ト → 三 ト

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
00000					
Why CoSa?					

Introducing, CoSa

The issue

Traditional data acquisition is wasteful.

The idea

Combine acquisition and compression.

The solution

Compressive sampling (CoSa) allows us to do this \rightarrow reconstruct a signal from its (compressed) measurements.

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
00000					
Why CoSa?					

Introducing, CoSa

The issue

Traditional data acquisition is wasteful.

The idea

Combine acquisition and compression.

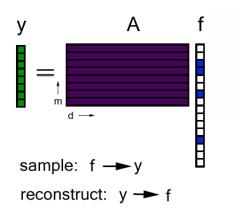
The solution

Compressive sampling (CoSa) allows us to do this \rightarrow reconstruct a signal from its (compressed) measurements.

Motivation 00●000	Progress in CoSa	Redundancy	Results	Experiments 000000	Future Work
Why CoSa?					
Numero	us Applicatio	ns			

- CoSa single pixel digital camera [Rice]
- Medical Imaging, MRI
- Radar
- Error Correction
- Computational Biology (DNA Microarrays)
- Geophysical Data Analysis
- Data Mining, classification
- Ο ...

Motivation 000●00	Progress in CoSa	Redundancy	Results	Experiments 000000	Future Work
Why CoSa?					
Introduc	cing, CoSa				



Ξ

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
000000					
Why CoSa?					

Without further assumptions, this problem is ill-posed.

Why will this work?

Most signals of interest contain far less information than their dimension d suggests.

Assume *f* is sparse:

- In the coordinate basis: $\|f\|_0 \stackrel{ ext{def}}{=} |\operatorname{supp}(f)| \leq s \ll d$.
- With respect to some other basis: f = Dx where $||x||_0 \le s \ll d$.

In practice, we encounter compressible signals.

- 小田 ト - 三ト

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
000000					
Why CoSa?					

Without further assumptions, this problem is ill-posed.

Why will this work?

Most signals of interest contain far less information than their dimension d suggests.

Assume *f* is sparse:

- In the coordinate basis: $\|f\|_0 \stackrel{\text{def}}{=} |\operatorname{supp}(f)| \le s \ll d$.
- With respect to some other basis: f = Dx where $||x||_0 \le s \ll d$.

In practice, we encounter compressible signals.

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
000000					
Why CoSa?					

Without further assumptions, this problem is ill-posed.

Why will this work?

Most signals of interest contain far less information than their dimension d suggests.

Assume *f* is sparse:

- In the coordinate basis: $||f||_0 \stackrel{\text{def}}{=} |\operatorname{supp}(f)| \leq s \ll d$.
- With respect to some other basis: f = Dx where $||x||_0 \le s \ll d$.

In practice, we encounter compressible signals.

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
000000					
Why CoSa?					

Without further assumptions, this problem is ill-posed.

Why will this work?

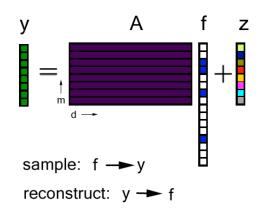
Most signals of interest contain far less information than their dimension d suggests.

Assume *f* is sparse:

- In the coordinate basis: $||f||_0 \stackrel{\text{def}}{=} |\operatorname{supp}(f)| \leq s \ll d$.
- With respect to some other basis: f = Dx where $||x||_0 \le s \ll d$.

In practice, we encounter compressible signals.

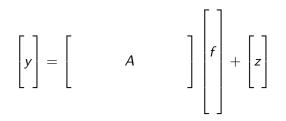
Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
000000					
Why CoSa?					
CoSa in	the real worl	Ч			



《口》《圖》《臣》《臣》

Ξ

Motivation	Progress in CoSa •000000000000	Redundancy	Results	Experiments 000000	Future Work
Reconstruction	Methods				
Designi	ng a reconstru	uction algo	rithm		



Important Questions

- What kind(s) of measurement matrices A?
- How many measurements needed?
- Are the guarantees uniform?
- Is algorithm stable?
- Fast runtime?

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
	000000000000				
Reconstruction Me	thods				

Idea

Noiseless case: When A is (sub)Gaussian, $A^*y = A^*Af$ is a good approximation to f.

nitialize: Set $I = \emptyset$ and r = y. Repeat the following *s* times: Identify: Select the largest coordinate λ of $u = A^*r$ in absolute value. Update: Add the coordinate: $I \leftarrow I \cup \{\lambda\}$, and update the residual: $\hat{x} = \underset{z}{\operatorname{argmin}} ||y - A|_I z||_2; \quad r = y - A\hat{x}.$

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
	000000000000				
Reconstruction Me	ethods				

Idea

Noiseless case: When A is (sub)Gaussian, $A^*y = A^*Af$ is a good approximation to f.

Initialize: Set $I = \emptyset$ and r = y. Repeat the following *s* times: Identify: Select the largest coordinate λ of $u = A^*r$ i absolute value.

Update: Add the coordinate: $I \leftarrow I \cup \{\lambda\}$, and update the residual:

$$\hat{x} = \underset{z}{\operatorname{argmin}} \|y - A\|_{I} z\|_{2}; \qquad r = y - A\hat{x}.$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
	000000000000				
Reconstruction M	ethods				

Idea

Noiseless case: When A is (sub)Gaussian, $A^*y = A^*Af$ is a good approximation to f.

Initialize: Set $I = \emptyset$ and r = y. Repeat the following *s* times: Identify: Select the largest coordinate λ of $u = A^*r$ in absolute value. Update: Add the coordinate: $I \leftarrow I \cup \{\lambda\}$, and update the residual: $\hat{\chi} = \underset{z}{\operatorname{argmin}} ||y - A|_{I}z||_{2}; \quad r = y - A\hat{\chi}.$

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
	000000000000				
Reconstruction Me	ethods				

Idea

Noiseless case: When A is (sub)Gaussian, $A^*y = A^*Af$ is a good approximation to f.

Initialize: Set $I = \emptyset$ and r = y. Repeat the following *s* times: Identify: Select the largest coordinate λ of $u = A^*r$ in absolute value. Update: Add the coordinate: $I \leftarrow I \cup \{\lambda\}$, and update the residual: $\hat{x} = \underset{z}{\operatorname{argmin}} ||y - A|_{I}z||_{2}; \quad r = y - A\hat{x}.$

< A >

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
Reconstruction	Methods				
Carrows	anti a Comulta	~ Matahin	~ D		

Compressive Sampling Matching Pursuit [N-Tropp]

Theorem (Gilbert-Tropp)

When A is (sub)Gaussian with $m \gtrsim s \log d$, OMP correctly recovers each fixed s-sparse signal with high probability.

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
	0000000000000				
Reconstruction Me	thods				

Compressive Sampling Matching Pursuit [N-Tropp]

Answers for OMP

- What kind(s) of measurement matrices A? Gaussian
- How many measurements needed? s log d
- Are the guarantees uniform? No, for fixed signal
- Is algorithm stable? Not known to be robust to noise X
- Fast runtime? Yes 🕑

Motivation	Progress in CoSa	Redundancy	Results	Experiments 000000	Future Work
Reconstruction	Methods				
ℓ_0 -optir	nization				

The First CoSa Theorem

Let A be one-to-one on 2s-sparse vectors and set:

 $\hat{f} = \operatorname{argmin} \|g\|_0$ such that Ag = y.

Then in the noiseless case, we have perfect recovery of all s-sparse signals: $\hat{f} = f$.

End of story? This is numerically infeasible!

Motivation	Progress in CoSa	Redundancy	Results	Experiments 000000	Future Work
Reconstruction	Methods				
ℓ_0 -optir	nization				

The First CoSa Theorem

Let A be one-to-one on 2s-sparse vectors and set:

$$\hat{f} = \operatorname{argmin} \|g\|_0$$
 such that $Ag = y$.

Then in the noiseless case, we have perfect recovery of all *s*-sparse signals: $\hat{f} = f$.

End of story?

This is numerically infeasible!

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
	0000000000000				
Reconstruction I	Methods				

Just relax: ℓ_1 -optimization

Relaxation [Donoho et.al., Candès-Tao]

Let A satisfy the *Restricted Isometry Property* for 2*s*-sparse vectors and set:

 $\hat{f} = \operatorname{argmin} \|g\|_1$ such that Ag = y.

Then in the noiseless case, we have perfect recovery of all s-sparse signals: $\hat{f} = f$.

End of story? This is numerically feasible!

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
	0000000000000				
Reconstruction I	Vethods				

Just relax: ℓ_1 -optimization

Relaxation [Donoho et.al., Candès-Tao]

Let A satisfy the *Restricted Isometry Property* for 2*s*-sparse vectors and set:

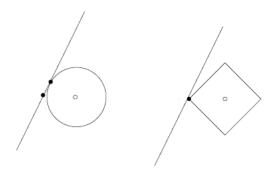
$$\hat{f} = \operatorname{argmin} \|g\|_1$$
 such that $Ag = y$.

Then in the noiseless case, we have perfect recovery of all s-sparse signals: $\hat{f} = f$.

End of story?

This is numerically feasible!

Motivation	Progress in CoSa ○○○○○○●○○○○○○	Redundancy	Results	Experiments	Future Work
Reconstruction N	Methods				
Let's ta	lk geometry				



<□> < □> < □> < ≥> < ≥> < ≥>

Motivation	Progress in CoSa ○○○○○○○○○○○○○	Redundancy	Results	Experiments 000000	Future Work
Reconstruction I	000000 00000 000000 000000000000000000				
Make so	ome noise ℓ_1 -	optimizati	ion		

The ℓ_1 -optimization method succeeds for arbitrary vectors with noisy samples.

Stability [Candès-Romberg-Tao]

Let A satisfy the Restricted Isometry Property as before and set:

 $\hat{f} = \operatorname{argmin} \|g\|_1$ such that $\|Ag - y\|_2 \leq \varepsilon$.

Then we have optimal recovery error:

$$\|\hat{f} - f\|_2 \le C\left(\varepsilon + \frac{\|f - f_s\|_1}{\sqrt{s}}\right).$$

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
000000	0000000000000	0000000	0000	000000	0000
Reconstruction N	Aethods				
Make so	ome noise: ℓ_1 -	optimizati	ion		

The ℓ_1 -optimization method succeeds for *arbitrary* vectors with *noisy* samples.

Stability [Candès-Romberg-Tao]

Let A satisfy the Restricted Isometry Property as before and set:

$$\hat{f} = \operatorname{argmin} \|g\|_1$$
 such that $\|Ag - y\|_2 \leq \varepsilon$.

Then we have optimal recovery error:

$$\|\hat{f}-f\|_2 \leq C\left(\varepsilon+\frac{\|f-f_s\|_1}{\sqrt{s}}\right).$$

San

Motivation	Progress in CoSa ○○○○○○○○●○○○○	Redundancy	Results	Experiments	Future Work
Reconstruction N	lethods				
Restrict	ed Isometry F	Property			

 The sth restricted isometry constant of (m × d) A is the smallest δ_s such that

 $(1-\delta_s)\|f\|_2 \leq \|Af\|_2 \leq (1+\delta_s)\|f\|_2$ whenever $\|f\|_0 \leq s$.

• For Gaussian or Bernoulli measurement matrices, with high probability

 $\delta_s \leq c < 1$ when $m \gtrsim s \log d$.

 Random Fourier and others with fast multiply have similar property: m ≥ s log⁴ d.

イロト イポト イヨト イヨト

Motivation 000000	Progress in CoSa	Redundancy	Results	Experiments	Future Work
Reconstruction N	Aethods				
Restrict	ed Isometry F	roperty			

 The sth restricted isometry constant of (m × d) A is the smallest δ_s such that

 $(1-\delta_s)\|f\|_2\leq \|Af\|_2\leq (1+\delta_s)\|f\|_2$ whenever $\|f\|_0\leq s.$

• For Gaussian or Bernoulli measurement matrices, with high probability

 $\delta_s \leq c < 1$ when $m \gtrsim s \log d$.

 Random Fourier and others with fast multiply have similar property: m ≥ s log⁴ d.

イロト イポト イヨト イヨト

Motivation 000000	Progress in CoSa	Redundancy	Results	Experiments	Future Work
Reconstruction N	Aethods				
Restrict	ed Isometry F	roperty			

 The sth restricted isometry constant of (m × d) A is the smallest δ_s such that

 $(1-\delta_s)\|f\|_2\leq \|Af\|_2\leq (1+\delta_s)\|f\|_2$ whenever $\|f\|_0\leq s.$

• For Gaussian or Bernoulli measurement matrices, with high probability

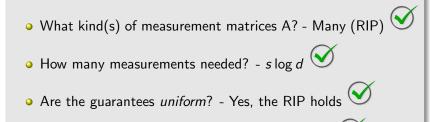
 $\delta_s \leq c < 1$ when $m \gtrsim s \log d$.

 Random Fourier and others with fast multiply have similar property: m ≥ s log⁴ d.

- 4 周 ト - 4 日 ト - 4 日 ト -

Motivation	Progress in CoSa	Redundancy	Results	Experiments 000000	Future Work
Reconstruction	Methods				
ℓ_1 -optin	nization				

Answers for ℓ_1 -optimization



Is algorithm stable? - Yes, optimal error bounds

• Fast runtime? - Not bad, but not ideal...

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
	0000000000000				
Reconstruction I	Methods				

ldea

- When A satisfies the RIP, $A^*y = A^*Af$ is a good approximation to f.
- At each iteration, select many components of A^*y to be in support. Estimate f, and prune.
 - Initialize: Set a⁰ = 0, v = y, k = 0. Repeat the following steps:
 - Signal Proxy: Set $u = A^* v$, $\Omega = \text{supp } u_{2s}$ and merge: $T = \Omega \cup \text{supp } a^{k-1}$.
 - Signal Estimation: Set $b|_{\mathcal{T}} = A_{\mathcal{T}}^{\dagger}y$ and $b|_{\mathcal{T}^c} = 0$.
 - Prune: Set $a^k = b_s$
 - Sample Update: Update $v = y Aa^k$.

イロト イポト イヨト イヨト

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
	00000000000000				
Reconstruction I	Methods				

ldea

- When A satisfies the RIP, $A^*y = A^*Af$ is a good approximation to f.
- At each iteration, select many components of A^*y to be in support. Estimate f, and prune.
 - Initialize: Set a⁰ = 0, v = y, k = 0. Repeat the following steps:
 - Signal Proxy: Set $u = A^* v$, $\Omega = \text{supp } u_{2s}$ and merge: $T = \Omega \cup \text{supp } a^{k-1}$.
 - Signal Estimation: Set $b|_{\mathcal{T}} = A_{\mathcal{T}}^{\dagger}y$ and $b|_{\mathcal{T}^c} = 0$.
 - Prune: Set $a^k = b_s$
 - Sample Update: Update $v = y Aa^k$.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
	00000000000000				
Reconstruction I	Methods				

Idea

- When A satisfies the RIP, $A^*y = A^*Af$ is a good approximation to f.
- At each iteration, select many components of A^*y to be in support. Estimate f, and prune.
 - Initialize: Set a⁰ = 0, v = y, k = 0. Repeat the following steps:
 - Signal Proxy: Set u = A^{*}v, Ω = supp u_{2s} and merge: T = Ω ∪ supp a^{k-1}.
 - Signal Estimation: Set $b|_{\mathcal{T}} = A_{\mathcal{T}}^{\dagger}y$ and $b|_{\mathcal{T}^c} = 0$.
 - Prune: Set $a^k = b_s$
 - Sample Update: Update $v = y Aa^k$.

• □ ► • □ ► • □ ► • □ ►

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
	00000000000000				
Reconstruction I	Methods				

Idea

- When A satisfies the RIP, $A^*y = A^*Af$ is a good approximation to f.
- At each iteration, select many components of A^*y to be in support. Estimate f, and prune.
 - Initialize: Set a⁰ = 0, v = y, k = 0. Repeat the following steps:
 - Signal Proxy: Set u = A^{*}v, Ω = supp u_{2s} and merge: T = Ω ∪ supp a^{k-1}.
 - Signal Estimation: Set $b|_T = A_T^{\dagger}y$ and $b|_{T^c} = 0$.
 - Prune: Set $a^k = b_s$
 - Sample Update: Update $v = y Aa^k$.

・ロト ・ 一下・ ・ ヨト

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
	00000000000000				
Reconstruction	Methods				

ldea

- When A satisfies the RIP, $A^*y = A^*Af$ is a good approximation to f.
- At each iteration, select many components of A^*y to be in support. Estimate f, and prune.
 - Initialize: Set a⁰ = 0, v = y, k = 0. Repeat the following steps:
 - Signal Proxy: Set u = A^{*}v, Ω = supp u_{2s} and merge: T = Ω ∪ supp a^{k-1}.
 - Signal Estimation: Set $b|_{T} = A_{T}^{\dagger}y$ and $b|_{T^{c}} = 0$.
 - Prune: Set $a^k = b_s$.
 - Sample Update: Update $v = y Aa^k$.

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
	00000000000000				
Reconstruction I	Methods				

Compressive Sampling Matching Pursuit (CoSaMP)

ldea

- When A satisfies the RIP, $A^*y = A^*Af$ is a good approximation to f.
- At each iteration, select many components of A^*y to be in support. Estimate f, and prune.
 - Initialize: Set a⁰ = 0, v = y, k = 0. Repeat the following steps:
 - Signal Proxy: Set u = A^{*}v, Ω = supp u_{2s} and merge: T = Ω ∪ supp a^{k-1}.
 - Signal Estimation: Set $b|_{T} = A_{T}^{\dagger}y$ and $b|_{T^{c}} = 0$.
 - Prune: Set $a^k = b_s$.
 - Sample Update: Update $v = y Aa^k$.

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
	00000000000000				
Reconstruction Me	thods				

Compressive Sampling Matching Pursuit

Theorem (N-Tropp)

When A satisfies the RIP, CoSaMP recovers an approximation to f with optimal error:

$$\|\hat{f} - f\|_2 \le C\left(\varepsilon + \frac{\|f - f_s\|_1}{\sqrt{s}}\right)$$

A + 4

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
	000000000000				
Reconstruction Me	ethods				

Compressive Sampling Matching Pursuit [N-Tropp]

Answers for CoSaMP

- What kind(s) of measurement matrices A? Many (RIP)
- How many measurements needed? $s \log d$
- Are the guarantees *uniform*? Yes, the RIP holds 🛇
- Is algorithm stable? Yes, optimal error bounds
- Fast runtime? Yes, roughly same cost as applying A 🤡

Motivation	Progress in CoSa	Redundancy ●○○○○○○	Results	Experiments 000000	Future Work
Which dictionary?					
The Nev	vs				

Good News

Many methods hold for signals f which are sparse in the coordinate basis or in some other orthonormal basis (ONB).

Bad News

There are many applications for which the signal f is sparse not in an ONB, but in some overcomplete dictionary! This means that f = Dx where D is a redundant dictionary. When D is not an ONB, AD is not at all likely to satisfy the RIP (or be incoherent).

Motivation	Progress in CoSa	Redundancy ●○○○○○○	Results	Experiments 000000	Future Work
Which dictionary?					
The Nev	VS				

Good News

Many methods hold for signals f which are sparse in the coordinate basis or in some other orthonormal basis (ONB).

Bad News

There are many applications for which the signal f is sparse not in an ONB, but in some overcomplete dictionary! This means that f = Dx where D is a redundant dictionary. When D is not an ONB, AD is not at all likely to satisfy the RIP (or be incoherent).

Motivation	Progress in CoSa	Redundancy ●○○○○○○	Results	Experiments 000000	Future Work
Which dictionary?					
The Nev	VS				

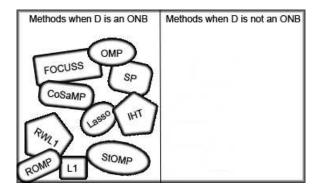
Good News

Many methods hold for signals f which are sparse in the coordinate basis or in some other orthonormal basis (ONB).

Bad News

There are many applications for which the signal f is sparse not in an ONB, but in some overcomplete dictionary! This means that f = Dx where D is a redundant dictionary. When D is not an ONB, AD is not at all likely to satisfy the RIP (or be incoherent).

Motivation	Progress in CoSa	Redundancy ⊙●○○○○○	Results	Experiments 000000	Future Work
Which dictionary?					
Big Pict	ure				



Needell Compressive Sampling and Redundancy

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivation	Progress in CoSa	Redundancy ○○●○○○○	Results	Experiments 000000	Future Work
Which dictionary?					
Fxample	Oversample	-d DFT			

•
$$n \times n$$
 DFT: $d_k(t) = \frac{1}{\sqrt{n}} e^{-2\pi i k t/n}$

- Sparse in the DFT = superpositions of sinusoids with frequencies in the lattice.
- Instead, use the oversampled DFT: frequencies may be over even smaller intervals or intervals of varying length.
- Then D is an overcomplete frame with highly coherent columns → current CS does not apply.

Motivation	Progress in CoSa	Redundancy ○○●○○○○	Results	Experiments 000000	Future Work
Which dictionary?					
Example:	Oversample	ed DFT			

•
$$n \times n$$
 DFT: $d_k(t) = \frac{1}{\sqrt{n}} e^{-2\pi i k t/r}$

- Sparse in the DFT = superpositions of sinusoids with frequencies in the lattice.
- Instead, use the oversampled DFT: frequencies may be over even smaller intervals or intervals of varying length.
- Then D is an overcomplete frame with highly coherent columns → current CS does not apply.

Motivation 000000 Which dictionary?	Progress in CoSa	Redundancy ○○●○○○○	Results 0000	Experiments 000000	Future Work
Example:	Oversample	ed DFT			

•
$$n \times n$$
 DFT: $d_k(t) = \frac{1}{\sqrt{n}} e^{-2\pi i k t/n}$

- Sparse in the DFT = superpositions of sinusoids with frequencies in the lattice.
- Instead, use the oversampled DFT: frequencies may be over even smaller intervals or intervals of varying length.
- Then D is an overcomplete frame with highly coherent columns → current CS does not apply.

Motivation 000000 Which dictionary?	Progress in CoSa	Redundancy ○○●○○○○	Results 0000	Experiments 000000	Future Work
Example:	Oversample	ed DFT			

•
$$n \times n$$
 DFT: $d_k(t) = \frac{1}{\sqrt{n}} e^{-2\pi i k t/n}$

- Sparse in the DFT = superpositions of sinusoids with frequencies in the lattice.
- Instead, use the oversampled DFT: frequencies may be over even smaller intervals or intervals of varying length.
- Then D is an overcomplete frame with highly coherent columns → current CS does not apply.

Motivation	Progress in CoSa	Redundancy ○○○●○○○	Results	Experiments 000000	Future Work
Which dictionary?					
Example	: Gabor fram	nes			

• Gabor frame: $G_k(t) = g(t - k_2 a)e^{2\pi i k_1 b t}$

- Radar, sonar, and imaging system applications use Gabor frames and wish to recover signals in this basis.
- Then D is an overcomplete frame with possibly highly coherent columns → current CS does not apply.

< 🗇 🕨 <

San

Motivation	Progress in CoSa	Redundancy ○○○●○○○	Results	Experiments 000000	Future Work
Which dictionary?					
Example	: Gabor fram	nes			

- Gabor frame: $G_k(t) = g(t k_2 a)e^{2\pi i k_1 b t}$
- Radar, sonar, and imaging system applications use Gabor frames and wish to recover signals in this basis.
- Then D is an overcomplete frame with possibly highly coherent columns → current CS does not apply.

Motivation 000000 Which dictionary?	Progress in CoSa	Redundancy ○○○●○○○	Results 0000	Experiments 000000	Future Work
Example	Gabor fram	nes			

- Gabor frame: $G_k(t) = g(t k_2 a)e^{2\pi i k_1 b t}$
- Radar, sonar, and imaging system applications use Gabor frames and wish to recover signals in this basis.
- Then D is an overcomplete frame with possibly highly coherent columns → current CS does not apply.

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
Which dictionary?					
Example:	Curvelet fra	ames			

• A Curvelet frame has some properties of an ONB but is overcomplete.

- Curvelets approximate well the curved singularities in images and are thus used widely in image processing.
- Again, this means D is an overcomplete dictionary → current CS does not apply.

Motivation	Progress in CoSa	Redundancy 0000●00	Results	Experiments 000000	Future Work
Which dictionary?					
Example:	Curvelet fra	ames			

- A Curvelet frame has some properties of an ONB but is overcomplete.
- Curvelets approximate well the curved singularities in images and are thus used widely in image processing.
- Again, this means D is an overcomplete dictionary → current CS does not apply.

Motivation	Progress in CoSa	Redundancy ○○○○●○○	Results	Experiments 000000	Future Work
Which dictionary?					
Example:	Curvelet fra	ames			

- A Curvelet frame has some properties of an ONB but is overcomplete.
- Curvelets approximate well the curved singularities in images and are thus used widely in image processing.
- Again, this means D is an overcomplete dictionary → current CS does not apply.

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
Which dictionary?					
F uence le					
Example					



- The undecimated wavelet transform has a translation invariance property that is missing in the DWT.
- The UWT is overcomplete and this redundancy has been found to be helpful in image processing.
- Again, this means D is a redundant dictionary → current CS does not apply.

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
Which dictionary?					
F uence le					
Example					



- The undecimated wavelet transform has a translation invariance property that is missing in the DWT.
- The UWT is overcomplete and this redundancy has been found to be helpful in image processing.
- Again, this means D is a redundant dictionary → current CS does not apply.

San

Motivation	Progress in CoSa	Redundancy ○○○○○●○	Results	Experiments 000000	Future Work
Which dictionary?					
Example:	UWT				



- The undecimated wavelet transform has a translation invariance property that is missing in the DWT.
- The UWT is overcomplete and this redundancy has been found to be helpful in image processing.
- Again, this means D is a redundant dictionary → current CS does not apply.

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
		000000			
Which dictionary?					
Example:	Concatenat	ions			

- In many applications, a signal may be sparse in several ONBs.
- Correlations between the bases mean current CS techniques do not apply.

San

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
		000000			
Which dictionary?					
Example:	Concatenat	tions			

- In many applications, a signal may be sparse in several ONBs.
- Correlations between the bases mean current CS techniques do not apply.

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
			0000		
Results					
ℓ_1 -Anal	ysis				

Proposed Method

It has been observed (empirically) that $\ell_1\text{-analysis}$ often succeeds:

$$\hat{f} = \operatorname*{argmin}_{ ilde{f} \in \mathbb{R}^n} \| D^* \tilde{f} \|_1$$
 subject to $\| A \tilde{f} - y \|_2 \leq arepsilon.$

E

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
			0000		
Results					
Conditio	on on A?				

Let Σ_s be the union of all subspaces spanned by all subsets of s columns of D.

D-RIP

We say that the measurement matrix A obeys the *restricted* isometry property adapted to D (D-RIP) with constant δ_s if

$$(1 - \delta_s) \|v\|_2^2 \le \|Av\|_2^2 \le (1 + \delta_s) \|v\|_2^2$$

holds for all $v \in \Sigma_s$.

Similarly to the RIP, Gaussian, subgaussian, and Bernoulli matrices satisfy the D-RIP with $m \approx s \log(d/s)$. Matrices with a fast multiply (DFT with random signs) also satisfy the D-RIP with m approximately of this order.

Motivation	Progress in CoSa	Redundancy	Results ○●○○	Experiments 000000	Future Work
Results					
Conditio	on on A?				

Let Σ_s be the union of all subspaces spanned by all subsets of s columns of D.

D-RIP

We say that the measurement matrix A obeys the *restricted* isometry property adapted to D (D-RIP) with constant δ_s if

$$(1-\delta_s)\|v\|_2^2 \le \|Av\|_2^2 \le (1+\delta_s)\|v\|_2^2$$

holds for all $v \in \Sigma_s$.

Similarly to the RIP, Gaussian, subgaussian, and Bernoulli matrices satisfy the D-RIP with $m \approx s \log(d/s)$. Matrices with a fast multiply (DFT with random signs) also satisfy the D-RIP with m approximately of this order.

Motivation	Progress in CoSa	Redundancy	Results ○●○○	Experiments 000000	Future Work
Results					
Conditio	on on A?				

Let Σ_s be the union of all subspaces spanned by all subsets of s columns of D.

D-RIP

We say that the measurement matrix A obeys the *restricted* isometry property adapted to D (D-RIP) with constant δ_s if

$$(1-\delta_s)\|v\|_2^2 \le \|Av\|_2^2 \le (1+\delta_s)\|v\|_2^2$$

holds for all $v \in \Sigma_s$.

Similarly to the RIP, Gaussian, subgaussian, and Bernoulli matrices satisfy the D-RIP with $m \approx s \log(d/s)$. Matrices with a fast multiply (DFT with random signs) also satisfy the D-RIP with m approximately of this order.

Motivation	Progress in CoSa	Redundancy	Results ○○●○	Experiments 000000	Future Work
Results					
Main Re	esult				

Theorem (Candès-Eldar-N-Randall)

Let *D* be an arbitrary tight frame and let *A* be a measurement matrix satisfying D-RIP (with δ_{2s} small). Then the solution \hat{f} to ℓ_1 -analysis satisfies

$$\|\hat{f} - f\|_2 \le C_0 \varepsilon + C_1 \frac{\|D^* f - (D^* f)_s\|_1}{\sqrt{s}},$$

where the constants C_0 and C_1 may only depend on δ_{2s} .

Motivation	Progress in CoSa	Redundancy	Results 000●	Experiments	Future Work
Results					

Implications

In other words,

Our result says that ℓ_1 -analysis is very accurate when D^*f has rapidly decaying coefficients. This is the case in applications using the Oversampled DFT, Gabor frames, Undecimated WT, and Curvelet frames (and many others).

This will not necessarily be the case when using concatenations of two ONBs $\rightarrow \ell_1$ -analysis not the right method.

Motiv 0000		Progress in CoSa	Redundancy	Results 000●	Experiments	Future Work
Resul	ts					

Implications

In other words,

Our result says that ℓ_1 -analysis is very accurate when D^*f has rapidly decaying coefficients. This is the case in applications using the Oversampled DFT, Gabor frames, Undecimated WT, and Curvelet frames (and many others).

This will not necessarily be the case when using concatenations of two ONBs $\rightarrow \ell_1$ -analysis not the right method.

Motivation	Progress in CoSa	Redundancy	Results ○○○●	Experiments 000000	Future Work
Results					
	-				

Implications

In other words,

Our result says that ℓ_1 -analysis is very accurate when D^*f has rapidly decaying coefficients. This is the case in applications using the Oversampled DFT, Gabor frames, Undecimated WT, and Curvelet frames (and many others).

This will not necessarily be the case when using concatenations of two ONBs $\rightarrow \ell_1$ -analysis not the right method.

Motivation	Progress in CoSa	Redundancy	Results	Experiments •00000	Future Work
Experiments					
Experim	ental Setup				

n = 8192, m = 400, d = 491, 520A: $m \times n$ Gaussian, D: $n \times d$ Gabor

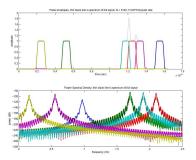


Figure: The signal is a superposition of 6 radar pulses, each of which being about 200 ns long, and with frequency carriers distributed between 50 MHz and 2.5 GHz (top plot). As can be seen, three of these pulses overlap in the time domain.

Motivation	Progress in CoSa	Redundancy	Results	Experiments ○●○○○○	Future Work
Experiments					
Exportion	ontal Daguita				

Experimental Results

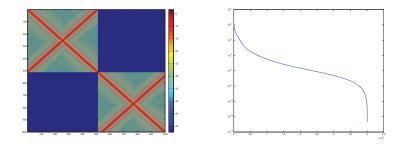


Figure: Portion of the matrix D^*D , in log-scale (left). Sorted analysis coefficients (in absolute value) of the signal from Figure 1 (right).

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
Experiments					
Experim	nental Results				

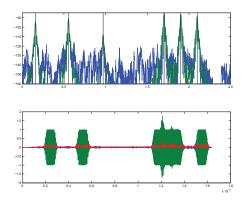


Figure: Recovery in both the time (below) and frequency (above) domains by ℓ_1 -analysis. Blue denotes the recovered signal, green the actual signal, and red the difference between the two.

Motivation	Progress in CoSa	Redundancy	Results	Experiments 000●00	Future Work
Experiments					
Experim	ental Results				

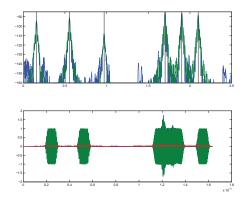


Figure: Recovery in both the time (below) and frequency (above) domains by ℓ_1 -analysis after one reweighted iteration. Blue denotes the recovered signal, green the actual signal, and red the difference.

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work				
000000 Experiments	0000000000000	0000000	0000	000000	0000				
_									
Evnerim	Experimental Results								

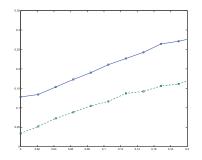


Figure: Relative recovery error of ℓ_1 -analysis as a function of the (normalized) noise level, averaged over 5 trials. The solid line denotes standard ℓ_1 -analysis, and the dashed line denotes ℓ_1 -analysis with 3 reweighted iterations. The *x*-axis is the relative noise level $\sqrt{m\sigma}/||Af||_2$ while the *y*-axis is the relative error $||\hat{f} - f||_2/||f||_2$.

Motivation	Progress in CoSa	Redundancy	Results	Experiments 00000●	Future Work
Experiments					
Experim	nental Results				

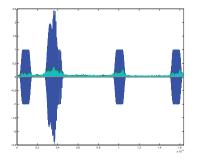
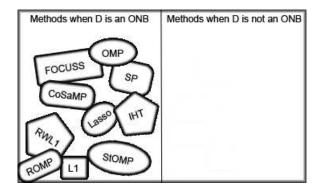


Figure: Relative error $\|\hat{f} - f\|_2 / \|f\|_2$ of a compressible signal. Blue denotes the actual signal, while green, red, and cyan denote the recovery error from ℓ_1 -analysis, reweighted ℓ_1 -analysis, and ℓ_1 -synthesis, respectively.

San

Motivation	Progress in CoSa	Redundancy	Results	Experiments 000000	Future Work ●○○○
Future Work					
Big Pict	ure				



Needell Compressive Sampling and Redundancy

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
					0000
Future Work					
Just rec	ently				

Candès-Edlar-N-Randall proved that a method called ℓ_1 -analysis recovers signals sparse in arbitrary overcomplete dictionaries.

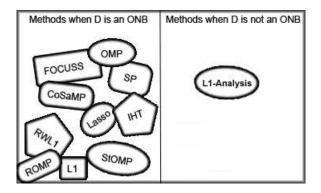


Image: 1

Ξ

DQC

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
					0000
Future Work					
Future v	work				

- Proof for another method for overcomplete dictionaries: $\ell_1\text{-synthesis}$
- Is RIP the right theory?
- What about concatenations?

∃ ∃ ≥

Ξ

DQC

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
					0000
Future Work					
Future	work				

- Proof for another method for overcomplete dictionaries: $\ell_1\text{-synthesis}$
- Is RIP the right theory?

What about concatenations?

- b-

∃ ≥ ►

Ξ

DQC

Motivation	Progress in CoSa	Redundancy	Results	Experiments	Future Work
					0000
Future Work					
Future	work				

- Proof for another method for overcomplete dictionaries: $\ell_1\text{-synthesis}$
- Is RIP the right theory?
- What about concatenations?

∃ ≥ ►

- - E - E

Ξ

Motivation	Progress in CoSa	Redundancy	Results	Experiments 000000	Future Work ○○○●		
Thank you							
For more information							

E-mail:

o dneedell@stanford.edu

Web:

www-stat.stanford.edu/~dneedell

References:

- E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. *Comm. Pure Appl.Math.*, 59(8):12071223, 2006.
- D. Needell and J. A. Tropp, "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples," *Appl. Comp. Harmonic Anal.*, 26(3):301-321, 2008.
- E. J. Candès, Y. C. Eldar, D. Needell, and P. Randall, "Compressed sensing with coherent and redundant dictionaries," *Appl. Comp. Harmonic Anal.*, to appear.

San