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Why CoSa?

Digital cameras, for example

(Hard work to measure all pixels) (Compression) (Wasteful?)
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Why CoSa?

Introducing, CoSa

The issue

Traditional data acquisition is wasteful.

The idea

Combine acquisition and compression.

The solution

Compressive sampling (CoSa) allows us to do this → reconstruct a
signal from its (compressed) measurements.
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Why CoSa?

Numerous Applications

CoSa single pixel digital camera [Rice]

Medical Imaging, MRI

Radar

Error Correction

Computational Biology (DNA Microarrays)

Geophysical Data Analysis

Data Mining, classification

...
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Why CoSa?

Wait, isn’t this impossible?

Without further assumptions, this problem is ill-posed.

Why will this work?

Most signals of interest contain far less information than their
dimension d suggests.

Assume f is sparse:

In the coordinate basis: ‖f ‖0 def

= | supp(f )| ≤ s ≪ d .

With respect to some other basis: f = Dx where
‖x‖0 ≤ s ≪ d .

In practice, we encounter compressible signals.
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Why CoSa?

CoSa in the real world
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Reconstruction Methods

Designing a reconstruction algorithm
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Important Questions

What kind(s) of measurement matrices A?

How many measurements needed?

Are the guarantees uniform?

Is algorithm stable?

Fast runtime?
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Reconstruction Methods

Orthogonal Matching Pursuit (OMP)

Idea

Noiseless case: When A is (sub)Gaussian, A∗y = A∗Af is a good
approximation to f .

Initialize: Set I = ∅ and r = y .
Repeat the following s times:

Identify: Select the largest coordinate λ of u = A∗r in
absolute value.

Update: Add the coordinate: I ← I ∪ {λ}, and update the
residual:

x̂ = argmin
z

‖y − A|I z‖2; r = y − Ax̂ .
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Reconstruction Methods

Compressive Sampling Matching Pursuit [N-Tropp]

Theorem (Gilbert-Tropp)

When A is (sub)Gaussian with m & s log d , OMP correctly
recovers each fixed s-sparse signal with high probability.
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Reconstruction Methods

Compressive Sampling Matching Pursuit [N-Tropp]

Answers for OMP

What kind(s) of measurement matrices A? - Gaussian

How many measurements needed? - s log d

Are the guarantees uniform? - No, for fixed signal

Is algorithm stable? - Not known to be robust to noise

Fast runtime? - Yes
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Reconstruction Methods

ℓ0-optimization

The First CoSa Theorem

Let A be one-to-one on 2s-sparse vectors and set:

f̂ = argmin ‖g‖0 such that Ag = y .

Then in the noiseless case, we have perfect recovery of all s-sparse
signals: f̂ = f .

End of story?

This is numerically infeasible!
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Reconstruction Methods

Just relax: ℓ1-optimization

Relaxation [Donoho et.al., Candès-Tao]

Let A satisfy the Restricted Isometry Property for 2s-sparse
vectors and set:

f̂ = argmin ‖g‖1 such that Ag = y .

Then in the noiseless case, we have perfect recovery of all s-sparse
signals: f̂ = f .

End of story?

This is numerically feasible!
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Reconstruction Methods

Let’s talk geometry...
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Reconstruction Methods

Make some noise: ℓ1-optimization

The ℓ1-optimization method succeeds for arbitrary vectors with
noisy samples.

Stability [Candès-Romberg-Tao]

Let A satisfy the Restricted Isometry Property as before and set:

f̂ = argmin ‖g‖1 such that ‖Ag − y‖2 ≤ ε.

Then we have optimal recovery error:

‖f̂ − f ‖2 ≤ C

(

ε+
‖f − fs‖1√

s

)

.
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Reconstruction Methods

Restricted Isometry Property

The sth restricted isometry constant of (m × d) A is the
smallest δs such that

(1− δs)‖f ‖2 ≤ ‖Af ‖2 ≤ (1 + δs)‖f ‖2 whenever ‖f ‖0 ≤ s.

For Gaussian or Bernoulli measurement matrices, with high
probability

δs ≤ c < 1 when m & s log d .

Random Fourier and others with fast multiply have similar
property: m & s log4 d .
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Reconstruction Methods

ℓ1-optimization

Answers for ℓ1-optimization

What kind(s) of measurement matrices A? - Many (RIP)

How many measurements needed? - s log d

Are the guarantees uniform? - Yes, the RIP holds

Is algorithm stable? - Yes, optimal error bounds

Fast runtime? - Not bad, but not ideal...
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Reconstruction Methods

Compressive Sampling Matching Pursuit (CoSaMP)

Idea

When A satisfies the RIP, A∗y = A∗Af is a good
approximation to f .

At each iteration, select many components of A∗y to be in
support. Estimate f , and prune.

Initialize: Set a0 = 0, v = y , k = 0. Repeat the following
steps:

Signal Proxy: Set u = A∗v , Ω = supp u2s and merge:
T = Ω ∪ supp ak−1.

Signal Estimation: Set b|T = A
†
T
y and b|T c = 0.

Prune: Set ak = bs .

Sample Update: Update v = y − Aak .
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Reconstruction Methods

Compressive Sampling Matching Pursuit

Theorem (N-Tropp)

When A satisfies the RIP, CoSaMP recovers an approximation to f

with optimal error:

‖f̂ − f ‖2 ≤ C

(

ε+
‖f − fs‖1√

s

)

.
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Reconstruction Methods

Compressive Sampling Matching Pursuit [N-Tropp]

Answers for CoSaMP

What kind(s) of measurement matrices A? - Many (RIP)

How many measurements needed? - s log d

Are the guarantees uniform? - Yes, the RIP holds

Is algorithm stable? - Yes, optimal error bounds

Fast runtime? - Yes, roughly same cost as applying A
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Which dictionary?

The News

Good News

Many methods hold for signals f which are sparse in the
coordinate basis or in some other orthonormal basis (ONB).

Bad News

There are many applications for which the signal f is sparse not in
an ONB, but in some overcomplete dictionary! This means that
f = Dx where D is a redundant dictionary. When D is not an
ONB, AD is not at all likely to satisfy the RIP (or be incoherent).
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Which dictionary?

Big Picture
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Which dictionary?

Example: Oversampled DFT

n × n DFT: dk(t) =
1√
n
e−2πikt/n

Sparse in the DFT = superpositions of sinusoids with
frequencies in the lattice.

Instead, use the oversampled DFT: frequencies may be over
even smaller intervals or intervals of varying length.

Then D is an overcomplete frame with highly coherent
columns → current CS does not apply.
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Which dictionary?

Example: Gabor frames

Gabor frame: Gk(t) = g(t − k2a)e
2πik1bt

Radar, sonar, and imaging system applications use Gabor
frames and wish to recover signals in this basis.

Then D is an overcomplete frame with possibly highly
coherent columns → current CS does not apply.

Needell Compressive Sampling and Redundancy



Motivation Progress in CoSa Redundancy Results Experiments Future Work

Which dictionary?

Example: Gabor frames

Gabor frame: Gk(t) = g(t − k2a)e
2πik1bt

Radar, sonar, and imaging system applications use Gabor
frames and wish to recover signals in this basis.

Then D is an overcomplete frame with possibly highly
coherent columns → current CS does not apply.

Needell Compressive Sampling and Redundancy



Motivation Progress in CoSa Redundancy Results Experiments Future Work

Which dictionary?

Example: Gabor frames

Gabor frame: Gk(t) = g(t − k2a)e
2πik1bt

Radar, sonar, and imaging system applications use Gabor
frames and wish to recover signals in this basis.

Then D is an overcomplete frame with possibly highly
coherent columns → current CS does not apply.

Needell Compressive Sampling and Redundancy



Motivation Progress in CoSa Redundancy Results Experiments Future Work

Which dictionary?

Example: Curvelet frames

A Curvelet frame has some properties of an ONB but is
overcomplete.

Curvelets approximate well the curved singularities in images
and are thus used widely in image processing.

Again, this means D is an overcomplete dictionary → current
CS does not apply.
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Which dictionary?

Example: UWT

The undecimated wavelet transform has a translation
invariance property that is missing in the DWT.

The UWT is overcomplete and this redundancy has been
found to be helpful in image processing.

Again, this means D is a redundant dictionary → current CS
does not apply.
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Which dictionary?

Example: Concatenations



 I F





In many applications, a signal may be sparse in several ONBs.

Correlations between the bases mean current CS techniques
do not apply.
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Results

ℓ1-Analysis

Proposed Method

It has been observed (empirically) that ℓ1-analysis often succeeds:

f̂ = argmin
f̃ ∈Rn

‖D∗ f̃ ‖1 subject to ‖Af̃ − y‖2 ≤ ε.
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Results

Condition on A?

Let Σs be the union of all subspaces spanned by all subsets of s
columns of D.

D-RIP

We say that the measurement matrix A obeys the restricted

isometry property adapted to D (D-RIP) with constant δs if

(1− δs)‖v‖22 ≤ ‖Av‖22 ≤ (1 + δs)‖v‖22

holds for all v ∈ Σs .

Similarly to the RIP, Gaussian, subgaussian, and Bernoulli matrices
satisfy the D-RIP with m ≈ s log(d/s). Matrices with a fast
multiply (DFT with random signs) also satisfy the D-RIP with m

approximately of this order.
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We say that the measurement matrix A obeys the restricted

isometry property adapted to D (D-RIP) with constant δs if

(1− δs)‖v‖22 ≤ ‖Av‖22 ≤ (1 + δs)‖v‖22

holds for all v ∈ Σs .

Similarly to the RIP, Gaussian, subgaussian, and Bernoulli matrices
satisfy the D-RIP with m ≈ s log(d/s). Matrices with a fast
multiply (DFT with random signs) also satisfy the D-RIP with m

approximately of this order.
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Results

Main Result

Theorem (Candès-Eldar-N-Randall)

Let D be an arbitrary tight frame and let A be a measurement
matrix satisfying D-RIP (with δ2s small). Then the solution f̂ to
ℓ1-analysis satisfies

‖f̂ − f ‖2 ≤ C0ε+ C1
‖D∗f − (D∗f )s‖1√

s
,

where the constants C0 and C1 may only depend on δ2s .
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Results

Implications

In other words,

Our result says that ℓ1-analysis is very accurate when D∗f has
rapidly decaying coefficients. This is the case in applications using
the Oversampled DFT, Gabor frames, Undecimated WT, and
Curvelet frames (and many others).

This will not necessarily be the case when using concatenations of
two ONBs → ℓ1-analysis not the right method.
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Experiments

Experimental Setup

n = 8192,m = 400, d = 491, 520
A: m × n Gaussian, D: n × d Gabor

Figure: The signal is a superposition of 6 radar pulses, each of which
being about 200 ns long, and with frequency carriers distributed between
50 MHz and 2.5 GHz (top plot). As can be seen, three of these pulses
overlap in the time domain.
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Experimental Results
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Figure: Portion of the matrix D∗D, in log-scale (left). Sorted analysis
coefficients (in absolute value) of the signal from Figure 1 (right).
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Experimental Results
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Figure: Recovery in both the time (below) and frequency (above)
domains by ℓ1-analysis. Blue denotes the recovered signal, green the
actual signal, and red the difference between the two.
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Figure: Recovery in both the time (below) and frequency (above)
domains by ℓ1-analysis after one reweighted iteration. Blue denotes the
recovered signal, green the actual signal, and red the difference.
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Experimental Results
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Figure: Relative recovery error of ℓ1-analysis as a function of the
(normalized) noise level, averaged over 5 trials. The solid line denotes
standard ℓ1-analysis, and the dashed line denotes ℓ1-analysis with 3
reweighted iterations. The x-axis is the relative noise level

√
mσ/‖Af ‖2

while the y -axis is the relative error ‖f̂ − f ‖2/‖f ‖2.
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Experimental Results
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Figure: Relative error ‖f̂ − f ‖2/‖f ‖2 of a compressible signal. Blue
denotes the actual signal, while green, red, and cyan denote the recovery
error from ℓ1-analysis, reweighted ℓ1-analysis, and ℓ1-synthesis,
respectively.
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Future Work

Big Picture
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Future Work

Just recently

Candès-Edlar-N-Randall proved that a method called ℓ1-analysis
recovers signals sparse in arbitrary overcomplete dictionaries.
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Future Work

Future work

Proof for another method for overcomplete dictionaries:
ℓ1-synthesis

Is RIP the right theory?

What about concatenations?
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Thank you

For more information

E-mail:

dneedell@stanford.edu

Web:

www-stat.stanford.edu/~dneedell
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