Introduction	Description	Guarantees	Empirical Results

Signal Recovery with Regularized OMP

Deanna Needell¹ Roman Vershynin²

¹University of California, Davis ²University of Michigan

SAMPTA, May 2009

∃ ⊳

Introduction	Description	Guarantees	Empirical Results
● 0 00000			00000000
Problem Background			
Setup			

• Suppose x is an unknown s-sparse signal in \mathbb{R}^d .

•
$$||x||_0 \stackrel{\text{def}}{=} |\operatorname{supp}(x)| \leq s \ll d.$$

- **2** Design measurement matrix $\Phi : \mathbb{R}^d \to \mathbb{R}^m$.
- Sollect noisy measurements $u = \Phi x + e$.

Problem: Reconstruct signal x from measurements u

Introduction	Description	Guarantees	Empirical Results
000000			00000000
Problem Background			
Designing an	algorithm		

Important Questions

- What kind(s) of measurement matrices?
- How many measurements needed?
- Are the guarantees uniform?
- Is algorithm stable?
- Fast runtime?

Introduction	Description	Guarantees	Empirical Results
000000			
Greedy Methods			

Orthogonal Matching Pursuit

Idea

- Noiseless case: When Φ is (sub)Gaussian, y ^{def} = Φ^{*} u = Φ^{*}Φx is a good approximation to x.
- At each iteration, select largest component of y to be in support.
- Support of $x \Rightarrow x$.

Theorem (Gilbert-Tropp)

When Φ is (sub)Gaussian with $m \gtrsim s \log d$, OMP correctly recovers each fixed signal with high probability.

(4月) (4日) (4日)

Introduction	Description	Guarantees	Empirical Results
000000			00000000
Greedy Methods			
OMP: Good	case		

▲□→ ▲圖→ ▲屋→ ▲屋→

æ

Introduction	Description	Guarantees	Empirical Results
0000000			
Greedy Methods			
OMP: Bad case			

《曰》 《聞》 《臣》 《臣》

æ

Introduction	Description	Guarantees	Empirical Results
Restricted Isometries			
Restricted Isome	try Property		

• The sth restricted isometry constant of Φ is the smallest δ_s such that

$$(1-\delta_s)\|x\|_2\leq \|\Phi x\|_2\leq (1+\delta_s)\|x\|_2 \quad ext{whenever } \|x\|_0\leq s.$$

• For Gaussian or Bernoulli measurement matrices, with high probability

 $\delta_s \leq c < 1$ when $m \gtrsim s \log d$.

- Random Fourier and others with fast multiply have similar property.
- Convex optimization methods use the RIP and provide uniform and stable guarantees, but lack the speed of the greedy approach.

同トイヨトイヨト

Introduction	Description	Guarantees	Empirical Results
000000			
Restricted Isometries			
Gap in the appro	aches		

	Convex Opt.	OMP
Uniform?	yes	no
Stable?	yes	no
Runtime?	(LP)	O(smd)

Introduction	Description	Guarantees	Empirical Results
	00000		
Regularized OMP			

Insight of Regularized OMP - Needell, Vershynin

- The RIP guarantees that every s columns of Φ is close to an orthonormal system.
- Thus $y = \Phi^* \Phi x$ is locally like x.
- Why not choose the *s* largest components of *y*, instead of the largest?
- Allow ourselves to make mistakes, as long as we don't make too many.
- A regularization step is needed to ensure the indentified energy translates to identified support.
- \Rightarrow use RIP in a greedy algorithm!

Introduction	Description ○●○○○	Guarantees	Empirical Results
Regularized OMP			
OMP's Bad	Case:		

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Description	Guarantees	Empirical Results
	00000		
Regularized OMP			
ROMP Algorith	າຫ		

Introduction	Description 000●0	Guarantees	Empirical Results
Regularized OMP			
How ROMP wor	ks:		

▲口 → ▲圖 → ▲屋 → ▲屋 → □

E

Introduction	Description 0000●	Guarantees	Empirical Results
Regularized OMP			
How ROMP wor	ks:		

E

0000000 00000 00000 000000 00000000000	

Iteration Invariant

The Key Idea

We show that the following holds at each iteration:

- Each iteration selects at least one coordinate.
- All the selected coordinates have not been selected previously.
- For each incorrect coordinate chosen, a correct one is also chosen.

3 × ×

Introduction	Description	Guarantees	Empirical Results
		000	

Guarantees

Theorem: Needell-Vershynin

For any measurement matrix with Restricted Isometry constant $\delta_{8s} \leq c/\sqrt{\log s}$, ROMP approximately reconstructs any arbitrary signal x from its noisy measurements $u = \Phi x + e$ in at most s iterations:

$$\|\hat{x} - x\|_2 \le C\sqrt{\log s} \Big(\|e\|_2 + \frac{\|x - x_s\|_1}{\sqrt{s}}\Big).$$

Breakthrough

ROMP is the first greedy algorithm with strong guarantees similar to those of convex optimization methods! Note also that ROMP requires no prior knowledge about the error vector *e*.

(4 回) (4 回) (4 回) (4

Introduction	Description	Guarantees	Empirical Results
		000	

Answering the questions

Important Questions

- What kind(s) of measurement matrices?
 - Any that satisfy RIP (Generic)
- O How many measurements needed?
 - Approximately $s \log s \log d$
- Are the guarantees uniform?
 - Uniform guarantees (via RIP)
- Is algorithm stable?
 - Is stable.
- Fast runtime?
 - Runtime is O(smd).

Introduction	Description	Guarantees	Empirical Results
			00000000

Figure: Sparse signals with noiseless measurements.

・ロト ・四ト ・ヨト ・ヨト

Э

Introduction	Description	Guarantees	Empirical Results
			00000000

Figure: Sparse flat signals, Gaussian.

프 🕨 🗉 프

@ ▶ ∢ ≣

Introduction	Description	Guarantees	Empirical Results
			00000000

Figure: Iteration count for different kinds of sparse signals.

Э

A A

æ

Introduction	Description	Guarantees	Empirical Results
			000000000

Figure: Sparse flat signals with Gaussian matrix.

▲ 同 ▶ ▲ 臣

æ

Introduction	Description	Guarantees	Empirical Results
			000000000

・ロト ・回ト ・ヨト

문 🛌 문

Introduction	Description	Guarantees	Empirical Results
			000000000

Gap in the approaches

	Convex Opt.	OMP
Uniform?	yes	no
Stable?	yes	no
Runtime?	(LP)	O(smd)

→ (日) → → 三

く置≯

æ

Introduction	Description	Guarantees	Empirical Results
			000000000

Bridging the Gap

	Convex Opt.	ROMP	OMP
Uniform?	yes	yes	no
Stable?	yes	yes	no
Runtime?	(LP)	O(smd)	O(smd)

ヘロン 人間 とくほと 人間 とう

E

Finishing remarks						
troduction Description	Guarantees 000	Empirical Results ○○○○○○○●○				

- The logarithmic term log *s* appears both in the RIP and in the error bounds.
- Although ROMP posesses the main ideal properties, it is not entirely optimal because of the log factor.
- Compressive Sampling Matching Pursuit (CoSaMP) by Needell-Tropp removes the logarithmic term and provides truly optimal results.
- Both algorithms are efficient in practice.

Introduction	Description	Guarantees	Empirical Results
Thank you			
For more information	ation		

E-mail:

- dneedell@math.ucdavis.edu
- romanv@umich.edu

Web: http://www.math.ucdavis.edu/~dneedell

References:

- Needell and Tropp, "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples," *ACHA*, July 2008.
- Needell and Vershynin, "Signal Recovery from Inaccurate and Incomplete Measurements via ROMP,", submitted.
- Tropp and Gilbert, "Signal recovery from random measurements via Orthogonal Matching Pursuit," *Trans. IT*, Dec. 2007.

イロト イポト イヨト イヨト