Using Correlated Subset Structure for Compressive Sensing Recovery

Deanna Needell

Joint work with Atul Divekar

July 2, 2013 SAMPTA 2013

The mathematical problem (notation)

- ♦ Wish to construct high-resolution image $x \in \mathbb{C}^{N \times N}$ from low resolution $y \in \mathbb{C}^{n \times n}$
- ♦ Model: $y = SHx + \eta$
 - ♦ $S \in \mathbb{C}^{n^2 \times N^2}$: downsampling matrix
 - ♦ $H \in \mathbb{C}^{N^2 \times N^2}$: filtering (antialiasing) matrix
 - \Rightarrow η : sensor noise
- ♦ Formulation: $x = \Psi c$
 - ♦ $\Psi \in \mathbb{C}^{N^2 \times N^2}$: sparsifying basis (ONB or frame)
 - $\Rightarrow y = SH\Psi c + \eta = \Phi c + \eta$
- \Rightarrow *Problem:* Reconstruct signal *c* from measurements *y*

Sampling matrix Φ

- Φ tyically assumed to be random/incoherent/RIP
- \blacklozenge Here, Φ has structure and correlated columns
- \Rightarrow Assume *H* imperfect filter $\rightarrow \Phi$ preserves enough high frequency info
- \Rightarrow Hope: *SH* and Ψ have sufficient incoherency
- \Rightarrow For typical sparsifiers Ψ , Φ has spatial/structured incoherence

Sampling matrix $\boldsymbol{\Phi}$

• Ψ : Haar basis, *SH* a 128 × 256 downsampler and filter

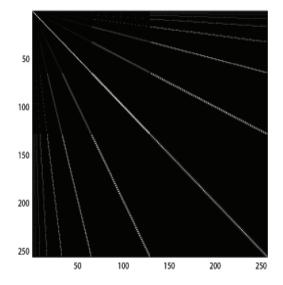


Figure 1: Absolute values of $\Phi^*\Phi$.

Filtered wavelet basis correlated with spatially overlapping bases, but uncorrelated with spatially distant ones.

Sampling matrix structure

 General problem: Sparse reconstruction from sampling operator with groups of correlated atoms

Not necessarily due to some redundant dictionary

How to exploit such structure?

Simple modification of existing greedy algorithms?

CoSaMP

```
COSAMP (N-Tropp)
```

```
input: Sampling operator \Phi, measurements y, sparsity level s

initialize: Set x^0 = 0, i = 0.

repeat

signal proxy: Set p = \Phi^*(y - \Phi x^i), \Omega = \operatorname{supp}(p_{2s}), T = \Omega \cup \operatorname{supp}(x^i).

signal estimation: Using least-squares, set b|_T = \Phi_T^{\dagger} y and b|_{T^c} = 0.

prune and update: Increment i and to obtain the next approximation,

set x^i = b_s.

output: s-sparse reconstructed vector \hat{x} = x^i
```

Partial Inversion

PARTINV (Divekar-N)

input: Sampling operator Φ , measurements y, sparsity level sinitialize: $c^0 = \Phi^* y$, $\Omega = \operatorname{supp}(c_s^0)$, i = 0repeat signal proxy: Set $c_{\Omega}^i = \Phi_{\Omega}^{\dagger} y$, $r = y - \Phi_{\Omega} c_{\Omega}^i$, $T = \Omega^c$ signal estimation: $c_T^i = \Phi_T^* r$. prune and update: Set $\Omega = \operatorname{supp}(c_s^i)$, increment i. output: s-sparse reconstructed vector $\widehat{c} = c^i$

Motivation

PartInv:

$$\hat{c}_{\Omega} = \Phi_{\Omega}^{\dagger} y = c_{\Omega} + (\Phi_{\Omega}^* \Phi_{\Omega})^{-1} \Phi_{\Omega}^* \Phi_{\Omega^c} c_{\Omega^c}.$$

CoSaMP:

$$\hat{c_{\Omega}} = \Phi_{\Omega}^* y = \Phi_{\Omega}^* \Phi_{\Omega} c_{\Omega} + \Phi_{\Omega}^* \Phi_{\Omega^c} c_{\Omega^c} = c_{\Omega} + (\Phi_{\Omega}^* \Phi_{\Omega} - I) c_{\Omega} + \Phi_{\Omega}^* \Phi_{\Omega^c} c_{\Omega^c}$$

High mutual interference whereas (Φ^{*}_ΩΦ_Ω)⁻¹ can be controlled by tuning |Ω| (= s).

- Improved error when Ω and Ω^c sufficiently uncorrelated.
- Better estimate \rightarrow more accurate $\Omega \rightarrow$ better estimate.

Experiments

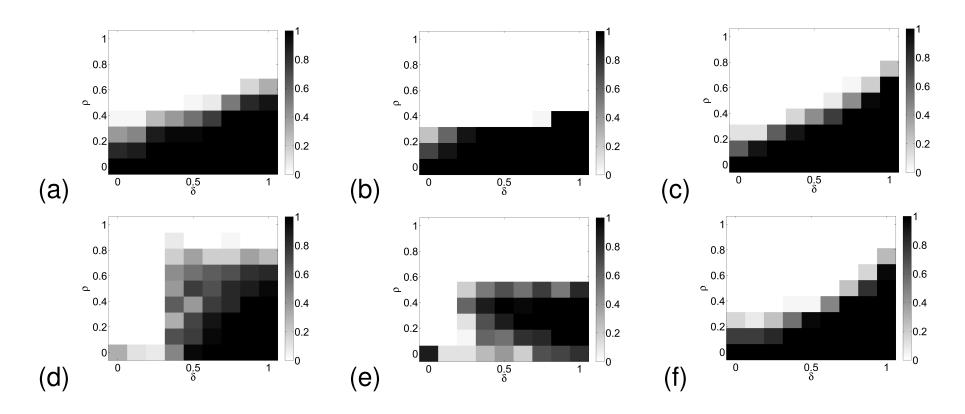


Figure 2: Proportion of successes on Gaussian matrices using (a) PartInv, (b) CoSaMP and (c) ℓ_1 -minimization, and proportion of successes on correlated column subset matrices using (d) PartInv, (e) CoSaMP and (f) ℓ_1 -minimization for various values of $\delta = \frac{M}{N} \in (0, 1)$ (horizontal axis) and $\rho = \frac{s}{M} \in (0, 1)$ (vertical axis).

Wavelet tree structured sparsity

- Suppose Ω is index set of wavelet basis belonging to a tree rooted at a coarse scale.
- $\Rightarrow \text{ Set } z_{\Omega} = \Phi_{\Omega}^* y = \Phi_{\Omega}^* \Phi_{\Omega} c_{\Omega} + \Phi_{\Omega}^* \Phi_{\Omega^c} c_{\Omega^c}.$
 - \Rightarrow Ω and Ω^c uncorrelated → second term small \Rightarrow c_Ω has non-zero entries & Ω correlated → first term large
- ♦ Therefore, $s_{\Omega} = \sum_{j \in \Omega} |z_j|$ a good proxy for strength of non-zeros in tree
 Ω.

PartInv for wavelet tree structured sparsity

PARTINV II (Divekar-N)

input: Sampling operator Φ , measurements y, sparsity level s, # trees t **initialize:** $c^0 = \Phi^* y$, i = 0* For each $j = 1 \dots t$: $s_j \leftarrow \sum_{l \in T_i} |c_l^i|$

* **Selection:** $\Omega \leftarrow$ indices of columns in the sets with the largest s_j , to include at least *s*

```
repeat
signal proxy: Set c_{\Omega}^{i} = \Phi_{\Omega}^{\dagger} y, r = y - \Phi_{\Omega} c_{\Omega}^{i}, T = \Omega^{c}
signal estimation: c_{T}^{i} = \Phi_{T}^{*} r.
prune and update: Repeat steps *, increment i.
```

output: *s*-sparse reconstructed vector $\hat{c} = c^i$

Experiments

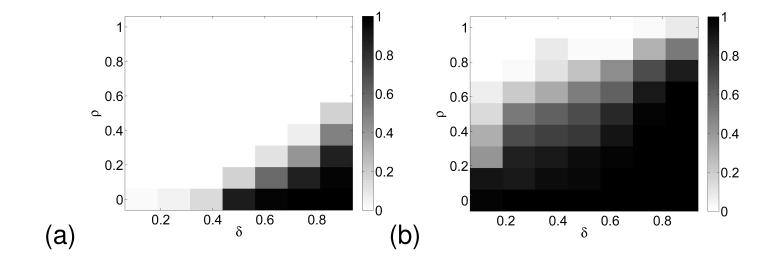


Figure 3: Proportion of successes with nonzero coefficients concentrated on wavelet trees from (a) ℓ_1 -minimization and (b) PartInv. Daubechies-5 wavelet basis using 32×32 patches with 5 levels of decomposition, using t = 49 tree sets.

More

- Theoretical Results?
- ♦ Need to control $(\Phi_{\Omega}^* \Phi_{\Omega}^*)^{-1}$
- ♦ Can bound for certain signal/sampling schemes
- Can adapt to other sparsity structures
- ♦ Block
- ♦ Level sets

Thank you!

E-mail:

 \Rightarrow dneedell@cmc.edu

Web:

\$ www.cmc.edu/pages/faculty/DNeedell

References:

- A. Divekar and D. Needell. Using Correlated Subset Structure for Compressive Sensing Recovery. SAMPTA 2013.
- D. Needell and J. A. Tropp. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples.
 Applied and Computational Harmonic Analysis, 26(3):301-321, 2008.