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The mathematical problem (notation)

G Wish to construct high-resolution image x ∈CN×N from low resolution
y ∈Cn×n

G Model: y = SH x +η
G S ∈Cn2×N 2

: downsampling matrix
G H ∈CN 2×N 2

: filtering (antialiasing) matrix
G η: sensor noise

G Formulation: x =Ψc

G Ψ ∈CN 2×N 2
: sparsifying basis (ONB or frame)

G y = SHΨc +η=Φc +η

G Problem: Reconstruct signal c from measurements y



Sampling matrix Φ

F Φ tyically assumed to be random/incoherent/RIP

F Here, Φ has structure and correlated columns

G Assume H imperfect filter → Φ preserves enough high frequency info

G Hope: SH and Ψ have sufficient incoherency

G For typical sparsifiers Ψ, Φ has spatial/structured incoherence



Sampling matrix Φ

F Ψ: Haar basis, SH a 128×256 downsampler and filter

Figure 1: Absolute values of Φ∗Φ.

Filtered wavelet basis correlated with spatially overlapping bases, but
uncorrelated with spatially distant ones.



Sampling matrix structure

F General problem: Sparse reconstruction from sampling operator with
groups of correlated atoms

F Not necessarily due to some redundant dictionary

F How to exploit such structure?

F Simple modification of existing greedy algorithms?



CoSaMP

COSAMP (N-Tropp)

input: Sampling operator Φ, measurements y , sparsity level s
initialize: Set x0 = 0, i = 0.
repeat

signal proxy: Set p =Φ∗(y −Φx i ), Ω= supp(p2s), T =Ω∪ supp(x i ).
signal estimation: Using least-squares, set b|T =Φ†

T y and b|T c = 0.
prune and update: Increment i and to obtain the next approximation,
set x i = bs.
output: s-sparse reconstructed vector x̂ = x i



Partial Inversion

PARTINV ( Divekar-N)

input: Sampling operator Φ, measurements y , sparsity level s
initialize: c0 =Φ∗y , Ω= supp(c0

s ), i = 0
repeat

signal proxy: Set c i
Ω =Φ†

Ωy , r = y −ΦΩc i
Ω, T =Ωc

signal estimation: c i
T =Φ∗

T r .
prune and update: Set Ω= supp(c i

s ), increment i .
output: s-sparse reconstructed vector ĉ = c i



Motivation

F PartInv:
ĉΩ=Φ†

Ωy = cΩ+ (Φ∗
ΩΦΩ)−1Φ∗

ΩΦΩc cΩc .

F CoSaMP:

ĉΩ=Φ∗
Ωy =Φ∗

ΩΦΩcΩ+Φ∗
ΩΦΩc cΩc = cΩ+ (Φ∗

ΩΦΩ− I )cΩ+Φ∗
ΩΦΩc cΩc

F High mutual interference whereas (Φ∗
ΩΦΩ)−1 can be controlled by tuning

|Ω| (= s).

F Improved error when Ω and Ωc sufficiently uncorrelated.

F Better estimate → more accurate Ω→ better estimate.



Experiments

(a) (b) (c)

(d) (e) (f)

Figure 2: Proportion of successes on Gaussian matrices using (a) PartInv, (b) CoSaMP
and (c) `1-minimization, and proportion of successes on correlated column subset matrices
using (d) PartInv, (e) CoSaMP and (f) `1-minimization for various values of δ = M

N ∈ (0,1)

(horizontal axis) and ρ = s
M ∈ (0,1) (vertical axis).



Wavelet tree structured sparsity

G Suppose Ω is index set of wavelet basis belonging to a tree rooted at a
coarse scale.

G Set zΩ=Φ∗
Ωy =Φ∗

ΩΦΩcΩ+Φ∗
ΩΦΩc cΩc .

G Ω and Ωc uncorrelated → second term small
G cΩ has non-zero entries & Ω correlated → first term large

G Therefore, sΩ=∑
j∈Ω |z j | a good proxy for strength of non-zeros in tree

Ω.



PartInv for wavelet tree structured sparsity

PARTINV II ( Divekar-N)

input: Sampling operator Φ, measurements y , sparsity level s, # trees t
initialize: c0 =Φ∗y , i = 0
* For each j = 1. . . t : s j ← ∑

l∈T j

|c i
l |

* Selection: Ω← indices of columns in the sets with the largest s j , to
include at least s

repeat
signal proxy: Set c i

Ω =Φ†
Ωy , r = y −ΦΩc i

Ω, T =Ωc

signal estimation: c i
T =Φ∗

T r .
prune and update: Repeat steps *, increment i .

output: s-sparse reconstructed vector ĉ = c i



Experiments

(a) (b)

Figure 3: Proportion of successes with nonzero coefficients concentrated on wavelet
trees from (a) `1-minimization and (b) PartInv. Daubechies-5 wavelet basis using 32×32

patches with 5 levels of decomposition, using t = 49 tree sets.



More

F Theoretical Results?

G Need to control (Φ∗
ΩΦ

∗
Ω)−1

G Can bound for certain signal/sampling schemes

F Can adapt to other sparsity structures

G Block

G Level sets
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