# Lattices from equiangular tight frames with applications to lattice sparse recovery 

Deanna Needell<br>Dept of Mathematics, UCLA



May 2017

Supported by NSF CAREER \#1348721 and Alfred P. Sloan Fdn

## The compressed sensing problem

1. Signal of interest $f \in \mathbb{C}^{d}\left(=\mathbb{C}^{N \times N}\right)$
2. Measurement operator $\mathcal{A}: \mathbb{C}^{d} \rightarrow \mathbb{C}^{m}(m \ll d)$
3. Measurements y $=\mathcal{A} f+\xi$

$$
[y]=[
$$

$$
][f]+[\xi]
$$

4. Problem: Reconstruct signal $f$ from measurements $y$

## Sparsity

Measurements $y=\mathcal{A} f+\xi$.

$\mathcal{A}$

$$
][f]+[\xi]
$$

Assume $f$ is sparse:

- In the coordinate basis: $\|f\|_{0} \xlongequal{\text { def }}|\operatorname{supp}(f)| \leq s \ll d$
- In orthonormal basis: $f=B x$ where $\|x\|_{0} \leq s \ll d$

In practice, we encounter compressible signals.
$\star f_{s}$ is the best $s$-sparse approximation to $f$

## Many applications

- Radar, Error Correction
- Computational Biology, Geophysical Data Analysis
- Data Mining, classification
- Neuroscience
- Imaging
- Sparse channel estimation, sparse initial state estimation
- Topology identification of interconnected systems
- ...


## Reconstruction approaches

$\star \ell_{1}$-minimization [Candès-Romberg-Tao]
Let $A$ satisfy the Restricted Isometry Property and set:

$$
\hat{f}=\underset{g}{\operatorname{argmin}}\|g\|_{1} \quad \text { such that } \quad\|\mathcal{A} f-y\|_{2} \leq \varepsilon
$$

where $\|\xi\|_{2} \leq \varepsilon$. Then we can stably recover the signal $f$ :

$$
\|f-\hat{f}\|_{2} \lesssim \varepsilon+\frac{\left\|x-x_{s}\right\|_{1}}{\sqrt{s}} .
$$

This error bound is optimal.
$\star$ Other methods (iterative, greedy) too (OMP, ROMP, StOMP,
CoSaMP, IHT, ...)

## Restricted Isometry Property

- $\mathcal{A}$ satisfies the Restricted Isometry Property (RIP) when there is $\delta<c$ such that

$$
(1-\delta)\|f\|_{2} \leq\|\mathcal{A} f\|_{2} \leq(1+\delta)\|f\|_{2} \quad \text { whenever }\|f\|_{0} \leq s
$$

## Restricted Isometry Property

- $\mathcal{A}$ satisfies the Restricted Isometry Property (RIP) when there is $\delta<c$ such that

$$
(1-\delta)\|f\|_{2} \leq\|\mathcal{A} f\|_{2} \leq(1+\delta)\|f\|_{2} \quad \text { whenever }\|f\|_{0} \leq s
$$

- $m \times d$ Gaussian or Bernoulli measurement matrices satisfy the RIP with high probability when

$$
m \gtrsim s \log d
$$

## Restricted Isometry Property

- $\mathcal{A}$ satisfies the Restricted Isometry Property (RIP) when there is $\delta<c$ such that

$$
(1-\delta)\|f\|_{2} \leq\|\mathcal{A} f\|_{2} \leq(1+\delta)\|f\|_{2} \quad \text { whenever }\|f\|_{0} \leq s
$$

- $m \times d$ Gaussian or Bernoulli measurement matrices satisfy the RIP with high probability when

$$
m \gtrsim s \log d
$$

- Random Fourier and others with fast multiply have similar property: $m \gtrsim s \log ^{4} d$.


## Restricted Isometry Property

- $\mathcal{A}$ satisfies the Restricted Isometry Property (RIP) when there is $\delta<c$ such that

$$
(1-\delta)\|f\|_{2} \leq\|\mathcal{A} f\|_{2} \leq(1+\delta)\|f\|_{2} \quad \text { whenever }\|f\|_{0} \leq s
$$

- $m \times d$ Gaussian or Bernoulli measurement matrices satisfy the RIP with high probability when

$$
m \gtrsim s \log d
$$

- Random Fourier and others with fast multiply have similar property: $m \gtrsim s \log ^{4} d$.
$\star$ Related to dimension reduction and the Johnson-Lindenstrauss Lemma (dimension reduction with preserved geometry).


## Sparsity plus other structures?

What if signal is also lattice-valued?

- Wireless communications
- Radar (massive MIMO) [Rossi et.al.]
- Wideband spectrum sensing [Axell et.al.]
- Error correcting codes [Candès et.al.]
- ...


## Lattices

What is a lattice?

## Lattices

What is a lattice?

A lattice $\Lambda \subset \mathbb{R}^{n}$ of rank $1 \leq k \leq n$ is a free $\mathbb{Z}$-module of rank $k$, which is the same as a discrete co-compact subgroup of $V:=$ $\operatorname{span}_{\mathbb{R}} \Lambda$. If $k=n$, i.e. $V=\mathbb{R}^{n}$, we say that $\Lambda$ is a lattice of full rank in $\mathbb{R}^{n}$. Hence

$$
\Lambda=\operatorname{span}_{\mathbb{Z}}\left\{\mathbf{a}_{1}, \ldots, \boldsymbol{a}_{k}\right\}=A \mathbb{Z}^{k}
$$

where $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k} \in \mathbb{R}^{n}$ are $\mathbb{R}$-linearly independent basis vectors for $\Lambda$ and $A=\left(\boldsymbol{a}_{1} \ldots \boldsymbol{a}_{k}\right)$ is the corresponding $n \times k$ basis matrix.

## Lattices

What is a lattice?
A lattice $\Lambda \subset \mathbb{R}^{n}$ of rank $1 \leq k \leq n$ is a free $\mathbb{Z}$-module of rank $k$, which is the same as a discrete co-compact subgroup of $V:=$ $\operatorname{span}_{\mathbb{R}} \Lambda$. If $k=n$, i.e. $V=\mathbb{R}^{n}$, we say that $\Lambda$ is a lattice of full rank in $\mathbb{R}^{n}$. Hence

$$
\Lambda=\operatorname{span}_{\mathbb{Z}}\left\{\mathbf{a}_{1}, \ldots, \boldsymbol{a}_{k}\right\}=A \mathbb{Z}^{k}
$$

where $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k} \in \mathbb{R}^{n}$ are $\mathbb{R}$-linearly independent basis vectors for $\Lambda$ and $A=\left(\boldsymbol{a}_{1} \ldots \boldsymbol{a}_{k}\right)$ is the corresponding $n \times k$ basis matrix.
$\star$ A sparse lattice-valued signal is $v \in \Lambda$ with $\|v\|_{0} \leq s$. Alternatively can consider $v=A w$ where $w \in \mathbb{Z}^{k}$ and $\|w\|_{0} \leq s$.

## Lattices




## Lattices



- On the other hand, integer programming is often HARDer than continuous


## Lattices



- On the other hand, integer programming is often HARDer than continuous
- Question: when is lattice knowledge helpful??


## A silly example

- Suppose the signal $x$ is 1 -sparse. Need $\approx \log (d)$ RIP measurements.


## A silly example

- Suppose the signal $x$ is 1 -sparse. Need $\approx \log (d)$ RIP measurements.
- Suppose also that $x \in \Lambda=\operatorname{span}_{\mathbb{Z}}\{(1,0, \ldots, 0)\}$. Need one measurement?


## A silly example

- Suppose the signal $x$ is 1 -sparse. Need $\approx \log (d)$ RIP measurements.
- Suppose also that $x \in \Lambda=\operatorname{span}_{\mathbb{Z}}\{(1,0, \ldots, 0)\}$. Need one measurement?
- Or suppose instead that $x \in \Lambda=\mathbb{Z}^{d}$. ??


## A silly example

- Suppose the signal $x$ is 1 -sparse. Need $\approx \log (d)$ RIP measurements.
- Suppose also that $x \in \Lambda=\operatorname{span}_{\mathbb{Z}}\{(1,0, \ldots, 0)\}$. Need one measurement?
- Or suppose instead that $x \in \Lambda=\mathbb{Z}^{d}$. ??
- The point: sometimes lattice info can give a huge savings. Sometimes maybe not?


## Some results

- Dense $\pm 1$ signals [Mangasarian-Recht '11] : $\min \|x\|_{\infty} \quad$ s.t. $\quad \mathcal{A} x=y$


## Some results

- Dense $\pm 1$ signals [Mangasarian-Recht '11] : $\min \|x\|_{\infty} \quad$ s.t. $\quad \mathcal{A} x=y$
- Sparse binary signals [Donoho-Tanner, Stojnic '10] : $\min \|x\|_{1} \quad$ s.t. $\mathcal{A} x=y, 0 \leq x_{i} \leq 1$


## Some results

- Dense $\pm 1$ signals [Mangasarian-Recht '11] : $\min \|x\|_{\infty} \quad$ s.t. $\quad \mathcal{A} x=y$
- Sparse binary signals [Donoho-Tanner, Stojnic '10] : $\min \|x\|_{1} \quad$ s.t. $\mathcal{A} x=y, 0 \leq x_{i} \leq 1$
- Sparse integer signals : ad-hoc modifications of sphere decoder (no theory) [Tian et.al. '09, Zhu-Giannakis '11]


## Some results

- Dense $\pm 1$ signals [Mangasarian-Recht '11] : $\min \|x\|_{\infty} \quad$ s.t. $\quad \mathcal{A} x=y$
- Sparse binary signals [Donoho-Tanner, Stojnic '10] : $\min \|x\|_{1} \quad$ s.t. $\mathcal{A} x=y, 0 \leq x_{i} \leq 1$
- Sparse integer signals : ad-hoc modifications of sphere decoder (no theory) [Tian et.al. '09, Zhu-Giannakis '11]
- Sparse lattice signals [Flinth-Kutyniok '16] : OMP with initialization step (PROMP)


## Some results [Sphere decoders]

$\star$ The closest point problem:

## Closest Vector Problem (CVP)


$\star$ Find point in lattice closest to a given vector in some metric (e.g. $\|x-y\|_{2}$ ).

## Some results [Sphere decoders]

* Sphere decoder:

* Using some ordering of the lattice (recursively), prune the search tree using spheres of specified radius.


## Some results [Sphere decoders]

$\star$ Sphere decoder with sparsity:


- Use sphere decoder method with metric $\|y-A x\|_{2}+\lambda\|x\|_{0}$


## Some results [Sphere decoders]

$\star$ Sphere decoder with sparsity:


- Use sphere decoder method with metric $\|y-A x\|_{2}+\lambda\|x\|_{0}$
- Lattice pruning/ordering no longer clear in this metric


## Some results [Sphere decoders]

* Sphere decoder with sparsity:

- Use sphere decoder method with metric $\|y-A x\|_{2}+\lambda\|x\|_{0}$
- Lattice pruning/ordering no longer clear in this metric
- Lack of rigorous theory


## Some results [Flinth-Kutyniok '16]

* PROMP:
- Run least squares $\hat{x}=\operatorname{argmin}_{x}\|\mathcal{A} x-y\|_{2}$
- "Carefully" threshold and keep support estimate $S$
- Run OMP initialized with this support estimate and $\hat{x}_{S}$


## Some results [Flinth-Kutyniok '16]

* PROMP:
- Run least squares $\hat{x}=\operatorname{argmin}_{x}\|\mathcal{A} x-y\|_{2}$
- "Carefully" threshold and keep support estimate $S$
- Run OMP initialized with this support estimate and $\hat{x}_{S}$
* Some theory about accuracy of initialization


## Some results [Flinth-Kutyniok '16]

* For integer sparse signals: Running L1-minimization followed by rounding is redundant (no better than plain L1).


## Some results [Flinth-Kutyniok '16]

* For integer sparse signals: Running L1-minimization followed by rounding is redundant (no better than plain L1).
* Same is true for lattices whose Voronoi region $\Omega$ satisfies $A^{-1} \Omega \subset(-1,1)^{k}$.

Voronoi: $\Omega \stackrel{\text { def }}{=}\left\{v: \forall z \in A \mathbb{Z}^{k},\|v\|_{2} \leq\|v-z\|_{2}\right\}$. (e.g. diamond)


## Lattices: minimal vectors

Minimal norm of a lattice $\Lambda$ is

$$
|\Lambda|=\min \{\|\boldsymbol{x}\|: \boldsymbol{x} \in \Lambda \backslash\{\mathbf{0}\}\}
$$

where $\|\|$ is Euclidean norm. The set of minimal vectors of $\Lambda$ is

$$
S(\Lambda)=\{\boldsymbol{x} \in \Lambda:\|\boldsymbol{x}\|=|\Lambda|\} .
$$

## Lattices: minimal vectors

Minimal norm of a lattice $\Lambda$ is

$$
|\Lambda|=\min \{\|\boldsymbol{x}\|: \boldsymbol{x} \in \Lambda \backslash\{\mathbf{0}\}\},
$$

where $\|\|$ is Euclidean norm. The set of minimal vectors of $\Lambda$ is

$$
S(\Lambda)=\{\boldsymbol{x} \in \Lambda:\|\boldsymbol{x}\|=|\Lambda|\} .
$$

- A lattice $\Lambda$ is well-rounded $(W R)$ if $\operatorname{span}_{\mathbb{R}} \Lambda=\operatorname{span}_{\mathbb{R}} S(\Lambda)$.


## Lattices: minimal vectors

Minimal norm of a lattice $\Lambda$ is

$$
|\Lambda|=\min \{\|\boldsymbol{x}\|: \boldsymbol{x} \in \Lambda \backslash\{\mathbf{0}\}\}
$$

where $\|\|$ is Euclidean norm. The set of minimal vectors of $\Lambda$ is

$$
S(\Lambda)=\{x \in \Lambda:\|x\|=|\Lambda|\} .
$$

- A lattice $\Lambda$ is well-rounded $(W R)$ if $\operatorname{span}_{\mathbb{R}} \Lambda=\operatorname{span}_{\mathbb{R}} S(\Lambda)$.
- If $\mathrm{rk} \Lambda>4$, a strictly stronger condition is that $\Lambda$ is generated by minimal vectors, i.e. $\Lambda=\operatorname{span}_{\mathbb{Z}} S(\Lambda)$.


## Lattices: minimal vectors

Minimal norm of a lattice $\Lambda$ is

$$
|\Lambda|=\min \{\|\boldsymbol{x}\|: \boldsymbol{x} \in \Lambda \backslash\{\mathbf{0}\}\},
$$

where $|||\mid$ is Euclidean norm. The set of minimal vectors of $\Lambda$ is

$$
S(\Lambda)=\{x \in \Lambda:\|x\|=|\Lambda|\} .
$$

- A lattice $\Lambda$ is well-rounded (WR) if $\operatorname{span}_{\mathbb{R}} \Lambda=\operatorname{span}_{\mathbb{R}} S(\Lambda)$.
- If rk $\Lambda>4$, a strictly stronger condition is that $\Lambda$ is generated by minimal vectors, i.e. $\Lambda=\operatorname{span}_{\mathbb{Z}} S(\Lambda)$.
- It has been shown by Conway \& Sloane (1995) and Martinet \& Schürmann (2011) that there are lattices of rank $\geq 10$ generated by minimal vectors which do not contain a basis of minimal vectors.


## Lattices: eutaxy and perfection

Let $k=\mathrm{rk} \Lambda$ and

$$
S(\Lambda)=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right\}
$$

be the set of minimal vectors of the lattice $\Lambda$.

## Lattices: eutaxy and perfection

Let $k=r k \Lambda$ and

$$
S(\Lambda)=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right\}
$$

be the set of minimal vectors of the lattice $\Lambda$.
This lattice is called eutactic if there exist positive real numbers $c_{1}, \ldots, c_{m}$ such that

$$
\|\boldsymbol{v}\|^{2}=\sum_{i=1}^{m} c_{i}\left\langle\boldsymbol{v}, \boldsymbol{x}_{i}\right\rangle^{2}
$$

for every vector $\boldsymbol{v} \in \operatorname{span}_{\mathbb{R}} \Lambda$, where $\langle\cdot, \cdot\rangle$ is the usual inner product.

## Lattices: eutaxy and perfection

Let $k=r k \Lambda$ and

$$
S(\Lambda)=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right\}
$$

be the set of minimal vectors of the lattice $\Lambda$.
This lattice is called eutactic if there exist positive real numbers $c_{1}, \ldots, c_{m}$ such that

$$
\|\boldsymbol{v}\|^{2}=\sum_{i=1}^{m} c_{i}\left\langle\boldsymbol{v}, \boldsymbol{x}_{i}\right\rangle^{2}
$$

for every vector $\boldsymbol{v} \in \operatorname{span}_{\mathbb{R}} \Lambda$, where $\langle\cdot, \cdot\rangle$ is the usual inner product. If $c_{1}=\cdots=c_{m}$, we say that $\Lambda$ is strongly eutactic (e.g. $\mathbb{Z}^{d}$ ).

## Lattices: eutaxy and perfection

This lattice is called perfect if the set of symmetric matrices

$$
\left\{\boldsymbol{x}_{i} \boldsymbol{x}_{i}^{t}: \boldsymbol{x}_{i} \in S(\Lambda)\right\}
$$

spans the space of $k \times k$ symmetric matrices.

## Lattices: eutaxy and perfection

This lattice is called perfect if the set of symmetric matrices

$$
\left\{\boldsymbol{x}_{i} \boldsymbol{x}_{i}^{t}: \boldsymbol{x}_{i} \in S(\Lambda)\right\}
$$

spans the space of $k \times k$ symmetric matrices.
A lattice is extremal if it is eutactic and perfect.

## Lattices: eutaxy and perfection

This lattice is called perfect if the set of symmetric matrices

$$
\left\{\boldsymbol{x}_{i} \boldsymbol{x}_{i}^{t}: \boldsymbol{x}_{i} \in S(\Lambda)\right\}
$$

spans the space of $k \times k$ symmetric matrices.
A lattice is extremal if it is eutactic and perfect.
$\star$ These properties arise in classifying lattices and sphere packing problems.


## Lattices: eutaxy and perfection

This lattice is called perfect if the set of symmetric matrices

$$
\left\{\boldsymbol{x}_{i} \boldsymbol{x}_{i}^{t}: \boldsymbol{x}_{i} \in S(\Lambda)\right\}
$$

spans the space of $k \times k$ symmetric matrices.
A lattice is extremal if it is eutactic and perfect.
$\star$ These properties arise in classifying lattices and sphere packing problems.


* If a lattice is strongly eutactic, but not perfect, then it is a local minimum of the packing density function.


## Lattices: eutaxy and perfection

This lattice is called perfect if the set of symmetric matrices

$$
\left\{\boldsymbol{x}_{i} \boldsymbol{x}_{i}^{t}: \boldsymbol{x}_{i} \in S(\Lambda)\right\}
$$

spans the space of $k \times k$ symmetric matrices.
A lattice is extremal if it is eutactic and perfect.
$\star$ These properties arise in classifying lattices and sphere packing problems.


* If a lattice is strongly eutactic, but not perfect, then it is a local minimum of the packing density function. Extremal lattices are local maxima.


## Equiangular frames

Another interesting construction of lattices comes from frames. A collection of $n \geq k$ unit vectors $\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{n} \in \mathbb{R}^{k}$ is called an (real) ( $k, n$ )-equiangular tight frame (ETF) if it spans $\mathbb{R}^{k}$ and

1. $\left|\left\langle\boldsymbol{f}_{i}, \boldsymbol{f}_{j}\right\rangle\right|=c$ for all $1 \leq i \neq j \leq n$, for some constant $c \in[0,1]$,
2. $\sum_{i=1}^{n}\left\langle\boldsymbol{f}_{i}, \boldsymbol{x}\right\rangle^{2}=\gamma\|\boldsymbol{x}\|^{2}$ for each $\boldsymbol{x} \in \mathbb{R}^{k}$, for some absolute constant $\gamma \in \mathbb{R}$.

## Equiangular frames

Another interesting construction of lattices comes from frames. A collection of $n \geq k$ unit vectors $\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{n} \in \mathbb{R}^{k}$ is called an (real) ( $k, n$ )-equiangular tight frame (ETF) if it spans $\mathbb{R}^{k}$ and

1. $\left|\left\langle\boldsymbol{f}_{i}, \boldsymbol{f}_{j}\right\rangle\right|=c$ for all $1 \leq i \neq j \leq n$, for some constant $c \in[0,1]$,
2. $\sum_{i=1}^{n}\left\langle\boldsymbol{f}_{i}, \boldsymbol{x}\right\rangle^{2}=\gamma\|\boldsymbol{x}\|^{2}$ for each $\boldsymbol{x} \in \mathbb{R}^{k}$, for some absolute constant $\gamma \in \mathbb{R}$.

If this is the case, it is known that

$$
k \leq n \leq \frac{k(k+1)}{2}, c=\sqrt{\frac{n-k}{k(n-1)}}, \gamma=\sqrt{\frac{n}{k}} .
$$

## Mercedes

Here is a (2,3)-ETF $\mathcal{F}:=\left\{\binom{0}{1},\binom{-1 / 2}{-\sqrt{3} / 2},\binom{1 / 2}{-\sqrt{3} / 2}\right\}$ :


## Mercedes

Here is a (2, 3)-ETF $\mathcal{F}:=\left\{\binom{0}{1},\binom{-1 / 2}{-\sqrt{3} / 2},\binom{1 / 2}{-\sqrt{3} / 2}\right\}$ :


Notice that $\pm \mathcal{F}=S\left(\Lambda_{h}\right)$, the set of minimal vectors of the hexagonal lattice $\Lambda_{h}=\left(\begin{array}{cc}1 & 1 / 2 \\ 0 & \sqrt{3} / 2\end{array}\right) \mathbb{Z}^{2}$.

## Lattices: questions

- When does the (integer) span of an ETF form a lattice?
- If so, does it have a basis of minimal vectors?
- Are the frame atoms minimal vectors?
- Is the lattice eutactic? Perfect?


## Lattices: questions

- When does the (integer) span of an ETF form a lattice?
- If so, does it have a basis of minimal vectors?
- Are the frame atoms minimal vectors?
- Is the lattice eutactic? Perfect?

Consequences:

- If the span is a lattice, the frame viewed as a sensing matrix yields an image that is a discrete set.
- If the frame atoms are minimal vectors, we can guarantee separation between sample vectors in its image.
- Johnson-Lindenstrauss may then be used for reconstruction guarantees?
- When is reconstruction impossible?

$$
\begin{aligned}
& \text { Lattice construction } \\
& \text { Let } \mathcal{F}=\left\{\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{n}\right\} \subset \mathbb{R}^{k} \text { be a }(k, n) \text {-ETF, and define } \\
& \Lambda(\mathcal{F})=\operatorname{span}_{\mathbb{Z}} \mathcal{F}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Lattice construction } \\
& \text { Let } \mathcal{F}=\left\{\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{n}\right\} \subset \mathbb{R}^{k} \text { be a }(k, n) \text {-ETF, and define } \\
& \wedge(\mathcal{F})=\operatorname{span}_{\mathbb{Z}} \mathcal{F} .
\end{aligned}
$$

## Question 1

When is $\Lambda(\mathcal{F})$ a lattice? If it is a lattice, what are its properties?

## Lattice construction

$$
\text { Let } \mathcal{F}=\left\{\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{n}\right\} \subset \mathbb{R}^{k} \text { be a }(k, n) \text {-ETF, and define }
$$

$$
\Lambda(\mathcal{F})=\operatorname{span}_{\mathbb{Z}} \mathcal{F} .
$$

## Question 1

When is $\Lambda(\mathcal{F})$ a lattice? If it is a lattice, what are its properties?
Proposition 1 (Böttcher, Fukshansky, Garcia, Maharaj, N- '16)
If $\Lambda(\mathcal{F})$ is a lattice, then $c=\sqrt{\frac{n-k}{k(n-1)}}$ is rational.

## Lattice construction

Let $\mathcal{F}=\left\{\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{n}\right\} \subset \mathbb{R}^{k}$ be a $(k, n)$-ETF, and define

$$
\wedge(\mathcal{F})=\operatorname{span}_{\mathbb{Z}} \mathcal{F}
$$

## Question 1

When is $\Lambda(\mathcal{F})$ a lattice? If it is a lattice, what are its properties?
Proposition 1 (Böttcher, Fukshansky, Garcia, Maharaj, N- '16) If $\wedge(\mathcal{F})$ is a lattice, then $c=\sqrt{\frac{n-k}{k(n-1)}}$ is rational.

Proposition 2 (Böttcher, Fukshansky, Garcia, Maharaj, N- '16)
If $\wedge(\mathcal{F})$ is a lattice and

$$
S(\Lambda(\mathcal{F}))=\left\{ \pm \boldsymbol{f}_{1}, \ldots, \pm \boldsymbol{f}_{n}\right\},
$$

then $\wedge(\mathcal{F})$ is strongly eutactic.

## Main results on ETF lattices

Theorem 3 (Böttcher, Fukshansky, Garcia, Maharaj, N- '16)

1. For every $k \geq 2$, there are $(k, k+1)$-ETFs $\mathcal{F}$ such that $\Lambda(\mathcal{F})$ is a full-rank lattice. This lattice has a basis of minimal vectors, is non-perfect and strongly eutactic.

## Main results on ETF lattices

## Theorem 3 (Böttcher, Fukshansky, Garcia, Maharaj, N- '16)

1. For every $k \geq 2$, there are $(k, k+1)$-ETFs $\mathcal{F}$ such that $\Lambda(\mathcal{F})$ is a full-rank lattice. This lattice has a basis of minimal vectors, is non-perfect and strongly eutactic.
2. There are infinitely many $k$ for which there exist $(k, 2 k)$-ETFs $\mathcal{F}$ such that $\Lambda(\mathcal{F})$ is a full-rank lattice, e.g. $(5,10),(13,26)$.

## Main results on ETF lattices

## Theorem 3 (Böttcher, Fukshansky, Garcia, Maharaj, N- '16)

1. For every $k \geq 2$, there are $(k, k+1)$-ETFs $\mathcal{F}$ such that $\Lambda(\mathcal{F})$ is a full-rank lattice. This lattice has a basis of minimal vectors, is non-perfect and strongly eutactic.
2. There are infinitely many $k$ for which there exist $(k, 2 k)$-ETFs $\mathcal{F}$ such that $\Lambda(\mathcal{F})$ is a full-rank lattice, e.g. $(5,10),(13,26)$.
3. There are $(3,6),(7,14)$, and $(9,18)$-ETFs $\mathcal{F}$ for which $\Lambda(\mathcal{F})$ is not a lattice.

## Main results on ETF lattices

## Theorem 3 (Böttcher, Fukshansky, Garcia, Maharaj, N- '16)

1. For every $k \geq 2$, there are $(k, k+1)$-ETFs $\mathcal{F}$ such that $\Lambda(\mathcal{F})$ is a full-rank lattice. This lattice has a basis of minimal vectors, is non-perfect and strongly eutactic.
2. There are infinitely many $k$ for which there exist $(k, 2 k)$-ETFs $\mathcal{F}$ such that $\Lambda(\mathcal{F})$ is a full-rank lattice, e.g. $(5,10),(13,26)$.
3. There are $(3,6),(7,14)$, and $(9,18)$-ETFs $\mathcal{F}$ for which $\Lambda(\mathcal{F})$ is not a lattice.
4. There is a $(7,28)$-ETF $\mathcal{F}$ for which $\Lambda(\mathcal{F})$ is a full-rank lattice that has a basis of minimal vectors, is a perfect strongly eutactic lattice, and hence extreme.

## Main results on ETF lattices

## Theorem 3 (Böttcher, Fukshansky, Garcia, Maharaj, N- '16)

1. For every $k \geq 2$, there are $(k, k+1)$-ETFs $\mathcal{F}$ such that $\Lambda(\mathcal{F})$ is a full-rank lattice. This lattice has a basis of minimal vectors, is non-perfect and strongly eutactic.
2. There are infinitely many $k$ for which there exist $(k, 2 k)$-ETFs $\mathcal{F}$ such that $\Lambda(\mathcal{F})$ is a full-rank lattice, e.g. $(5,10),(13,26)$.
3. There are $(3,6),(7,14)$, and $(9,18)$-ETFs $\mathcal{F}$ for which $\Lambda(\mathcal{F})$ is not a lattice.
4. There is a $(7,28)$-ETF $\mathcal{F}$ for which $\Lambda(\mathcal{F})$ is a full-rank lattice that has a basis of minimal vectors, is a perfect strongly eutactic lattice, and hence extreme.
5. There is a $(6,16)$-ETF $\mathcal{F}$ for which $\Lambda(\mathcal{F})$ is a full-rank lattice that has a basis of minimal vectors.

## Remarks

- There are often multiple ETFs with the same parameters $(k, n)$. For instance, we exhibit two lattices from $(5,10)$-ETFs, three lattices from $(13,26)$-ETFs, and ten lattices from $(25,50)$-ETFs. We also compute determinants of all our examples.


## Remarks

- There are often multiple ETFs with the same parameters $(k, n)$. For instance, we exhibit two lattices from $(5,10)$-ETFs, three lattices from $(13,26)$-ETFs, and ten lattices from $(25,50)$-ETFs. We also compute determinants of all our examples.
- Perfection of the lattice from $(7,28)$-ETF was previously (2015) established by Roland Bacher, however he constructed this lattice differently and then remarked that its minimal vectors comprise a set of equiangular lines.


## Remarks

- There are often multiple ETFs with the same parameters $(k, n)$. For instance, we exhibit two lattices from $(5,10)$-ETFs, three lattices from $(13,26)$-ETFs, and ten lattices from $(25,50)$-ETFs. We also compute determinants of all our examples.
- Perfection of the lattice from $(7,28)$-ETF was previously (2015) established by Roland Bacher, however he constructed this lattice differently and then remarked that its minimal vectors comprise a set of equiangular lines.
- Minimal vectors of ETF lattices often are precisely $\pm$ frame vectors (this is the case with all our examples). In this case, the set of corresponding symmetric matrices has at most $k(k+1) / 2$ matrices, which is the least possible number required to span all symmetric matrices. Hence ETF lattices are unlikely to be perfect (and hence extremal) - the $(7,28)$ case is likely an exception.


## Future directions

- Further study geometric properties of ETFs to decipher when they create a lattice.
- Given a lattice ETF whose atoms are minimal vectors, how can we reconstruct lattice signals?
- How can we incorporate sparsity? $\rightarrow$ need Johnson-Lindenstrauss
- Computationally efficient reconstructions that beat classical CS methods?


## References

1. E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements.
Communications on Pure and Applied Mathematics, 59(8):1207-1223, 2006.
2. A. Flinth, G. Kutyniok, Promp: A sparse recovery approach to lattice-valued signals, Preprint.
3. A. Böttcher, L. Fukshansky, S. R. Garcia, H. Maharaj, D. Needell, Lattices from tight equiangular frames, Linear Algebra and its Applications, vol. 510 (2016), pg. 395-420
deanna@math.ucla.edu

## 

Now "lattice" take any questions...

