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The compressed sensing problem

1. Signal of interest f ∈ Cd(= CN×N)

2. Measurement operator A : Cd → Cm (m� d)

3. Measurements y = Af + ξ

y
 =

 A



f

+

ξ


4. Problem: Reconstruct signal f from measurements y
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Sparsity

Measurements y = Af + ξ.

y
 =

 A



f

+

ξ


Assume f is sparse:

• In the coordinate basis: ‖f ‖0
def
= | supp(f )| ≤ s � d

• In orthonormal basis: f = Bx where ‖x‖0 ≤ s � d

In practice, we encounter compressible signals.
? fs is the best s-sparse approximation to f
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Many applications

• Radar, Error Correction

• Computational Biology, Geophysical Data Analysis

• Data Mining, classification

• Neuroscience

• Imaging

• Sparse channel estimation, sparse initial state estimation

• Topology identification of interconnected systems

• ...
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Reconstruction approaches

? `1-minimization [Candès-Romberg-Tao]
Let A satisfy the Restricted Isometry Property and set:

f̂ = argmin
g
‖g‖1 such that ‖Af − y‖2 ≤ ε,

where ‖ξ‖2 ≤ ε. Then we can stably recover the signal f :

‖f − f̂ ‖2 . ε+
‖x − xs‖1√

s
.

This error bound is optimal.
? Other methods (iterative, greedy) too (OMP, ROMP, StOMP,

CoSaMP, IHT, ...)
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Restricted Isometry Property

• A satisfies the Restricted Isometry Property (RIP) when there
is δ < c such that

(1− δ)‖f ‖2 ≤ ‖Af ‖2 ≤ (1 + δ)‖f ‖2 whenever ‖f ‖0 ≤ s.

• m× d Gaussian or Bernoulli measurement matrices satisfy the
RIP with high probability when

m & s log d .

• Random Fourier and others with fast multiply have similar
property: m & s log4 d .

? Related to dimension reduction and the Johnson-Lindenstrauss
Lemma (dimension reduction with preserved geometry).
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Sparsity plus other structures?

What if signal is also lattice-valued?

• Wireless communications

• Radar (massive MIMO) [Rossi et.al.]

• Wideband spectrum sensing [Axell et.al.]

• Error correcting codes [Candès et.al.]

• ...
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Lattices

What is a lattice?

A lattice Λ ⊂ Rn of rank 1 ≤ k ≤ n is a free Z-module of rank
k , which is the same as a discrete co-compact subgroup of V :=
spanR Λ. If k = n, i.e. V = Rn, we say that Λ is a lattice of full
rank in Rn. Hence

Λ = spanZ{a1, . . . , ak} = AZk ,

where a1, . . . , ak ∈ Rn are R-linearly independent basis vectors for
Λ and A = (a1 . . . ak) is the corresponding n × k basis matrix.

? A sparse lattice-valued signal is v ∈ Λ with ‖v‖0 ≤ s. Alterna-
tively can consider v = Aw where w ∈ Zk and ‖w‖0 ≤ s.
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Lattices

→
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→

• On the other hand, integer programming is often HARDer
than continuous

• Question: when is lattice knowledge helpful??
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A silly example

• Suppose the signal x is 1-sparse. Need ≈ log(d) RIP
measurements.

• Suppose also that x ∈ Λ = spanZ{(1, 0, . . . , 0)}. Need one
measurement?

• Or suppose instead that x ∈ Λ = Zd . ??

• The point: sometimes lattice info can give a huge savings.
Sometimes maybe not?
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Some results

• Dense ±1 signals [Mangasarian-Recht ’11] :
min ‖x‖∞ s.t. Ax = y

• Sparse binary signals [Donoho-Tanner, Stojnic ’10] :
min ‖x‖1 s.t. Ax = y , 0 ≤ xi ≤ 1

• Sparse integer signals : ad-hoc modifications of sphere
decoder (no theory) [Tian et.al. ’09, Zhu-Giannakis ’11]

• Sparse lattice signals [Flinth-Kutyniok ’16] : OMP with
initialization step (PROMP)
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Some results [Sphere decoders]

? The closest point problem:

? Find point in lattice closest to a given vector in some metric
(e.g. ‖x − y‖2).
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Some results [Sphere decoders]

? Sphere decoder:

? Using some ordering of the lattice (recursively), prune the
search tree using spheres of specified radius.
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Some results [Sphere decoders]

? Sphere decoder with sparsity:

• Use sphere decoder method with metric ‖y − Ax‖2 + λ‖x‖0

• Lattice pruning/ordering no longer clear in this metric

• Lack of rigorous theory
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Some results [Flinth-Kutyniok ’16]

? PROMP:

• Run least squares x̂ = argminx ‖Ax − y‖2
• ”Carefully” threshold and keep support estimate S

• Run OMP initialized with this support estimate and x̂S

? Some theory about accuracy of initialization
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Some results [Flinth-Kutyniok ’16]

? For integer sparse signals: Running L1-minimization followed
by rounding is redundant (no better than plain L1).

? Same is true for lattices whose Voronoi region Ω satisfies
A−1Ω ⊂ (−1, 1)k .

Voronoi: Ω
def
= {v : ∀z ∈ AZk , ‖v‖2 ≤ ‖v − z‖2}. (e.g. diamond)
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Lattices: minimal vectors
Minimal norm of a lattice Λ is

|Λ| = min {‖x‖ : x ∈ Λ \ {0}} ,

where ‖ ‖ is Euclidean norm. The set of minimal vectors of Λ is

S(Λ) = {x ∈ Λ : ‖x‖ = |Λ|} .

• A lattice Λ is well-rounded (WR) if spanR Λ = spanR S(Λ).

• If rk Λ > 4, a strictly stronger condition is that Λ is
generated by minimal vectors, i.e. Λ = spanZ S(Λ).

• It has been shown by Conway & Sloane (1995) and Martinet
& Schürmann (2011) that there are lattices of rank ≥ 10
generated by minimal vectors which do not contain a basis of
minimal vectors.
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Lattices: eutaxy and perfection

Let k = rk Λ and
S(Λ) = {x1, . . . , xm}

be the set of minimal vectors of the lattice Λ.

This lattice is called eutactic if there exist positive real numbers
c1, . . . , cm such that

‖v‖2 =
m∑
i=1

ci 〈v , x i 〉2

for every vector v ∈ spanR Λ, where 〈·, ·〉 is the usual inner product.
If c1 = · · · = cm, we say that Λ is strongly eutactic (e.g. Zd).
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Lattices: eutaxy and perfection

This lattice is called perfect if the set of symmetric matrices

{x ix t
i : x i ∈ S(Λ)}

spans the space of k × k symmetric matrices.

A lattice is extremal if it is eutactic and perfect.
? These properties arise in classifying lattices and sphere packing

problems.

? If a lattice is strongly eutactic, but not perfect, then it is a
local minimum of the packing density function. Extremal lattices
are local maxima.
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Equiangular frames

Another interesting construction of lattices comes from frames. A
collection of n ≥ k unit vectors f 1, . . . , f n ∈ Rk is called an (real)
(k , n)-equiangular tight frame (ETF) if it spans Rk and

1. |〈f i , f j〉| = c for all 1 ≤ i 6= j ≤ n, for some constant
c ∈ [0, 1],

2.
∑n

i=1〈f i , x〉2 = γ‖x‖2 for each x ∈ Rk , for some absolute
constant γ ∈ R.

If this is the case, it is known that

k ≤ n ≤ k(k + 1)

2
, c =

√
n − k

k(n − 1)
, γ =

√
n

k
.
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Mercedes

Here is a (2, 3)-ETF F :=

{(
0
1

)
,

(
−1/2

−
√

3/2

)
,

(
1/2

−
√

3/2

)}
:

Notice that ±F = S(Λh), the set of minimal vectors of the hexag-

onal lattice Λh =

(
1 1/2

0
√

3/2

)
Z2.
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Lattices: questions

• When does the (integer) span of an ETF form a lattice?

• If so, does it have a basis of minimal vectors?

• Are the frame atoms minimal vectors?

• Is the lattice eutactic? Perfect?

Consequences:

• If the span is a lattice, the frame viewed as a sensing matrix
yields an image that is a discrete set.

• If the frame atoms are minimal vectors, we can guarantee
separation between sample vectors in its image.

• Johnson-Lindenstrauss may then be used for reconstruction
guarantees?

• When is reconstruction impossible?



Introduction Lattice basics Equiangular frame lattices

Lattices: questions

• When does the (integer) span of an ETF form a lattice?

• If so, does it have a basis of minimal vectors?

• Are the frame atoms minimal vectors?

• Is the lattice eutactic? Perfect?

Consequences:

• If the span is a lattice, the frame viewed as a sensing matrix
yields an image that is a discrete set.

• If the frame atoms are minimal vectors, we can guarantee
separation between sample vectors in its image.

• Johnson-Lindenstrauss may then be used for reconstruction
guarantees?

• When is reconstruction impossible?



Introduction Lattice basics Equiangular frame lattices

Lattice construction
Let F = {f 1, . . . , f n} ⊂ Rk be a (k , n)-ETF, and define

Λ(F) = spanZF .

Question 1

When is Λ(F) a lattice? If it is a lattice, what are its properties?

Proposition 1 (Böttcher, Fukshansky, Garcia, Maharaj, N- ’16)

If Λ(F) is a lattice, then c =
√

n−k
k(n−1) is rational.

Proposition 2 (Böttcher, Fukshansky, Garcia, Maharaj, N- ’16)

If Λ(F) is a lattice and

S(Λ(F)) = {±f 1, . . . ,±f n} ,

then Λ(F) is strongly eutactic.
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Main results on ETF lattices

Theorem 3 (Böttcher, Fukshansky, Garcia, Maharaj, N- ’16)

1. For every k ≥ 2, there are (k , k + 1)-ETFs F such that Λ(F)
is a full-rank lattice. This lattice has a basis of minimal
vectors, is non-perfect and strongly eutactic.

2. There are infinitely many k for which there exist (k, 2k)-ETFs
F such that Λ(F) is a full-rank lattice, e.g. (5, 10), (13, 26).

3. There are (3, 6), (7, 14), and (9, 18)-ETFs F for which Λ(F)
is not a lattice.

4. There is a (7, 28)-ETF F for which Λ(F) is a full-rank lattice
that has a basis of minimal vectors, is a perfect strongly
eutactic lattice, and hence extreme.

5. There is a (6, 16)-ETF F for which Λ(F) is a full-rank lattice
that has a basis of minimal vectors.
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Remarks

• There are often multiple ETFs with the same parameters
(k , n). For instance, we exhibit two lattices from
(5, 10)-ETFs, three lattices from (13, 26)-ETFs, and ten
lattices from (25, 50)-ETFs. We also compute determinants of
all our examples.

• Perfection of the lattice from (7, 28)-ETF was previously
(2015) established by Roland Bacher, however he constructed
this lattice differently and then remarked that its minimal
vectors comprise a set of equiangular lines.

• Minimal vectors of ETF lattices often are precisely ± frame
vectors (this is the case with all our examples). In this case,
the set of corresponding symmetric matrices has at most
k(k + 1)/2 matrices, which is the least possible number
required to span all symmetric matrices. Hence ETF lattices
are unlikely to be perfect (and hence extremal) – the (7, 28)
case is likely an exception.
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Future directions

• Further study geometric properties of ETFs to decipher when
they create a lattice.

• Given a lattice ETF whose atoms are minimal vectors, how
can we reconstruct lattice signals?

• How can we incorporate sparsity? → need
Johnson-Lindenstrauss

• Computationally efficient reconstructions that beat classical
CS methods?
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Thank you!
Now ”lattice” take any questions...
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