Synthesis and analysis type methods for sparse approximation

Deanna Needell

Oct. 21, 2013 CSIP Seminar Georgia Tech

Outline

♦ Introduction

- ♦ Applications
- Mathematical Formulation & Methods
- Extensions to other dictionaries
 - ♦ Analysis methods
 - ♦ Signal space methods
 - ♦ Super-resolution
 - ✤ Total variation methods

The mathematical problem (notation)

- 1. Signal of interest $f \in \mathbb{C}^d (= \mathbb{C}^{N \times N})$
- 2. Measurement operator $\mathscr{A} : \mathbb{C}^d \to \mathbb{C}^m$.
- 3. Measurements $y = \mathscr{A}f + \xi$. $\begin{bmatrix} y \\ y \end{bmatrix} = \begin{bmatrix} \mathscr{A} \\ & \end{bmatrix} \begin{bmatrix} f \\ & \end{bmatrix} + \begin{bmatrix} \xi \\ & \end{bmatrix}$
- 4. *Problem:* Reconstruct signal f from measurements y

r 1

Measurements $y = \mathscr{A}f + \xi$.

$$\begin{bmatrix} y \end{bmatrix} = \begin{bmatrix} & \mathscr{A} & & \end{bmatrix} \begin{bmatrix} f \\ f \end{bmatrix} + \begin{bmatrix} \xi \end{bmatrix}$$

Assume *f* is *sparse*:

- ♦ In the coordinate basis: $||f||_0 \stackrel{\text{def}}{=} |\operatorname{supp}(f)| \le s \ll d$
- ♦ In orthonormal basis: f = Bx where $||x||_0 \le s \ll d$
- ♦ In other dictionary: f = Dx where $||x||_0 \le s \ll d$

In practice, we encounter *compressible* signals.

Digital Cameras

Digital Cameras

MRI

MRI

(Candès et.al.)

Pediatric MRI

(a)

(b)

(C)

(d)

(Vasanawala et.al.)

Many more...

- Radar, Error Correction
- Computational Biology, Geophysical Data Analysis
- ♦ Data Mining, classification
- ♦ Neuroscience
- ♦ Imaging
- Sparse channel estimation, sparse initial state estimation
- Topology identification of interconnected systems

Sparsity...

Sparsity in coordinate basis: f=x

Reconstructing the signal *f* **from measurements** *y*

\bullet ℓ_1 -minimization [Candès-Romberg-Tao]

Let A satisfy the *Restricted Isometry Property* and set:

$$\hat{f} = \underset{g}{\operatorname{argmin}} \|g\|_1$$
 such that $\|\mathscr{A}f - y\|_2 \leq \varepsilon$,

where $\|\xi\|_2 \leq \varepsilon$. Then we can stably recover the signal *f*:

$$\|f - \hat{f}\|_2 \lesssim \varepsilon + \frac{\|x - x_s\|_1}{\sqrt{s}}$$

This error bound is optimal.

$$(1-\delta) \|f\|_2 \le \|\mathscr{A}f\|_2 \le (1+\delta) \|f\|_2$$
 whenever $\|f\|_0 \le s$.

Gaussian or Bernoulli measurement matrices satisfy the RIP with high probability when

 $m \gtrsim s \log d$.

♦ Random Fourier and others with fast multiply have similar property: $m \gtrsim s \log^4 d.$

Sparsity...

In orthonormal basis: f = Bx

Sparsity in orthonormal basis B

L1-minimization Method

For orthonormal basis *B*, f = Bx with *x* sparse, one may solve the ℓ_1 -minimization program:

$$\hat{f} = \underset{\tilde{f} \in \mathbb{C}^n}{\operatorname{argmin}} \|B^{-1}\tilde{f}\|_1 \quad \text{subject to} \quad \|\mathscr{A}\tilde{f} - y\|_2 \leq \varepsilon.$$

Same results hold.

Sparsity...

In arbitrary dictionary: f = Dx

Example: Oversampled DFT

$$\Rightarrow n \times n \text{ DFT: } d_k(t) = \frac{1}{\sqrt{n}} e^{-2\pi i k t/n}$$

- ♦ Instead, use the oversampled DFT:
- ♦ Then D is an overcomplete frame with highly coherent columns → conventional CS does not apply.

Example: Gabor frames

- ♦ Gabor frame: $G_k(t) = g(t k_2 a)e^{2\pi i k_1 b t}$
- Radar, sonar, and imaging system applications use Gabor frames and wish to recover signals in this basis.
- ♦ Then D is an overcomplete frame with possibly highly coherent columns $\rightarrow conventional CS does not apply.$

Example: Curvelet frames

- ♦ A Curvelet frame has some properties of an ONB but is overcomplete.
- Curvelets approximate well the curved singularities in images and are thus used widely in image processing.
- Again, this means *D* is an overcomplete dictionary → *conventional CS does not apply*.

Example: UWT

- The undecimated wavelet transform has a translation invariance property that is missing in the DWT.
- The UWT is overcomplete and this redundancy has been found to be helpful in image processing.
- Again, this means *D* is a redundant dictionary → *conventional CS does not apply*.

ℓ_1 -Synthesis Method

+ For arbitrary tight frame D, one may solve the ℓ_1 -synthesis program:

$$\hat{f} = D\left(\operatorname*{argmin}_{\tilde{x} \in \mathbb{C}^n} \| \tilde{x} \|_1 \quad \text{subject to} \quad \| \mathscr{A} D \tilde{x} - y \|_2 \le \varepsilon \right).$$

Some work on this method [Candès et.al., Rauhut et.al., Elad et.al.,...]

ℓ_1 -Analysis Method

+ For arbitrary tight frame D, one may solve the ℓ_1 -analysis program:

$$\hat{f} = \underset{\tilde{f} \in \mathbb{C}^n}{\operatorname{argmin}} \|D^* \tilde{f}\|_1$$
 subject to $\|\mathscr{A} \tilde{f} - y\|_2 \le \varepsilon$.

Condition on A?

D-RIP

We say that the measurement matrix \mathscr{A} obeys the *restricted isometry* property adapted to D (D-RIP) if there is $\delta < c$ such that

$$(1-\delta) \|Dx\|_2^2 \le \|\mathscr{A}Dx\|_2^2 \le (1+\delta) \|Dx\|_2^2$$

holds for all *s*-sparse *x*.

◆ Similarly to the RIP, many classes of random matrices satisfy the D-RIP with $m \approx s \log(d/s)$.

CS with tight frame dictionaries

Theorem [Candès-Eldar-N-Randall]

Let *D* be an arbitrary tight frame and let \mathscr{A} be a measurement matrix satisfying D-RIP. Then the solution \hat{f} to ℓ_1 -analysis satisfies

$$\|\hat{f} - f\|_2 \lesssim \varepsilon + \frac{\|D^*f - (D^*f)_s\|_1}{\sqrt{s}}.$$

◆ In other words, This result says that ℓ_1 -analysis is very accurate when D^*f has rapidly decaying coefficients and *D* is a tight frame.

ℓ_1 -analysis: Experimental Setup

n = 8192, m = 400, d = 491, 520A: $m \times n$ Gaussian, D: $n \times d$ Gabor

ℓ_1 -analysis: Experimental Setup

n = 8192, m = 400, d = 491, 520A: $m \times n$ Gaussian, D: $n \times d$ Gabor

ℓ_1 -analysis: Experimental Results

Other algorithms

◆ ℓ_1 -analysis is very accurate when D^*f has rapidly decaying coefficients and *D* is a tight frame. This is precisely because this method operates in "analysis" space.

♦ What about operating in signal or coefficient space?

Is it really a pipe?

(Thanks to M. Davenport for this clever analogy.)

CoSaMP

COSAMP (N-Tropp)

input: Sampling operator *A*, measurements *y*, sparsity level *s* **initialize:** Set $x^0 = 0$, i = 0. **repeat signal proxy:** Set $p = A^*(y - Ax^i)$, $\Omega = \text{supp}(p_{2s})$, $T = \Omega \cup \text{supp}(x^i)$. **signal estimation:** Using least-squares, set $b|_T = A_T^{\dagger}y$ and $b|_{T^c} = 0$. **prune and update:** Increment *i* and to obtain the next approximation, set $x^i = b_s$. **output:** *s*-sparse reconstructed vector $\hat{x} = x^i$

Signal Space CoSaMP

SIGNAL SPACE COSAMP (Davenport-N-Wakin) **input:** *A*, *D*, *y*, *s*, stopping criterion initialize: $\boldsymbol{r} = \boldsymbol{y}, \ \boldsymbol{x}^0 = 0, \ \ell = 0, \ \Gamma = \emptyset$ repeat proxy: $h = A^*r$ identify: $\Omega = \mathscr{S}_D(h, 2s)$ **merge:** $T = \Omega \cup \Gamma$ update: $\widetilde{\boldsymbol{x}} = \operatorname{argmin}_{\boldsymbol{z}} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{z}\|_2$ s.t. $\boldsymbol{z} \in \mathscr{R}(\boldsymbol{D}_T)$ $\Gamma = \mathscr{S}_{\mathcal{D}}(\widetilde{\boldsymbol{x}}, s)$ $\boldsymbol{x}^{\ell+1} = \mathscr{P}_{\Gamma} \widetilde{\boldsymbol{x}}$ $r = y - Ax^{\ell+1}$ $\ell = \ell + 1$ $\widehat{oldsymbol{x}}=oldsymbol{x}^\ell$ output:

Signal Space CoSaMP

Here we must contend with

$$\Lambda_{\mathsf{opt}}(\boldsymbol{z}, \boldsymbol{s}) := \underset{\Lambda:|\Lambda|=s}{\operatorname{argmin}} \|\boldsymbol{z} - \mathscr{P}_{\Lambda} \boldsymbol{z}\|_{2}, \quad \mathscr{P}_{\Lambda}: \mathbb{C}^{n} \to \mathscr{R}(\boldsymbol{D}_{\Lambda}).$$

• Estimate by $\mathscr{S}_D(z, s)$ with $|\mathscr{S}_D(z, s)| = s$, that satisfies

$$\left\|\mathscr{P}_{\Lambda_{\mathsf{opt}}(\boldsymbol{z},s)}\boldsymbol{z} - \mathscr{P}_{\mathscr{P}_{\boldsymbol{D}}(\boldsymbol{z},s)}\boldsymbol{z}\right\|_{2} \le \min\left(\epsilon_{1} \left\|\mathscr{P}_{\Lambda_{\mathsf{opt}}(\boldsymbol{z},s)}\boldsymbol{z}\right\|_{2}, \epsilon_{2} \left\|\boldsymbol{z} - \mathscr{P}_{\Lambda_{\mathsf{opt}}(\boldsymbol{z},s)}\boldsymbol{z}\right\|_{2}\right)$$

for some constants $\epsilon_1, \epsilon_2 \ge 0$.

Approximate Projection

- Practical choices for $\mathscr{S}_D(z,s)$:
- ♦ Any sparse recovery algorithm!
- ♦ OMP
- ♦ CoSaMP
- $\diamond \ell_1$ -minimization followed by hard thresholding

Signal Space CoSaMP

✦ Theorem [Davenport-N-Wakin] Let *D* be an arbitrary tight frame, *A* be a measurement matrix satisfying D-RIP, and *f* a sparse signal with respect to *D*. Then the solution \hat{f} from *Signal Space CoSaMP* satisfies

 $\|\hat{f}-f\|_2 \lesssim \varepsilon.$

(And similar results for approximate sparsity.)

Signal Space CoSaMP: Experimental Results

Figure 1: Performance in recovering signals having a s = 8 sparse representation in a dictionary D with orthogonal, but not normalized, columns.

Signal Space CoSaMP: Experimental Results

Figure 2: Results with s = 8 sparse representation in a 4× overcomplete DFT dictionary: (a) well-separated coefficients, (b) clustered coefficients.

Signal Space CoSaMP: Relaxing assumptions

SIGNAL SPACE COSAMP (Giryes-N)			
input: A , D , y , s , stopping criterion initialize: $r = y$, $x^0 = 0$, $\ell = 0$, $\Gamma = \emptyset$ repeat			
proxy: identify: merge: update:	$h = A^* r$ $\Omega = \mathscr{S}_{1,D}(h, 2s)$ $T = \Omega \cup \Gamma$ $\tilde{\boldsymbol{x}} = \operatorname{argmin}_{\boldsymbol{z}} \ \boldsymbol{y} - \boldsymbol{A}\boldsymbol{z} \ _2$ $\Gamma = \mathscr{S}_{2,D}(\tilde{\boldsymbol{x}}, s)$ $\boldsymbol{x}^{\ell+1} = \mathscr{P}_{\Gamma} \tilde{\boldsymbol{x}}$ $r = \boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}^{\ell+1}$ $\ell = \ell + 1$	s.t.	$oldsymbol{z} \in \mathscr{R}(oldsymbol{D}_T)$
output:	$\widehat{oldsymbol{x}}=oldsymbol{x}^\ell$		

Signal Space CoSaMP: Relaxing Assumptions

◆ A procedure $\hat{\mathscr{S}}_k$ implies a near-optimal projection $\mathbf{P}_{\hat{\mathscr{S}}_k(\cdot)}$ with constants C_k and \tilde{C}_k if for any $\mathbf{z} \in \mathbb{R}^d$, $|\hat{\mathscr{S}}_k(\mathbf{z})| \le k$, and

 $\|\mathbf{z} - \mathbf{P}_{\hat{\mathscr{S}}_{k}(\mathbf{z})}\mathbf{z}\|_{2}^{2} \leq C_{k} \|\mathbf{z} - \mathbf{P}_{\mathscr{S}_{k}^{*}(\mathbf{z})}\mathbf{z}\|_{2}^{2} \text{ as well as } \|\mathbf{P}_{\hat{\mathscr{S}}_{k}(\mathbf{z})}\mathbf{z}\|_{2}^{2} \geq \tilde{C}_{k} \|\mathbf{P}_{\mathscr{S}_{k}^{*}(\mathbf{z})}\mathbf{z}\|_{2}^{2}.$

where $\mathbf{P}_{\mathscr{S}^*_{\iota}}$ denotes the optimal projection.

Signal Space CoSaMP: Relaxing Assumptions

Theorem [Giryes-N] : Let **M** satisfy the **D**-RIP. Suppose that $\mathscr{S}_{\zeta k,1}$ and $\mathscr{S}_{2k,2}$ are near optimal projections with constants C_k , \tilde{C}_k and C_{2k} , \tilde{C}_{2k} respectively. Apply SSCoSaMP and let \mathbf{x}^t denote the approximation after *t* iterations. If

$$(1+C_k)\left(1-\frac{\tilde{C}_{2k}}{(1+\gamma)^2}\right) < 1,$$
 (1)

then after a constant number of iterations t^* it holds that

$$\|\mathbf{x}^{t^*} - \mathbf{x}\|_2 \le C \|\mathbf{e}\|_2.$$
(2)

Signal Space CoSaMP: Relaxing Assumptions

Now, the assumptions of the theorem hold when

- ✤ D is unitary (use thresholding)
- D satisfies the RIP (use CS algorithms)
- ✤ D is incoherent (use CS algorithms)
- D has large correlations between small groups of atoms (use approximate CS algorithms)

Super-resolution

✦ Goal: Produce high-resolution image from low-resolution samples

◆ Challenge: Model becomes y = Ax + e where A is a (non-random) partial DFT. Goal: identify (support T of) sparse x.

Super-resolution

◆ Idea: Partial DFT has *translation invariance*: any restriction of a column a_k to $s \le m$ consecutive elements gives rise to the same sequence, up to an overall scalar

✦ Moral: A is not an arbitrary dictionary, it has structure we should not ignore!

Super-resolution

◆ Idea: Partial DFT has *translation invariance*: any restriction of a column a_k to $s \le m$ consecutive elements gives rise to the same sequence, up to an overall scalar

✦ Moral: A is not an arbitrary dictionary, it has structure we should not ignore!

Idea: Pick a number 1 < L < m and juxtaposes translated copies of y into the Hankel matrix Y = Hankel(y), defined as

$$Y = \begin{pmatrix} y_0 & y_1 & \cdots & y_{m-L-1} \\ y_1 & y_2 & \cdots & y_{m-L} \\ \vdots & \vdots & \vdots & \vdots \\ y_{L-1} & y_L & \cdots & y_m \end{pmatrix}$$

• Wonderful fact: Without noise, Ran $Y = \text{Ran} A_T^L$

• Recovery using this idea: Loop over all atoms a_k and select those for which

$$\angle(a_k^L, \operatorname{Ran} Y) = 0.$$

From this set *T*, recovery by solving

$$A_T \hat{x}_T = y, \qquad \hat{x}_{T^c} = 0.$$

• Theorem [Demanet - N - Nguyen] : If m > 2|T| and y = Ax, then $\hat{x} = x$.

Super-resolution : Noise?

• With noise, we no longer have Ran $Y = \operatorname{Ran} A_T^L$

• **Theorem [Demanet - N - Nguyen]** : Let y = Ax + e with $e \sim N(0, \sigma^2 I_m)$. Then with high probability,

 $\sin \angle (a_k^L, \operatorname{Ran} Y) \le c \varepsilon_1$

for all indices k in the support set (and $c\varepsilon_1$ is explicitly computed).

Extension: Choose atoms with small enough angles.

Super-resolution : Experimental Results

Figure 3: Probability of recovery, from 1 (white) to 0 (black) for the superset method (left column) and the matrix pencil method (right column). Top row: 2-sparse signal. Middle row: 3-sparse signal. Bottom row: 4-sparse signal. The plots show recovery as a function of the noise level (x-axis, $\log_{10}\sigma$) and the coherence (y-axis, $\log_{10}(1-\mu)$).

Sparse...

 256×256 "Boats" image

Sparse wavelet representation...

Images are compressible in *discrete gradient*.

Images are compressible in *discrete gradient*.

The discrete directional derivatives of an image $f \in \mathbb{C}^{N \times N}$ are

$$f_x : \mathbb{C}^{N \times N} \to \mathbb{C}^{(N-1) \times N}, \qquad (f_x)_{j,k} = f_{j,k} - f_{j-1,k},$$
$$f_y : \mathbb{C}^{N \times N} \to \mathbb{C}^{N \times (N-1)}, \qquad (f_y)_{j,k} = f_{j,k} - f_{j,k-1},$$

the discrete gradient operator is

$$\nabla[f] = (f_x, f_y)$$

Sparsity in gradient

♦ CS Theory

The gradient operator ∇ is not an orthonormal basis or a tight frame.

Comparison of two compressed sensing reconstruction algorithms

+ Haar-minimization (L_1 -Haar)

 $\hat{f}_{Haar} = \operatorname{argmin} \|H(Z)\|_1$ subject to $\|\mathscr{A}Z - y\|_2 \le \varepsilon$

Total Variation minimization (TV)

 $\hat{f}_{TV} = \operatorname{argmin} \|\nabla[Z]\|_1$ subject to $\|\mathscr{A}Z - y\|_2 \le \varepsilon$, where $\|Z\|_{TV} = \|\nabla[Z]\|_1$ is the *total-variation norm*.

(a) Original

Figure 4: Reconstruction using $m = .2N^2$

(a) Original

(b) TV (c) L_1 -Haar

Figure 5: Reconstruction using $m = .2N^2$ measurements

(a) Original

Figure 6: Reconstruction using $m = .2N^2$ measurements.

(a) (Quantization)

(b) TV

(c) L_1 -Haar

Figure 7: Reconstruction using $m = .2N^2$ measurements

InView (Austin TX)

Figure 8: SWIR Reconstruction using $m = .5N^2$ measurements

InView (Austin TX)

Figure 9: InView SWIR camera

Empirical -> Theoretical?

TV Works

Empirically, it has been well known that

$$\hat{f}_{TV} = \operatorname{argmin} \|Z\|_{TV}$$
 subject to $\|\mathscr{A}Z - y\|_2 \le \varepsilon$, (TV)

provides quality, stable image recovery.

✤ No provable stability guarantees.

Stable signal recovery using total-variation minimization

Theorem 1. [N-Ward] From $m \gtrsim s \log(N)$ linear RIP measurements, for any $f \in \mathbb{C}^{N \times N}$,

 $\hat{f} = \operatorname{argmin} \|Z\|_{TV}$ such that $\|\mathscr{A}(Z) - y\|_2 \leq \varepsilon$,

satisfies

$$\|f - \hat{f}\|_{TV} \lesssim \|\nabla[f] - \nabla[f]_s\|_1 + \sqrt{s}\varepsilon$$
 (gradient error)

and

$$\|f - \hat{f}\|_2 \lesssim \log(N) \cdot \left[\frac{\|\nabla[f] - \nabla[f]_s\|_1}{\sqrt{s}} + \varepsilon\right]$$
 (signal error)

This error guarantee is optimal up to the log(N) factor

Higher dimensional objects

Movies, higher dimensional objects?

Theorem 2. [N-Ward] From $m \gtrsim s \log(N^d)$ linear RIP measurements, for any $f \in \mathbb{C}^{N^d}$,

 $\hat{f} = \operatorname{argmin} \|Z\|_{TV}$ such that $\|\mathscr{A}(Z) - y\|_2 \le \varepsilon$,

satisfies

$$\|f - \hat{f}\|_{TV} \lesssim \|\nabla[f] - \nabla[f]_s\|_1 + \sqrt{s}\varepsilon$$
 (gradient error)

and

$$\|f - \hat{f}\|_2 \lesssim \log(N^d / s) \cdot \left[\frac{\|\nabla[f] - \nabla[f]_s\|_1}{\sqrt{s}} + \varepsilon\right]$$
 (signal error)

This error guarantee is optimal up to the $log(N^d/s)$ factor

Proof Sketch

Strengthened Sobolev inequalities for random subspaces

Proposition 3. [Sobolev inequality for discrete images] Let $X \in \mathbb{R}^{N \times N}$ be mean-zero. Then

$\|X\|_2 \leq \|X\|_{TV}$

Proposition 4. [New: Strengthed Sobolev inequality] With probability $\geq 1 - e^{-cm}$, the following holds for all images $X \in \mathbb{R}^{N \times N}$ in the null space of an $m \times N^2$ random Gaussian matrix

$$\|X\|_2 \lesssim \frac{[\log(N)]^{3/2}}{\sqrt{m}} \|X\|_{TV}$$

Strengthened Sobolev inequalities

Proof ingredients:

♦ [CDPX 99:] Denote the bivariate Haar wavelet coefficients of $X \in \mathbb{R}^{N \times N}$ by $c_{(1)} \ge c_{(2)} \ge \cdots \ge c_{(N^2)}$. Then

$$|c_{(k)}| \lesssim \frac{\|X\|_{TV}}{k}$$

That is, the sequence is in weak- ℓ_1 .

♦ If $\Phi : \mathbb{R}^d \to \mathbb{R}^m$ has (properly normalized) i.i.d. Gaussian entries then with probability exceeding $1 - e^{-cm}$, Φ has the RIP of order $s \sim \frac{m}{\log d}$:

$$\frac{3}{4} \|f\|_2 \le \|\Phi f\|_2 \le \frac{5}{4} \|f\|_2 \quad \text{for all } s\text{-sparse } f.$$

Stable signal recovery using total-variation minimization

Method of proof:

- ♦ First prove stable *gradient* recovery
- Translate stable gradient recovery to stable signal recovery using the strengthened Sobolev inequality.

Thank you!

E-mail:

♦ dneedell@cmc.edu

Web:

www.cmc.edu/pages/faculty/DNeedell

References:

- E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 59(8):1207–1223, 2006.
- E. J. Candès, Y. C. Eldar, D. Needell and P. Randall. Compressed sensing with coherent and redundant dictionaries. Applied and Computational Harmonic Analysis, 31(1):59-73, 2010.
- M. A. Davenport, D. Needell and M. B. Wakin. Signal Space CoSaMP for Sparse Recovery with Redundant Dictionaries, IEEE Trans. Info. Theory, to appear.
- D. Needell and R. Ward. Stable image reconstruction using total variation minimization. SIAM J. Imaging Sciences, vol. 6, num. 2, pp. 1035-1058.
- D. Needell and R. Ward. Near-optimal compressed sensing guarantees for total variation minimization, IEEE Trans. Image Proc., iss. 99, 2013.
- L. Demanet, D. Needell and N. Nguyen. Super-resolution via superset selection and pruning. SAMPTA 2013.
- ✤ R. Giryes and D. Needell. Greedy Signal Space Methods for Incoherence and Beyond, submitted.