| Introduction |  |
|--------------|--|
|              |  |

L1-Minimization

Reweighted L1

Main Results

E nac

# Noisy Signal Recovery via Iterative Reweighted L1-Minimization

Deanna Needell

UC Davis / Stanford University

Asilomar SSC, November 2009

| Introduction       | L1-Minimization | Reweighted L1 | Main Results |
|--------------------|-----------------|---------------|--------------|
| •00000             |                 |               |              |
| Problem Background |                 |               |              |
| Setup              |                 |               |              |

- **1** Suppose x is an unknown signal in  $\mathbb{R}^d$ .
- **2** Design measurement matrix  $\Phi : \mathbb{R}^d \to \mathbb{R}^m$ .
- **3** Collect noisy measurements  $u = \Phi x + e$ .



- **4** Problem: Reconstruct signal x from measurements u
- 5 Wait, isn't this impossible?
  - Assume x is s-sparse:  $||x||_0 \stackrel{\text{def}}{=} |\operatorname{supp}(x)| \le s \ll d$ .

ロト イポト イラト イラト

| Introduction       | L1-Minimization | Reweighted L1 | Main Results |
|--------------------|-----------------|---------------|--------------|
| •00000             |                 |               |              |
| Problem Background |                 |               |              |
| Setup              |                 |               |              |

- **1** Suppose x is an unknown signal in  $\mathbb{R}^d$ .
- **2** Design measurement matrix  $\Phi : \mathbb{R}^d \to \mathbb{R}^m$ .
- **3** Collect noisy measurements  $u = \Phi x + e$ .



- Problem: Reconstruct signal x from measurements u
- 5 Wait, isn't this impossible?
  - Assume x is s-sparse:  $||x||_0 \stackrel{\text{\tiny def}}{=} |\operatorname{supp}(x)| \le s \ll d$ .

- 4 回 ト - 4 回 ト - -

| Introduction       | L1-Minimization | Reweighted L1 | Main Results |
|--------------------|-----------------|---------------|--------------|
| 00000              |                 |               |              |
| Problem Background |                 |               |              |
| Setup              |                 |               |              |

- **1** Suppose x is an unknown signal in  $\mathbb{R}^d$ .
- **2** Design measurement matrix  $\Phi : \mathbb{R}^d \to \mathbb{R}^m$ .
- **3** Collect noisy measurements  $u = \Phi x + e$ .



- Problem: Reconstruct signal x from measurements u
  Wait, isn't this impossible?
  - Assume x is s-sparse:  $||x||_0 \stackrel{\text{\tiny def}}{=} |\operatorname{supp}(x)| \le s \ll d$ .

・ 同 ト ・ ヨ ト ・ ヨ ト …

Problem Background

# Applications

L1-Minimization

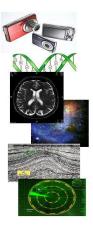
Reweighted L1

Main Results

DQC

글 > 글

- Compressive Imaging
- Computational Biology
- Medical Imaging
- Astronomy
- Geophysical Data Analysis
- Compressive Radar
- Many more (see www.dsp.ece.rice.edu)



< □ > < □ > < 三 >

Problem Background

L1-Minimization

Reweighted L1

Main Results

200

How can we reconstruct?

## Obvious way:

Suppose the matrix  $\Phi$  is one-to-one on the set of sparse vectors and e = 0. Set

 $\hat{x} = \operatorname{argmin} ||z||_0$  such that  $\Phi z = u$ .

Then  $\hat{x} = x!$ 

#### Bad news:

This would require a search through  $\binom{d}{s}$  subspaces! Not numerically feasible.

《曰》 《圖》 《臣》 《臣》 三臣

Problem Background

L1-Minimization

Reweighted L1

Main Results

How can we reconstruct?

## Obvious way:

Suppose the matrix  $\Phi$  is one-to-one on the set of sparse vectors and e = 0. Set

 $\hat{x} = \operatorname{argmin} ||z||_0$  such that  $\Phi z = u$ .

Then  $\hat{x} = x!$ 

#### Bad news:

This would require a search through  $\binom{d}{s}$  subspaces! Not numerically feasible.

<ロト < 団ト < 巨ト < 巨ト

1

Sar

Problem Background

L1-Minimization

Reweighted L1

Main Results

200

How else can we reconstruct?

#### Geometric Idea

Minimizing the  $\ell_0\text{-ball}$  is too hard, so let's try a different one.

#### Our favorites...

- Least Squares
- L1-Minimization (using Linear Programming)

Which one?

D. Needell Noisy Signal Recovery via Iterative Reweighted L1-Minimizatio

《曰》 《圖》 《臣》 《臣》 三臣

Problem Background

L1-Minimization

Reweighted L1

Main Results

E nac

How else can we reconstruct?

#### Geometric Idea

Minimizing the  $\ell_0\text{-ball}$  is too hard, so let's try a different one.

#### Our favorites...

- Least Squares
- L1-Minimization (using Linear Programming)

Which one?

<ロト < 同ト < 三ト < 三ト -

Problem Background

# Which one?

L1-Minimization

Reweighted L1

Main Results

999

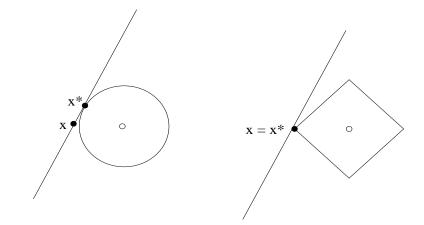


Figure: Minimizing the  $\ell_2$  versus the  $\ell_1$  balls.

◆□ → ◆□ → ◆臣 → ◆臣 → □ 臣 □

Problem Background

L1-Minimization

Reweighted L1

Main Results

What do we assume about  $\Phi$ ?

## Restricted Isometry Property (RIP)

• The s<sup>th</sup> restricted isometry constant of  $\Phi$  is the smallest  $\delta_s$  such that

 $(1-\delta_s)\|x\|_2\leq \|\Phi x\|_2\leq (1+\delta_s)\|x\|_2$  whenever  $\|x\|_0\leq s.$ 

 For Gaussian or Bernoulli measurement matrices, with high probability

 $\delta_s \leq c < 1$  when  $m \gtrsim s \log d$ .

• Random Fourier and others with fast multiply have similar property.

3

Sar

Problem Background

L1-Minimization

Reweighted L1

Main Results

Sar

What do we assume about  $\Phi$ ?

### Restricted Isometry Property (RIP)

• The s<sup>th</sup> restricted isometry constant of  $\Phi$  is the smallest  $\delta_s$  such that

$$(1-\delta_s)\|x\|_2\leq \|\Phi x\|_2\leq (1+\delta_s)\|x\|_2$$
 whenever  $\|x\|_0\leq s.$ 

 For Gaussian or Bernoulli measurement matrices, with high probability

$$\delta_s \leq c < 1$$
 when  $m \gtrsim s \log d$ .

• Random Fourier and others with fast multiply have similar property.

イロト イポト イヨト イヨト

L1-Minimization

Reweighted L1

Main Results

Results

## **Proven Results**

## L1-Minimization [Candès-Tao]

Assume that the measurement matrix  $\Phi$  satisfies the RIP with  $\delta_{2s} < \sqrt{2} - 1$ . Then every *s*-sparse vector *x* can be exactly recovered from its measurements  $u = \Phi x$  as a unique solution to the linear optimization problem:

$$\hat{x} = \operatorname{argmin} ||z||_1$$
 such that  $\Phi z = u$ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

| Introduction | L1-Minimization | Reweighted L1 | Main Results |
|--------------|-----------------|---------------|--------------|
|              | 00000           |               |              |
| Results      |                 |               |              |

## Numerical Results

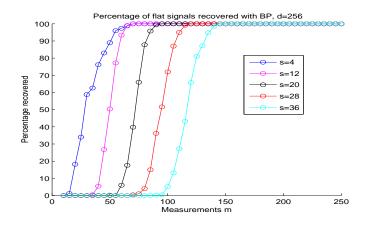


Figure: The percentage of sparse flat signals exactly recovered by Basis Pursuit as a function of the number of measurements *m* in dimension d = 256 for various levels of sparsity *s*.

DQC

| Intro | duc | tion |
|-------|-----|------|
| 0000  | 200 |      |

11-Minimization 000000

Reweighted L1

Main Results

San

# What about noise?

#### **Noisy Formulation**

For a non-sparse vector x with noisy measurements  $u = \Phi x + e$ ,

$$\|\hat{x} - x\|_2 \le C_s \cdot \varepsilon + C'_s \cdot \frac{\|x - x_s\|_1}{\sqrt{s}}.$$

| Intro | du | cti | on |
|-------|----|-----|----|
|       |    |     |    |

11-Minimization 000000

Reweighted L1

Main Results

San

# What about noise?

#### Noisy Formulation

For a non-sparse vector x with noisy measurements  $u = \Phi x + e$ ,

 $\hat{x} = \operatorname{argmin} ||z||_1$  such that  $||\Phi z - u||_2 < \varepsilon$ . (1)

$$\|\hat{x} - x\|_2 \le C_s \cdot \varepsilon + C'_s \cdot \frac{\|x - x_s\|_1}{\sqrt{s}}.$$

| Introd | luction |
|--------|---------|
|        |         |

I1-Minimization 000000

Reweighted L1

Main Results

San

# What about noise?

#### **Noisy Formulation**

For a non-sparse vector x with noisy measurements  $u = \Phi x + e$ ,

$$\hat{x} = \operatorname{argmin} ||z||_1$$
 such that  $||\Phi z - u||_2 \le \varepsilon$ . (1)

## L1-Minimization [Candès-Romberg-Tao]

Let  $\Phi$  be a measurement matrix satisfying the RIP with  $\delta_{2s} < \sqrt{2} - 1$ . Then for any *arbitrary* signal and corrupted measurements  $u = \Phi x + e$  with  $||e||_2 \le \varepsilon$ , the solution  $\hat{x}$  to (1) satisfies

$$\|\hat{x} - x\|_2 \le C_s \cdot \varepsilon + C'_s \cdot \frac{\|x - x_s\|_1}{\sqrt{s}}$$

| Introd | luction |
|--------|---------|
|        |         |

11-Minimization 000000

Reweighted L1

Main Results

San

What about noise?

#### Noisy Formulation

For a non-sparse vector x with noisy measurements  $u = \Phi x + e$ ,

 $\hat{x} = \operatorname{argmin} ||z||_1$  such that  $||\Phi z - u||_2 < \varepsilon$ . (1)

## L1-Minimization [Candès-Romberg-Tao]

Let  $\Phi$  be a measurement matrix satisfying the RIP with  $\delta_{25} < \sqrt{2} - 1$ . Then for any *arbitrary* signal and corrupted measurements  $u = \Phi x + e$  with  $||e||_2 \le \varepsilon$ , the solution  $\hat{x}$  to (1) satisfies

$$\|\hat{x} - x\|_2 \le C_s \cdot \varepsilon + C'_s \cdot \frac{\|x - x_s\|_1}{\sqrt{s}}$$

Note: As  $\delta_{2s} \rightarrow \sqrt{2} - 1$ ,  $C_s$ ,  $C'_s \rightarrow \infty!!$ 

| Introduction | L1-Minimization | Reweighted L1 | Main Results |
|--------------|-----------------|---------------|--------------|
|              | 000000          |               |              |
| Results      |                 |               |              |

## Numerical Results

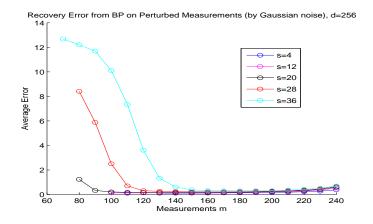


Figure: The recovery error of L1-Minimization under perturbed measurements ( $||e||_2 = 0.5$ ) as a function of the number of measurements *m* in dimension *d* = 256 for various levels of sparsity *s*.  $\equiv -9$  and = -9

D. Needell Noisy Signal Recovery via Iterative Reweighted L1-Minimizatio

| Introduction | L1-Minimization<br>0000●0 | Reweighted L1 | Main Results |
|--------------|---------------------------|---------------|--------------|
| Results      |                           |               |              |
| What if we   | are close?                |               |              |

- Suppose we recover  $\hat{x} \approx x$
- Most likely, this means  $\hat{x}_i \approx x_i$
- In particular,  $\hat{x}_i$  is small/large when  $x_i$  is small/large



| Introduction | L1-Minimization | Reweighted L1 | Main Results |
|--------------|-----------------|---------------|--------------|
|              | 000000          |               |              |
| Results      |                 |               |              |
|              |                 |               |              |

What if we are close?

- Suppose we recover  $\hat{x} \approx x$
- Most likely, this means  $\hat{x}_i \approx x_i$
- In particular,  $\hat{x}_i$  is small/large when  $x_i$  is small/large

## Weighted L1

$$\hat{x}^{(2)} = \operatorname*{argmin}_{z} \sum_{i=1}^{d} \left| rac{z_i}{\hat{x}_i} 
ight|$$
 such that  $\| \Phi z - u \|_2 \leq arepsilon$ 

590

|         | L1-Minimization | Reweighted L1 | Main Results |
|---------|-----------------|---------------|--------------|
|         | 000000          |               |              |
| Results |                 |               |              |
|         |                 |               |              |

## What if we are close?

- Suppose we recover  $\hat{x} \approx x$
- Most likely, this means  $\hat{x}_i \approx x_i$
- In particular,  $\hat{x}_i$  is small/large when  $x_i$  is small/large

## Weighted L1

$$\hat{x}^{(2)} = \operatorname*{argmin}_{z} \sum_{i=1}^{d} \left| rac{z_i}{\hat{x}_i + a} 
ight|$$
 such that  $\| \Phi z - u \|_2 \leq arepsilon$ 

→ Ξ →

590

| Introduction | L1-Minimization | Reweighted L1 | Main Results |
|--------------|-----------------|---------------|--------------|
|              | 00000           |               |              |
| Results      |                 |               |              |
|              |                 |               |              |

# Weighted Geometry

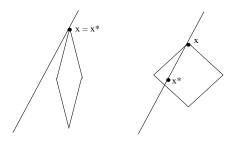


Figure: The geometry of the weighted  $\ell_1$ -ball.

- Noise-free case: In cases where  $\hat{x} \neq x$ , we should have that  $\hat{x}^{(2)}$  is closer to x, or even *equal*.
- Noisy case: This implies  $\hat{x}^{(2)}$  should be closer to x than  $\hat{x}$  was.
- Can we repeat this again?

L1-Minimization

Reweighted L1

Main Results

Sar

**Reweighted L1-Minimization** 

# Reweighted $\ell_1$ -minimization (RWL1)

INPUT: Measurement vector  $u \in \mathbb{R}^m$ , stability parameter *a* OUTPUT: Reconstructed vector  $\hat{x}$ 

Initialize Set the weights  $w_i = 1$  for  $i = 1 \dots d$ .

Approximate Solve the reweighted  $\ell_1$ -minimization problem:

$$\hat{x} = \underset{\hat{x} \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{i=1}^d w_i \hat{x}_i \text{ subject to } \|\Phi \hat{x} - u\|_2 \leq \varepsilon.$$

Update Reset the weights:

$$w_i = \frac{1}{|\hat{x}_i| + a}$$

A.

< ∃ ≥

L1-Minimization

Reweighted L1

Main Results

200

프 > 프

**Reweighted L1-Minimization** 

## Numerical Results

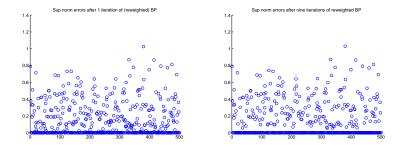


Figure:  $\ell_\infty\text{-norm}$  error for reweighted L1 in the noise-free case

< □ > < □ > < 三 >

L1-Minimization

Reweighted L1

Main Results

**Reweighted L1-Minimization** 

## Numerical Results

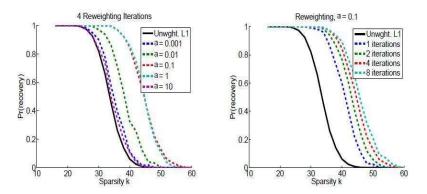


Figure: Probability of reconstruction [Candès-Wakin-Boyd].

E

L1-Minimization

Reweighted L1

Main Results

DQC

3

**Reweighted L1-Minimization** 

# Numerical Results with noise

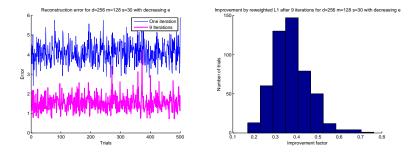


Figure: Improvements in the  $\ell_2$  reconstruction error using reweighted  $\ell_1$ -minimization versus standard  $\ell_1$ -minimization for sparse Gaussian signals.

<ロト <回ト < 三ト

- - ∃ >

L1-Minimization

Reweighted L1

Main Results

DQC

Ξ

**Reweighted L1-Minimization** 

# Numerical Results with noise

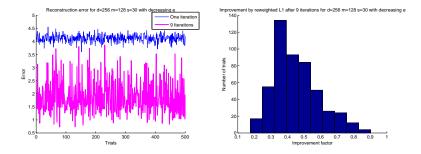


Figure: Improvements in the  $\ell_2$  reconstruction error using reweighted  $\ell_1$ -minimization versus standard  $\ell_1$ -minimization for sparse Bernoulli signals.

< □ > < □ > < 三 >

- - ∃ >

L1-Minimization

Reweighted L1 ○○○○○● Main Results

**Reweighted L1-Minimization** 

# Observations

- The noiseless case suggests that an  $\ell_\infty\text{-norm}$  bound may be required for RWL1 to succeed.
- In the noisy case it is clear that we cannot recover signal coordinates that are below some threshold.
- If each iteration of RWL1 improves the error, perhaps we should take a → 0. (Recall w<sub>i</sub> = 1/|x<sub>i</sub>|+a).

・ロト ・回ト ・ヨト ・ヨト

3

Sar

 Introduction
 L1-Minimization
 Reweighted L1
 Main Results

 000000
 000000
 000000
 000000

 Reweighted L1-Minimization
 000000
 000000

- $\bullet\,$  The noiseless case suggests that an  $\ell_\infty\text{-norm}$  bound may be required for RWL1 to succeed.
- In the noisy case it is clear that we cannot recover signal coordinates that are below some threshold.
- If each iteration of RWL1 improves the error, perhaps we should take a → 0. (Recall w<sub>i</sub> = 1/|x<sub>i</sub>|+a).

Sar

| Introduction |  |
|--------------|--|
|              |  |

Reweighted L1 ○○○○○●

**Reweighted L1-Minimization** 

# Observations

- $\bullet\,$  The noiseless case suggests that an  $\ell_\infty\text{-norm}$  bound may be required for RWL1 to succeed.
- In the noisy case it is clear that we cannot recover signal coordinates that are below some threshold.
- If each iteration of RWL1 improves the error, perhaps we should take a → 0. (Recall w<sub>i</sub> = 1/|x<sub>i</sub>|+a).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

L1-Minimization

Reweighted L1

Main Results

Main Results

## Main Results

## RWL1 - Sparse case [N]

Assume  $\Phi$  satisfies the RIP with  $\delta_{2s} \leq \delta$  where  $\delta < \sqrt{2} - 1$ . Let x be an s-sparse vector with noisy measurements  $u = \Phi x + e$  where  $\|e\|_2 \leq \varepsilon$ . Assume the smallest nonzero coordinate  $\mu$  of x satisfies  $\mu \geq \frac{4\alpha\varepsilon}{1-\rho}$ . Then the limiting approximation from reweighted  $\ell_1$ -minimization satisfies

$$\|x-\hat{x}\|_2 \leq C''\varepsilon,$$

where 
$$C'' = \frac{2\alpha}{1+\rho}$$
,  $\rho = \frac{\sqrt{2}\delta}{1-\delta}$  and  $\alpha = \frac{2\sqrt{1+\delta}}{1-\delta}$ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

| Introduction | L1-Minimization | Reweighted L1 | Main Results<br>○●○○○○ |
|--------------|-----------------|---------------|------------------------|
| Main Results |                 |               |                        |
| Remarks      |                 |               |                        |

- Without noise, this result coincides with previous results on L1.
- The key improvement: As  $\delta \to \sqrt{2} 1$ , C'' remains bounded.
- The error bound is the *limiting* bound, but a recursive relation in the proof gives exact improvements per iteration. We show in practice it is attained quite quickly.
- For signals whose smallest non-zero coefficient  $\mu$  does not satisfy the condition of the theorem, we may apply the theorem to those coefficients that do satisfy this requirement, and treat the others as noise...

- 4 同下 - 4 戸下 - 4 戸下

| Introduction | L1-Minimization | Reweighted L1 | Main Results<br>○●○○○○ |
|--------------|-----------------|---------------|------------------------|
| Main Results |                 |               |                        |
| Remarks      |                 |               |                        |

- Without noise, this result coincides with previous results on L1.
- The key improvement: As  $\delta \to \sqrt{2} 1$ , C'' remains bounded.
- The error bound is the *limiting* bound, but a recursive relation in the proof gives exact improvements per iteration. We show in practice it is attained quite quickly.
- For signals whose smallest non-zero coefficient  $\mu$  does not satisfy the condition of the theorem, we may apply the theorem to those coefficients that do satisfy this requirement, and treat the others as noise...

(4 同下) 4 三下 4 三下

| Introduction | L1-Minimization | Reweighted L1 | Main Results<br>○●○○○○ |
|--------------|-----------------|---------------|------------------------|
| Main Results |                 |               |                        |
| Remarks      |                 |               |                        |

- Without noise, this result coincides with previous results on L1.
- The key improvement: As  $\delta \to \sqrt{2} 1$ , C'' remains bounded.
- The error bound is the *limiting* bound, but a recursive relation in the proof gives exact improvements per iteration. We show in practice it is attained quite quickly.
- For signals whose smallest non-zero coefficient  $\mu$  does not satisfy the condition of the theorem, we may apply the theorem to those coefficients that do satisfy this requirement, and treat the others as noise...

| Introduction | L1-Minimization | Reweighted L1 | Main Results<br>○●○○○○ |
|--------------|-----------------|---------------|------------------------|
| Main Results |                 |               |                        |
| Remarks      |                 |               |                        |

- Without noise, this result coincides with previous results on L1.
- The key improvement: As  $\delta \to \sqrt{2} 1$ , C'' remains bounded.
- The error bound is the *limiting* bound, but a recursive relation in the proof gives exact improvements per iteration. We show in practice it is attained quite quickly.
- For signals whose smallest non-zero coefficient  $\mu$  does not satisfy the condition of the theorem, we may apply the theorem to those coefficients that do satisfy this requirement, and treat the others as noise...

- ロト - (司ト - 王ト - 王ト - -

L1-Minimization

Reweighted L1

Main Results

nan

#### Main Results

## Extension

#### RWL1 - non-sparse extension [N]

Assume  $\Phi$  satisfies the RIP with  $\delta_{2s} \leq \sqrt{2} - 1$ . Let x be an arbitrary vector with noisy measurements  $u = \Phi x + e$  where  $\|e\|_2 \leq \varepsilon$ . Assume the smallest nonzero coordinate  $\mu$  of  $x_s$  satisfies  $\mu \geq \frac{4\alpha\varepsilon_0}{1-\rho}$ , where  $\varepsilon_0 = 1.2(\|x - x_s\|_2 + \frac{1}{\sqrt{s}}\|x - x_s\|_1) + \varepsilon$ . Then the limiting approximation from reweighted  $\ell_1$ -minimization satisfies

$$\|\boldsymbol{x} - \hat{\boldsymbol{x}}\|_{2} \leq \frac{4.1\alpha}{1+\rho} \Big( \frac{\|\boldsymbol{x} - \boldsymbol{x}_{s/2}\|_{1}}{\sqrt{s}} + \varepsilon \Big),$$

and

$$\|x - \hat{x}\|_{2} \leq \frac{2.4\alpha}{1+\rho} \Big( \|x - x_{s}\|_{2} + \frac{\|x - x_{s}\|_{1}}{\sqrt{s}} + \varepsilon \Big),$$

where  $\rho$  and  $\alpha$  are as before.

L1-Minimization

Reweighted L1

Main Results

Main Results

## Theoretical Results

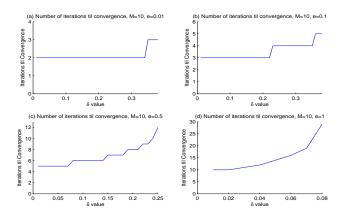


Figure: Number of iterations required for theoretical error bounds to reach limiting theoretical error when (a)  $\mu = 10$ ,  $\varepsilon = 0.01$ , (b)  $\mu = 10$ ,  $\varepsilon = 0.1$ , (c)  $\mu = 10$ ,  $\varepsilon = 0.5$ , (d)  $\mu = 10$ ,  $\varepsilon = 1.0$ .

D. Needell

Noisy Signal Recovery via Iterative Reweighted L1-Minimizatio

L1-Minimization

Reweighted L1

Main Results 0000●0

Sar

Main Results

## Recent work

- Wipf-Nagarajan elaborate on convergence and show connections to reweighted  $\ell_2$ -minimization.
- Wipf-Nagarajan also show that a non-separable variant has desirable properties.
- Xu-Khajehnejad-Avestimehr-Hassibi provide a theoretical foundation for the analysis of RWL1 and show that for a nontrivial class of signals, a variant of RWL1 indeed can improve upon L1 in the noiseless case.

《口》 《聞》 《臣》 《臣》 三臣 …

L1-Minimization

Reweighted L1

Main Results ○○○○●

Sar

Thank you

# For more information

E-mail:

o dneedell@stanford.edu

Web: http://www-stat.stanford.edu/~dneedell

## **References:**

- Candes, Wakin, Boyd, "Enhancing sparsity by reweighted l<sub>1</sub> minimization", J. Fourier Anal. Appl., 14 877-905.
- Needell, "Noisy signal recovery via iterative reweighted L1-minimization," 2009.
- Wipf and Nagarajan, "Solving Sparse Linear Inverse Problems: Analysis of Reweighted l<sub>1</sub> and l<sub>2</sub> Methods," J. of Selected Topics in Signal Processing, Special Issue on Compressive Sensing, 2010.
- Qu, Khajehnejad, Avestimehr, and Hassibi, "Breaking through the Thresholds: an Analysis for Iterative Reweighted ℓ<sub>1</sub> Minimization via the Grassmann Angle Framework," *Proc. Allerton Conference on Communication, Control, and computing*, Sept. 2009.