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Setup
• Considerv ∈ R

d, ‖v‖0 := | supp v| ≤ n≪ d.
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Setup
• Considerv ∈ R

d, ‖v‖0 := | supp v| ≤ n≪ d.
• We call such signalsn-sparse.
• Given someN × d measurement matrixΦ, we

collectN ≪ d nonadaptive linear measurements
of v, in the formx = Φv.
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Setup ctd.
• From these measurements we wish to efficiently

recover the original signalv.
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Setup ctd.
• From these measurements we wish to efficiently

recover the original signalv.
• How many measurementsN ≪ d are needed?
• Exact recovery is possible with justN = 2n.

However, recovery in this regime is not
numerically feasible.
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Setup ctd.
• Work in Compressed Sensing has shown that the

signalv can be efficiently exactly recovered from
x = Φv with justN ∼ n polylog d.
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Setup ctd.
• Work in Compressed Sensing has shown that the

signalv can be efficiently exactly recovered from
x = Φv with justN ∼ n polylog d.

• Two major algorithmic approaches:
• L1-Minimization (Donoho et. al.)
• Iterative methods such as Orthogonal Matching

Pursuit (Tropp-Gilbert)
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L1-Minimization Methods
• The sparse recovery problem can be stated as

solving the optimization problem:

min ‖z‖0 subject to Φz = Φv
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L1-Minimization Methods
• The sparse recovery problem can be stated as

solving the optimization problem:

min ‖z‖0 subject to Φz = Φv

• For certain measurement matricesΦ this hard
problem is equivalent to:

min ‖u‖1 subject to Φu = Φv

(Donoho, Candès-Tao)
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Restricted Isometry Condition
• A measurement matrixΦ satisfies theRestricted

Isometry Condition (RIC) with parameters(m, ε)
for ε ∈ (0, 1) if we have

(1−ε)‖v‖2 ≤ ‖Φv‖2 ≤ (1+ε)‖v‖2 ∀m-sparsev.
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Restricted Isometry Condition
• A measurement matrixΦ satisfies theRestricted

Isometry Condition (RIC) with parameters(m, ε)
for ε ∈ (0, 1) if we have

(1−ε)‖v‖2 ≤ ‖Φv‖2 ≤ (1+ε)‖v‖2 ∀m-sparsev.

• “Every set ofn columns ofΦ forms
approximately an orthonormal system.”
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L1 and the RIC
• Assume that the measurement matrixΦ satisfies

the Restricted Isometry Condition with
parameters(2n,

√
2− 1).
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√
2− 1).

• Then theL1 method recovers anyn-sparse vector.
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L1 and the RIC
• Assume that the measurement matrixΦ satisfies

the Restricted Isometry Condition with
parameters(2n,

√
2− 1).

• Then theL1 method recovers anyn-sparse vector.
(Candes-Tao)

• What kinds of matrices satisfy the RIC?
• Random Gaussian, Bernoulli, and partial Fourier

matrices, withN ∼ n polylog d.
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Greedy Algorithms: OMP
• Orthogonal Matching Pursuit (Tropp-Gilbert)

finds the support of then-sparse signalv
progressively.
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Greedy Algorithms: OMP
• Orthogonal Matching Pursuit (Tropp-Gilbert)

finds the support of then-sparse signalv
progressively.

• OnceS = supp(v) is found correctly, we can
recover the signal:x = Φv asv = (ΦS)−1x.
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Greedy Algorithms: OMP ctd.
• At each iteration, OMP finds the largest

component ofu = Φ∗x and subtracts off that
component’s contribution.
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Greedy Algorithms: OMP ctd.
• At each iteration, OMP finds the largest

component ofu = Φ∗x and subtracts off that
component’s contribution.

• For every fixedn-sparsev ∈ R
d, and anN × d

Gaussian measurement matrixΦ, OMP recovers
v with high probability, providedN ∼ n log d.
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Comparing the approaches
• L1 has uniform guarantees.
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Comparing the approaches
• L1 has uniform guarantees.
• OMP has no such known uniform guarantees.
• L1 is based on linear programming.
• OMP is quitefast, both theoretically and

experimentally.
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Comparing the approaches
• This gap between the approaches leads us to our

new algorithm, Regularized Orthogonal
Matching Pursuit.
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Comparing the approaches
• This gap between the approaches leads us to our

new algorithm, Regularized Orthogonal
Matching Pursuit.

• ROMP has polynomial running time.
• ROMP provides uniform guarantees.
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ROMP
• INPUT: Measurement vectorx ∈ R

N and sparsity
leveln
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• INPUT: Measurement vectorx ∈ R

N and sparsity
leveln

• OUTPUT: Index setI ⊂ {1, . . . , d}
• Initialize: SetI = ∅, r = x. Repeat untilr = 0:
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ROMP
• INPUT: Measurement vectorx ∈ R

N and sparsity
leveln

• OUTPUT: Index setI ⊂ {1, . . . , d}
• Initialize: SetI = ∅, r = x. Repeat untilr = 0:
• Identify: Choose a setJ of then biggest

coordinates in magnitude ofu = Φ∗r.
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ROMP ctd.
• Regularize: Among all subsetsJ0 ⊂ J with

comparable coordinates:

|u(i)| ≤ 2|u(j)| for all i, j ∈ J0,

chooseJ0 with the maximal energy‖u|J0
‖2.
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ROMP ctd.
• Regularize: Among all subsetsJ0 ⊂ J with

comparable coordinates:

|u(i)| ≤ 2|u(j)| for all i, j ∈ J0,

chooseJ0 with the maximal energy‖u|J0
‖2.

• Update: the index set:I ← I ∪ J0, and the
residual:

y = argmin
z∈RI

‖x− Φz‖2; r = x− Φy.
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Main Theorem
• Theorem: Stability under measurement

perturbations.
Assume a measurement matrixΦ satisfies the
Restricted Isometry Condition with parameters
(4n, .01/

√
log n).
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Main Theorem
• Theorem: Stability under measurement

perturbations.
Assume a measurement matrixΦ satisfies the
Restricted Isometry Condition with parameters
(4n, .01/

√
log n).

• Let v be ann-sparse vector inRd.
• Consider corruptedx = Φv + e.
• Then ROMP produces a good approximation tov:

‖v − v̂‖2 ≤ C
√

log n‖e‖2.
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Corollary
• Stability of ROMP under signal perturbations.

Assume a measurement matrixΦ satisfies the
Restricted Isometry Condition with parameters
(8n, .01/

√
log n).
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Corollary
• Stability of ROMP under signal perturbations.

Assume a measurement matrixΦ satisfies the
Restricted Isometry Condition with parameters
(8n, .01/

√
log n).
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Corollary
• Stability of ROMP under signal perturbations.

Assume a measurement matrixΦ satisfies the
Restricted Isometry Condition with parameters
(8n, .01/

√
log n).

• Let v be an arbitrary vector inRd.
• Consider corruptedx = Φv + e.
• Then ROMP produces a good approximation to

v2n:

‖v̂ − v2n‖2 ≤ C ′
√

log n
(

‖e‖2 +
‖v − vn‖1√

n

)

.
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Remarks
• In the noiseless case(e = 0), note that the

theorem guarantees exact reconstruction.
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Remarks
• In the noiseless case(e = 0), note that the

theorem guarantees exact reconstruction.
• The runtime is polynomial: In the case of

unstructured matrices, the runtime isO(dNn).
• The theorem givesuniform guarantees of sparse

recovery.
• ROMP succeeds with no prior knowledge about

the error vectore.
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Empirical Results

•
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Figure 1: Sparse flat signals with Gaussian matrix.
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Empirical Results ctd.
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Figure 2: Sparse flat signals, Gaussian.
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Empirical Results ctd.
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Figure 3: Number of Iterations.
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Empirical Results ctd.
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Figure 4: Error to noise ratio‖v̂−v‖2
‖e‖2 .
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Empirical Results ctd.

•
50 100 150 200 250 300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Measurements N

Er
ro

r t
o 

N
oi

se
 R

at
io

Normalized Recovery Error from ROMP on Perturbed Signals , d=256

 

 
n=4

n=12

n=20

n=28

n=36

Figure 5: Error to noise ratio‖v̂−v2n‖2
‖v−vn‖1/

√
n
.

Greedy Signal Recovery and Uniform Uncertainty Principles – p.22/24



Future Work
• N-Tropp-Vershynin developing Compressive

Sampling Matching Pursuit (CoSaMP)
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Future Work
• N-Tropp-Vershynin developing Compressive

Sampling Matching Pursuit (CoSaMP)
• SelectsO(n) coordinates at each iteration but

adds a signal estimation step using least squares.
Then prunes this estimation to make sparse.
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Future Work
• N-Tropp-Vershynin developing Compressive

Sampling Matching Pursuit (CoSaMP)
• SelectsO(n) coordinates at each iteration but

adds a signal estimation step using least squares.
Then prunes this estimation to make sparse.

• Same uniform guarantees as ROMP, but removes
the
√

log n term in the requirement forε
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Thank you!
• Questions?
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