Greedy Signal Recovery and Uniform Uncertainty Principles *SPIE - IE 2008*

Deanna Needell Joint work with Roman Vershynin

UC Davis, January 2008

Greedy Signal Recovery and Uniform Uncertainty Principles – p.1/24

Outline

- Problem Background
 - Setup
 - L1 Minimization
 - Greedy Algorithms
- ROMP
 - Algorithm
 - Main Theorem
 - Empirical Results
- Future Work

Setup

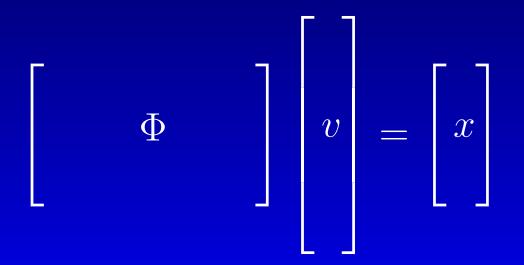
• Consider $v \in \mathbb{R}^d$, $||v||_0 := |\operatorname{supp} v| \le n \ll d$.

Setup

- Consider $v \in \mathbb{R}^d$, $||v||_0 := |\operatorname{supp} v| \le n \ll d$.
- We call such signals *n*-sparse.

Setup

- Consider $v \in \mathbb{R}^d$, $||v||_0 := |\operatorname{supp} v| \le n \ll d$.
- We call such signals *n*-sparse.
- Given some $N \times d$ measurement matrix Φ , we collect $N \ll d$ nonadaptive linear measurements of v, in the form $x = \Phi v$.



• From these measurements we wish to efficiently recover the original signal v.

- From these measurements we wish to efficiently recover the original signal v.
- How many measurements $N \ll d$ are needed?

- From these measurements we wish to efficiently recover the original signal v.
- How many measurements $N \ll d$ are needed?
- Exact recovery is possible with just N = 2n. However, recovery in this regime is not numerically feasible.

• Work in Compressed Sensing has shown that the signal v can be efficiently exactly recovered from $x = \Phi v$ with just $N \sim n$ polylog d.

- Work in Compressed Sensing has shown that the signal v can be efficiently exactly recovered from $x = \Phi v$ with just $N \sim n$ polylog d.
- Two major algorithmic approaches:

- Work in Compressed Sensing has shown that the signal v can be efficiently exactly recovered from $x = \Phi v$ with just $N \sim n$ polylog d.
- Two major algorithmic approaches:
- L1-Minimization (Donoho et. al.)

- Work in Compressed Sensing has shown that the signal v can be efficiently exactly recovered from $x = \Phi v$ with just $N \sim n$ polylog d.
- Two major algorithmic approaches:
- L1-Minimization (Donoho et. al.)
- Iterative methods such as Orthogonal Matching Pursuit (Tropp-Gilbert)

L1-Minimization Methods

• The sparse recovery problem can be stated as solving the optimization problem:

 $\min \|z\|_0 \qquad \text{subject to} \qquad \Phi z = \Phi v$

L1-Minimization Methods

• The sparse recovery problem can be stated as solving the optimization problem:

 $\min \|z\|_0 \qquad \text{subject to} \qquad \Phi z = \Phi v$

• For certain measurement matrices Φ this hard problem is equivalent to:

 $\min \|u\|_1$ subject to $\Phi u = \Phi v$ (Donoho, Candès-Tao)

Restricted Isometry Condition

• A measurement matrix Φ satisfies the *Restricted Isometry Condition* (RIC) with parameters (m, ε) for $\varepsilon \in (0, 1)$ if we have

 $(1-\varepsilon)\|v\|_2 \le \|\Phi v\|_2 \le (1+\varepsilon)\|v\|_2 \quad \forall m$ -sparse v.

Restricted Isometry Condition

• A measurement matrix Φ satisfies the *Restricted Isometry Condition* (RIC) with parameters (m, ε) for $\varepsilon \in (0, 1)$ if we have

 $(1-\varepsilon)\|v\|_2 \le \|\Phi v\|_2 \le (1+\varepsilon)\|v\|_2 \quad \forall m$ -sparse v.

• "Every set of n columns of Φ forms approximately an orthonormal system."

• Assume that the measurement matrix Φ satisfies the Restricted Isometry Condition with parameters $(2n, \sqrt{2} - 1)$.

- Assume that the measurement matrix Φ satisfies the Restricted Isometry Condition with parameters $(2n, \sqrt{2} 1)$.
- Then the L_1 method recovers any *n*-sparse vector. (Candes-Tao)

- Assume that the measurement matrix Φ satisfies the Restricted Isometry Condition with parameters $(2n, \sqrt{2} 1)$.
- Then the *L*₁ method recovers any *n*-sparse vector. (Candes-Tao)
- What kinds of matrices satisfy the RIC?

- Assume that the measurement matrix Φ satisfies the Restricted Isometry Condition with parameters $(2n, \sqrt{2} 1)$.
- Then the *L*₁ method recovers any *n*-sparse vector. (Candes-Tao)
- What kinds of matrices satisfy the RIC?
- Random Gaussian, Bernoulli, and partial Fourier matrices, with $N \sim n$ polylog d.

Greedy Algorithms: OMP

• Orthogonal Matching Pursuit (Tropp-Gilbert) finds the support of the *n*-sparse signal *v* progressively.

Greedy Algorithms: OMP

- Orthogonal Matching Pursuit (Tropp-Gilbert) finds the support of the *n*-sparse signal *v* progressively.
- Once $S = \operatorname{supp}(v)$ is found correctly, we can recover the signal: $x = \Phi v$ as $v = (\Phi_S)^{-1} x$.

Greedy Algorithms: OMP ctd.

• At each iteration, OMP finds the largest component of $u = \Phi^* x$ and subtracts off that component's contribution.

Greedy Algorithms: OMP ctd.

- At each iteration, OMP finds the largest component of $u = \Phi^* x$ and subtracts off that component's contribution.
- For every fixed *n*-sparse $v \in \mathbb{R}^d$, and an $N \times d$ Gaussian measurement matrix Φ , OMP recovers *v* with high probability, provided $N \sim n \log d$.

• L_1 has uniform guarantees.

- L_1 has uniform guarantees.
- OMP has no such known uniform guarantees.

- L_1 has uniform guarantees.
- OMP has no such known uniform guarantees.
- L_1 is based on linear programming.

- L_1 has uniform guarantees.
- OMP has no such known uniform guarantees.
- L_1 is based on linear programming.
- OMP is quite *fast*, both theoretically and experimentally.

• This gap between the approaches leads us to our new algorithm, Regularized Orthogonal Matching Pursuit.

- This gap between the approaches leads us to our new algorithm, Regularized Orthogonal Matching Pursuit.
- ROMP has polynomial running time.

- This gap between the approaches leads us to our new algorithm, Regularized Orthogonal Matching Pursuit.
- ROMP has polynomial running time.
- ROMP provides uniform guarantees.

• INPUT: Measurement vector $x \in \mathbb{R}^N$ and sparsity level n

- INPUT: Measurement vector $x \in \mathbb{R}^N$ and sparsity level n
- OUTPUT: Index set $I \subset \{1, \ldots, d\}$

- INPUT: Measurement vector $x \in \mathbb{R}^N$ and sparsity level n
- OUTPUT: Index set $I \subset \{1, \ldots, d\}$
- Initialize: Set $I = \emptyset$, r = x. Repeat until r = 0:

- INPUT: Measurement vector $x \in \mathbb{R}^N$ and sparsity level n
- OUTPUT: Index set $I \subset \{1, \ldots, d\}$
- Initialize: Set $I = \emptyset$, r = x. Repeat until r = 0:
- Identify: Choose a set J of the n biggest coordinates in magnitude of $u = \Phi^* r$.

ROMP ctd.

• Regularize: Among all subsets $J_0 \subset J$ with comparable coordinates:

 $|u(i)| \le 2|u(j)|$ for all $i, j \in J_0$,

choose J_0 with the maximal energy $||u|_{J_0}||_2$.

ROMP ctd.

• Regularize: Among all subsets $J_0 \subset J$ with comparable coordinates:

 $|u(i)| \le 2|u(j)|$ for all $i, j \in J_0$,

choose J_0 with the maximal energy $||u|_{J_0}||_2$.

• Update: the index set: $I \leftarrow I \cup J_0$, and the residual:

$$y = \underset{z \in \mathbb{R}^{I}}{\operatorname{argmin}} \|x - \Phi z\|_{2}; \qquad r = x - \Phi y.$$

- Theorem: Stability under measurement perturbations.
 - Assume a measurement matrix Φ satisfies the Restricted Isometry Condition with parameters $(4n, .01/\sqrt{\log n})$.

- Theorem: Stability under measurement perturbations.
 - Assume a measurement matrix Φ satisfies the Restricted Isometry Condition with parameters $(4n, .01/\sqrt{\log n})$.
- Let v be an n-sparse vector in \mathbb{R}^d .

- Theorem: Stability under measurement perturbations.
 - Assume a measurement matrix Φ satisfies the Restricted Isometry Condition with parameters $(4n, .01/\sqrt{\log n})$.
- Let v be an n-sparse vector in \mathbb{R}^d .
- Consider corrupted $x = \Phi v + e$.

- Theorem: Stability under measurement perturbations.
 - Assume a measurement matrix Φ satisfies the Restricted Isometry Condition with parameters $(4n, .01/\sqrt{\log n})$.
- Let v be an n-sparse vector in \mathbb{R}^d .
- Consider corrupted $x = \Phi v + e$.
- Then ROMP produces a good approximation to v:

$$|v - \hat{v}||_2 \le C\sqrt{\log n} ||e||_2.$$

• Stability of ROMP under signal perturbations. Assume a measurement matrix Φ satisfies the Restricted Isometry Condition with parameters $(8n, .01/\sqrt{\log n})$.

- Stability of ROMP under signal perturbations. Assume a measurement matrix Φ satisfies the Restricted Isometry Condition with parameters $(8n, .01/\sqrt{\log n})$.
- Let v be an arbitrary vector in \mathbb{R}^d .

- Stability of ROMP under signal perturbations. Assume a measurement matrix Φ satisfies the Restricted Isometry Condition with parameters $(8n, .01/\sqrt{\log n})$.
- Let v be an arbitrary vector in \mathbb{R}^d .
- Consider corrupted $x = \Phi v + e$.

- Stability of ROMP under signal perturbations. Assume a measurement matrix Φ satisfies the Restricted Isometry Condition with parameters $(8n, .01/\sqrt{\log n})$.
- Let v be an arbitrary vector in \mathbb{R}^d .
- Consider corrupted $x = \Phi v + e$.
- Then ROMP produces a good approximation to v_{2n} :

$$\|\hat{v} - v_{2n}\|_2 \le C' \sqrt{\log n} \left(\|e\|_2 + \frac{\|v - v_n\|_1}{\sqrt{n}} \right).$$

• In the noiseless case (e = 0), note that the theorem guarantees exact reconstruction.

- In the noiseless case (e = 0), note that the theorem guarantees exact reconstruction.
- The runtime is polynomial: In the case of unstructured matrices, the runtime is O(dNn).

- In the noiseless case (e = 0), note that the theorem guarantees exact reconstruction.
- The runtime is polynomial: In the case of unstructured matrices, the runtime is O(dNn).
- The theorem gives *uniform guarantees* of sparse recovery.

- In the noiseless case (e = 0), note that the theorem guarantees exact reconstruction.
- The runtime is polynomial: In the case of unstructured matrices, the runtime is O(dNn).
- The theorem gives *uniform guarantees* of sparse recovery.
- ROMP succeeds with no prior knowledge about the error vector *e*.

Empirical Results

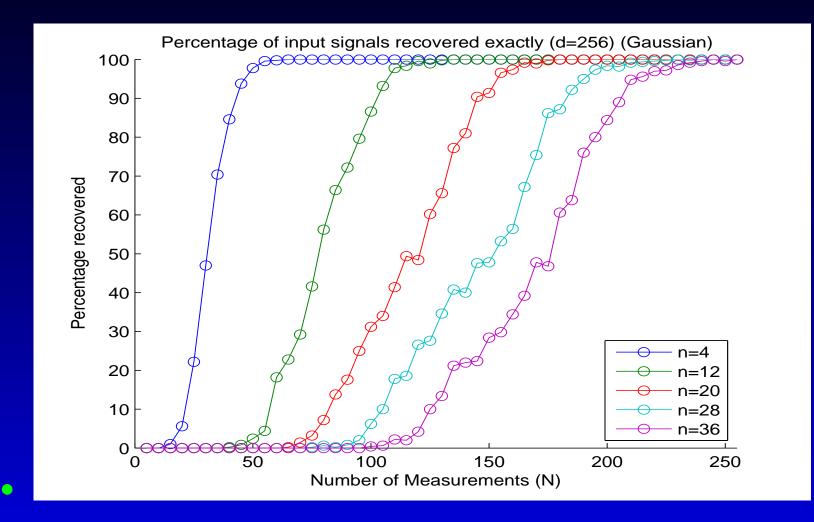


Figure 1: Sparse flat signals with Gaussian matrix.

Greedy Signal Recovery and Uniform Uncertainty Principles – p.18/24

Empirical Results ctd.

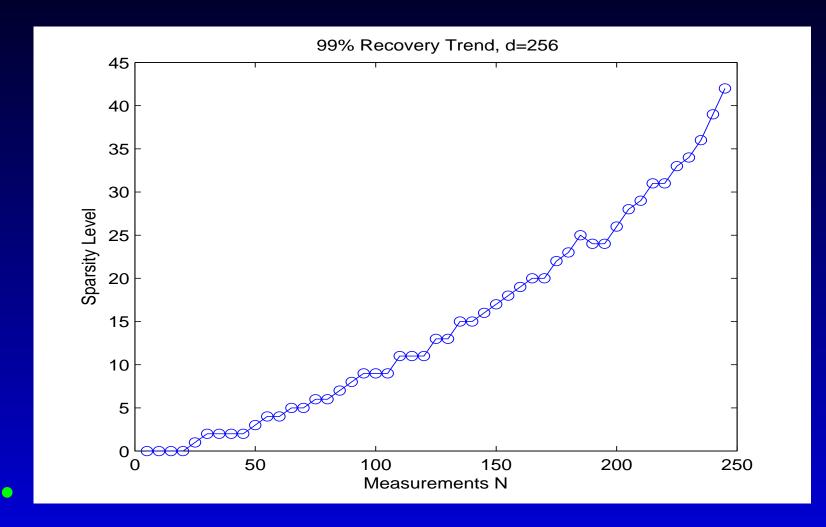


Figure 2: Sparse flat signals, Gaussian.

Greedy Signal Recovery and Uniform Uncertainty Principles – p.19/24

Empirical Results ctd.

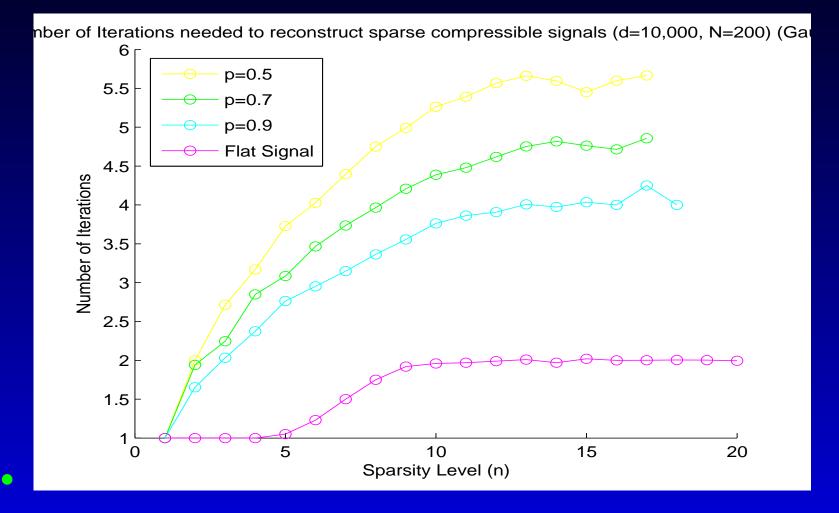


Figure 3: Number of Iterations.

Greedy Signal Recovery and Uniform Uncertainty Principles - p.20/24

Empirical Results ctd.

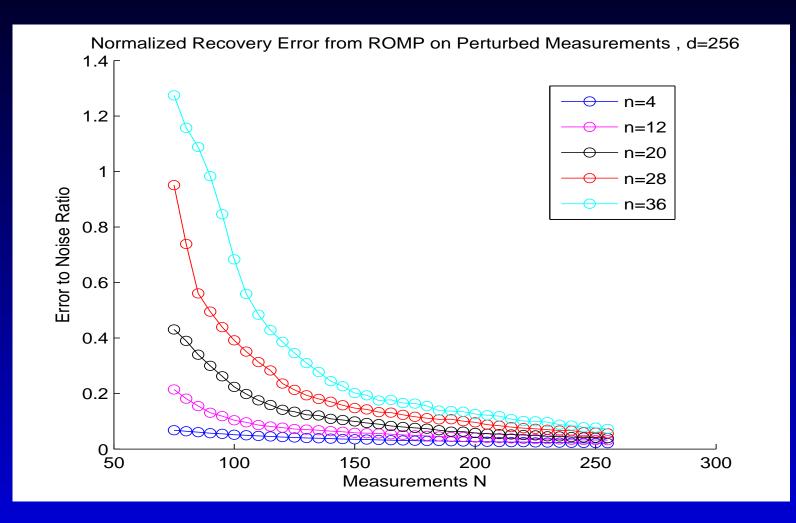


Figure 4: Error to noise ratio $\frac{\|\hat{v}-v\|_2}{\|e\|_2}$

Greedy Signal Recovery and Uniform Uncertainty Principles - p.21/24

Empirical Results ctd.

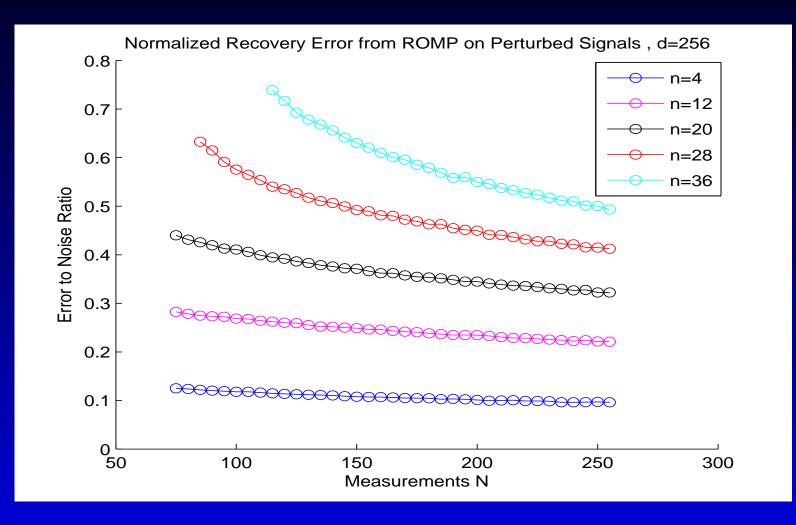


Figure 5: Error to noise ratio $\frac{\|\hat{v}-v_{2n}\|_2}{\|v-v_n\|_1/\sqrt{n}}$.

Greedy Signal Recovery and Uniform Uncertainty Principles - p.22/24

Future Work

• N-Tropp-Vershynin developing Compressive Sampling Matching Pursuit (CoSaMP)

Future Work

- N-Tropp-Vershynin developing Compressive Sampling Matching Pursuit (CoSaMP)
- Selects O(n) coordinates at each iteration but adds a signal estimation step using least squares. Then prunes this estimation to make sparse.

Future Work

- N-Tropp-Vershynin developing Compressive Sampling Matching Pursuit (CoSaMP)
- Selects O(n) coordinates at each iteration but adds a signal estimation step using least squares. Then prunes this estimation to make sparse.
- Same uniform guarantees as ROMP, but removes the $\sqrt{\log n}$ term in the requirement for ε

Thank you!

• Questions?