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The Data Deluge

How can we handle all this data?

Build hardware that can store and trasmit more data.

We need the resources.
There are fundamental limitiations to data storage.

Design more efficient compression methods.

Enter the world of: Compressed Sensing (CS)
CS gives us efficient compression techniques: “Compressed”
More surprisingly, we can acquire the compression without ever
having to acquire the entire object!: “Sensing”
CS has numerous applications (Radar, Error Correction,
Computational Biology (DNA Microarrays), Geophysical Data
Analysis, Data Mining, classification, Neuroscience, Imaging
...)
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Why is compression possible?

256× 256 “Boats” image

Because most practical signals, such as images, contain much less
information than their dimension would suggest.
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Why is compression possible?

Assume f is s-sparse:

In the coordinate basis: ‖f ‖0
def
= | supp(f )| ≤ s � d

In some orthonormal basis: f = Dx where ‖x‖0 ≤ s � d

In practice, we encounter compressible signals.
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Mathematical Formulation

To compress a signal, we take a small number of measurements:

1 Signal of interest f ∈ RN×N

2 Measurement operator A : RN×N → Rm (m� N2)

3 Measurements y = Af .

y

 =

 A




f


4 y is the compression of f !
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Mathematical Formulation

To compress a signal, we take a small number of measurements:

1 Signal of interest f ∈ RN×N

2 Measurement operator A : RN×N → Rm (m� N2)

3 Measurements y = Af + ξ.

y

 =

 A




f

+

ξ


4 y is the compression of f !

5 And then the measurements get corrupted with noise.
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Questions

1 What type of measurement operator A can we use?

2 How do we reconstruct the signal f from the compressed
measurements y?
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Review and Notation

`p-norms: ‖z‖p
def
= (
∑

i |zi |p)1/p

Usual (Euclidean `2) distance: ‖z‖2
def
=
(∑

i |zi |2
)1/2

`1 (Taxicab) distance: ‖z‖1
def
= (
∑

i |zi |)
The `2-ball: {z : ‖z‖2 ≤ 1} (circle/sphere)

The `1-ball: {z : ‖z‖1 ≤ 1} (diamond/octahedron)

For signal f , fs (f B
s ) is its best s-sparse representation (in

basis B)

f̂ will denote the reconstruction of f

h = argminz g(z) is the argument z which minimizes g(z)
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How should we reconstruct f ?

Easy Theorem

Assume A is one-to-one on all s-sparse signals. Assume there is no
noise. Reconstruct an s-sparse signal f by:

f̂ = argmin
z
‖z‖0 such that Az = y .

Then we reconstruct f perfectly: f̂ = f .

Cool, except this problem is NP-Hard!
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Was that contrived?

Wait, did I cheat?
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Was that contrived?

{z : Az=y}

But in higher dimensions, for “sufficiently random” operators A,
this picture happens with extremely low probability!
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Okay, but what about noise?

Recall y = Af + ξ.
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Idea behind a method

From our geometric intuition, we can reconstruct the signal f from
its measurements y = Af + ξ:

1 If the measurement operator A is “well-behaved”
2 We can reconstruct our image f by solving

f̂ = argmin
z
‖z‖1 such that ‖Az − y‖2 ≤ r ,

where r bounds the noise term: ‖ξ‖2 ≤ r .
3 If f is sparse with respect to some orthonormal basis B,

meaning, f = Bx for sparse x ,

f̂ = argmin
z
‖B−1z‖1 such that ‖Az − y‖2 ≤ r ,

4 We call these methods the `1-minimization method, which are
easily solved by convex programming methods.
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How do we actually reconstruct the signal f from
measurements y?

`1-minimization [Candès-Romberg-Tao ’05]

Let A satisfy the Restricted Isometry Property and suppose f̂ is
the solution to the `1-minimization problem, from measurements
y = Af + ξ (with ‖ξ‖2 ≤ ε). Then we can stably recover the signal
f :

‖f − f̂ ‖2 . ε+
‖f − fs‖1√

s
.

Thus, the reconstruction error is proportional to the noise level and
the tail of the compressible signal. This error bound is optimal.
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Restricted Isometry Property

A satisfies the Restricted Isometry Property (RIP) when there
is δ < c such that

(1− δ)‖f ‖2 ≤ ‖Af ‖2 ≤ (1 + δ)‖f ‖2 whenever ‖f ‖0 ≤ s.

Gaussian or Bernoulli measurement matrices satisfy the RIP
with high probability when

m & s log N.

Random Fourier and others with fast multiply have similar
property: m & s log4 N.
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Image sparsity

Recall, some images are sparse:
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Imaging via compressed sensing

Results in compressed sensing [CRT ’06, etc.] imply:

if an image f ∈ RN×N is s-sparse

if the measurement operator satisfies the RIP

then using traditional `1-minimization,

‖f − f̂ ‖2 .
‖f − fs‖1√

s
+ ε
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Imaging via compressed sensing

Recall, some images are sparse with respect to some orthonormal
basis, like the Haar wavelet basis:

Figure: Haar basis functions
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Imaging via compressed sensing

Results in compressed sensing [CRT ’06, etc.] imply:

if f ∈ RN×N is s-sparse in an orthonormal basis B

if the measurement operator satisfies the RIP

then using `1-minimization with basis B,

‖f − f̂ ‖2 .
‖f − f B

s ‖1√
s

+ ε
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Other notions of sparsity for images

256× 256 “Boats” image
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Natural images

Images are compressible in the discrete gradient.
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Natural images

Images are compressible in the discrete gradient.

The discrete directional derivatives of an image f ∈ RN×N are

fx : RN×N → R(N−1)×N , (fx)j ,k = fj ,k − fj−1,k ,

fy : RN×N → RN×(N−1), (fy )j ,k = fj ,k − fj ,k−1,

the discrete gradient or total variation operator is

∇[f ] = (fx , fy )
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Natural Notation

Images are compressible in discrete gradient.

“Phantom”: ‖∇[f ]‖0 = .03N2

“Boats”: ‖∇[f ]−∇[f ]s‖2 decays quickly in s
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Total Variation Image Recovery
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Comparison of two compressed sensing reconstruction
algorithms

Haar-minimization (L1-Haar)

f̂Haar = argminZ ‖H(Z )‖1 subject to ‖AZ − y‖2 ≤ ε

Total Variation minimization (TV)

f̂TV = argminZ ‖∇[Z ]‖1 subject to ‖AZ − y‖2 ≤ ε, where

‖Z‖TV = ‖∇[Z ]‖1 is the total-variation norm.

The mapping Z → ∇[Z ] is not orthonormal, stable image recovery
via (TV) is not mathematically justified!
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Imaging via compressed sensing

(a) Original

(b) TV (c) L1-Haar

Figure: Reconstruction using m = .2N2
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Imaging via compressed sensing

(a) (Quantization)

(b) TV (c) L1-Haar

Figure: Reconstruction using m = .2N2 measurements
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Imaging via compressed sensing

(a) (Gaussian)

(b) TV (c) L1-Haar

Figure: Reconstruction using m = .2N2 measurements
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Imaging via compressed sensing

InView (Austin TX)

Figure: SWIR Reconstruction using m = .5N2 measurements
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Pediatric MRI
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Empirical → Theoretical?

TV Works

Empirically, it has been well known that

f̂TV = argmin ‖Z‖TV subject to ‖AZ − y‖2 ≤ ε, (TV )

provides quality, stable image recovery.

No provable stability guarantees.
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Stable signal recovery using total-variation minimization

Theorem (N-Ward ’12)

From m & s log(N) linear RIP measurements, for any f ∈ CN×N ,

f̂ = argmin ‖Z‖TV such that ‖A(Z )− y‖2 ≤ ε,

satisfies

‖f − f̂ ‖TV . ‖∇[f ]−∇[f ]s‖1 +
√

sε (gradient error)

and

‖f − f̂ ‖2 . log(N) ·
[‖∇[f ]−∇[f ]s‖1√

s
+ ε
]

(signal error)

This error guarantee is optimal up to the log(N) factor
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Stable signal recovery using total-variation minimization

Method of proof:

1 First prove stable gradient recovery

2 Translate stable gradient recovery to stable signal recovery
using a (nontrivial) Sobolev inequality which shows that Haar
coefficients of functions of bounded variation are in weak-`1
space.
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coefficients of functions of bounded variation are in weak-`1
space.
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Open questions

1 Remove the log factor?

2 The relationship between Haar compressibiity and total
variation norm doesn’t hold in one-dimension. What about
stable (1D) signal recovery?

3 [Patel, Maleh, Gilbert, Chellappa ’11] Images are even sparser
in individual directional derivatives fx , fy . If we minimize
separately over directional derivatives, can we still prove stable
recovery?

4 Extend results to higher dimensions...movies? [In preparation.]
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Movies are very sparse!

Movies are very sparse in all three dimensions

Silicon Retina (Institute of Neuroinformatics) is the design of
a camera that mimics retinas

Explanation of how the brain and eye communicate?
Really cool video cameras! (lower cost, lower power
consumption, portable, continuous processing, real-time data
acquisition)
Dynamic Vision Sensor (DVS) from Silicon Retina, Institute of
Neuroinformatics
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Fast vision in bad lighting

Figure: (“RoboGoalie”, Silicon Retina, Institute of Neuroinformatics)
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Fluid Particle Tracking Velocimetry

Figure: (“PTV”, Silicon Retina, Institute of Neuroinformatics)
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Mobile Robotics

Figure: (“Robotic Driver”, Silicon Retina, Institute of Neuroinformatics)
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Sleep disorder research

Figure: (“Sleeping Mouse”, Silicon Retina, Institute of Neuroinformatics)
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Thank you!

E-mail:

dneedell@cmc.edu

Web:

www.cmc.edu/pages/faculty/DNeedell
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