	SSCoSaMP	Some Theory	Conclusion

Greedy Methods for Generalized Sparse Approximation

Deanna Needell

September 26, 2014

This work was supported by NSF grant DMS-1045536, NSF Career grant #1348721, and the Alfred P. Sloan Fellowship.

Deanna Needell

	SSCoSaMP	Some Theory	Conclusion

Collaborators

Joint work with Alison Kingman, Chris Garnatz, James LaManna, Shenyinying Tu, Xiaoyi Gu (UCLA-Claremont Summer REU 2014)

Deanna Needell

・ロト・日本・日本・日本・日本・今日の

• It is a method of compression that can compress data efficiently.

・ロン ・回 と ・ ヨン ・ ヨン …

3

- It is a method of compression that can compress data efficiently.
- We can obtain this compression without having to acquire the entire object.

3

What is Compressed Sensing?

- It is a method of compression that can compress data efficiently.
- We can obtain this compression without having to acquire the entire object.
- CS works because most signals contain less information than their dimension would suggest.

イロン 不同 とくほう イロン

-

What is Compressed Sensing?

- It is a method of compression that can compress data efficiently.
- We can obtain this compression without having to acquire the entire object.
- CS works because most signals contain less information than their dimension would suggest.
- In our model we will only be working with *sparse* signals

Introduction	SSCoSaMP	Some Theory	Conclusion

Why is compression possible?

Assume *f* is s-sparse:

• In the coordinate basis: $||f||_0 \stackrel{\text{def}}{=} |\operatorname{supp}(()f)| \leq s \ll d$

・ロン ・回と ・ヨン ・ヨン

Deanna Needell

Introduction	SSCoSaMP	Some Theory	Conclusion

Why is compression possible?

Assume *f* is s-sparse:

- In the coordinate basis: $||f||_0 \stackrel{\text{def}}{=} |\operatorname{supp}(()f)| \le s \ll d$
- In some orthonormal basis: f = Dx where $||x||_0 \le s \ll d$

Deanna Needell

Introduction	SSCoSaMP	Some Theory	Conclusion

Why is compression possible?

Assume *f* is s-sparse:

- In the coordinate basis: $||f||_0 \stackrel{\text{def}}{=} |\operatorname{supp}(()f)| \le s \ll d$
- In some orthonormal basis: f = Dx where $||x||_0 \le s \ll d$
- In practice, we encounter compressible signals.

Deanna Needell

・ロン ・回 と ・ ヨ と ・ モン・

∃ nar

() Signal of interest $x \in \mathbb{R}^n$

Deanna Needell

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

- **1** Signal of interest $x \in \mathbb{R}^n$
- **2** Measurement operator $A : \mathbb{R}^n \to \mathbb{R}^m \ (m \ll n)$

- **(1)** Signal of interest $x \in \mathbb{R}^n$
- **2** Measurement operator $A : \mathbb{R}^n \to \mathbb{R}^m \ (m \ll n)$
- **③** Measurements y = Ax.

- **1** Signal of interest $x \in \mathbb{R}^n$
- **2** Measurement operator $A : \mathbb{R}^n \to \mathbb{R}^m \ (m \ll n)$
- **③** Measurements y = Ax.

Deanna Needell

Introduction	SSCoSaMP	Some Theory	Conclusion

Mathematical Formulation

To compress a signal, we take a small number of measurements:

- **1** Signal of interest $x \in \mathbb{R}^n$
- **2** Measurement operator $A : \mathbb{R}^n \to \mathbb{R}^m \ (m \ll n)$
- Measurements $y = Ax + \xi$.

y is the compression of x!

And then the measurements get corrupted with noise.

・ロン ・回 と ・ ヨン ・ ヨン … ヨ

Deanna Needell

Introduction	SSCoSaMP	Some Theory	Conclusion

MRI applications

Figure: Two different MRIs done on a young child. The left figures took 45 minutes. The right only took 8 minutes using compressed sensing

Deanna Needell

• ℓ_1 -minimization (Candès et. al., Donoho et. al.)

- ℓ_1 -minimization (Candès et. al., Donoho et. al.)
- Orthogonal Matching Pursuit (OMP) (Gilbert-Tropp)

3

- ℓ_1 -minimization (Candès et. al., Donoho et. al.)
- Orthogonal Matching Pursuit (OMP) (Gilbert-Tropp)
- Compressive Sampling Matching Pursuit (CoSaMP) (N-Tropp)

・ロン ・回 と ・ ヨ と ・ ヨ と …

-

- ℓ_1 -minimization (Candès et. al., Donoho et. al.)
- Orthogonal Matching Pursuit (OMP) (Gilbert-Tropp)
- Compressive Sampling Matching Pursuit (CoSaMP) (N-Tropp)

イロン 不同 とくほう イロン

3

• Many others (IHT, SP, ...)

Compressive Sampling Matching Pursuit (CoSaMP) Algorithm

COSAMP (N-Tropp)

```
input: Sampling operator A, measurements y, sparsity level s

initialize: Set x^0 = 0, i = 0.

repeat

signal proxy: Set p = A^*(y - Ax^i), \Omega = \operatorname{supp}(p_{2s}), T = \Omega \cup \operatorname{supp}(x^i).

signal estimation: Using least-squares, set b|_T = A_T^{\dagger}y and b|_{T^c} = 0.

prune and update: Increment i and to obtain the next approximation,

set x^i = b_s.

output: s-sparse reconstructed vector \widehat{x} = x^i
```

イロト イポト イヨト イヨト

Deanna Needell

	Problem	SSCoSaMP	Some Theory	Conclusion
Motivation	l			

• Many CS algorithms can recover a signal with sparse representation in orthonormal dictionary

	Problem	SSCoSaMP	Some Theory	Conclusion
IVIOTIVATIO	n			

- Many CS algorithms can recover a signal with sparse representation in orthonormal dictionary
- Unfortunately, most real world signals are sparse in non-orthonormal dictionaries

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

	Problem	SSCoSaMP	Some Theory	Conclusion
Motivati	on			

- Many CS algorithms can recover a signal with sparse representation in orthonormal dictionary
- Unfortunately, most real world signals are sparse in non-orthonormal dictionaries
- Little to no theory exists guaranteeing recovery in the non-orthonormal case!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

	Problem	SSCoSaMP	Some Theory	Conclusion
Motivati	on			

- Many CS algorithms can recover a signal with sparse representation in orthonormal dictionary
- Unfortunately, most real world signals are sparse in non-orthonormal dictionaries
- Little to no theory exists guaranteeing recovery in the non-orthonormal case!
- Signal Space CoSaMP (Davenport-N-Wakin) attempts to provide a practical solution for poorly-behaved dictionaries

	Problem	SSCoSaMP	Some Theory	Conclusion
~				

Compression

Deanna Needell Greedy Methods for Generalized Sparse Approximation

SSCoSaMP Algorithm

COSAMP (N-Tropp)

```
input: Sampling operator A, measurements y, sparsity level s

initialize: Set x^0 = 0, i = 0.

repeat

signal proxy: Set p = A^*(y - Ax^i), \Omega = \text{supp}(p_{2s}), T = \Omega \cup \text{supp}(x^i).

signal estimation: Using least-squares, set b|_T = A_T^{\dagger}y and b|_{T^c} = 0.

prune and update: Increment i and to obtain the next approximation,

set x^i = b_s.

output: s-sparse reconstructed vector \hat{x} = x^i
```


• Unfortunately, finding best *k*- or 2*k*-sparse representation is NP-hard

- Unfortunately, finding best k- or 2k-sparse representation is NP-hard
- Given only x, we need to find a sparse representation α such that $x=D\alpha$

・ロト ・同ト ・ヨト ・ヨト

э.

- Unfortunately, finding best k- or 2k-sparse representation is NP-hard
- Given only x, we need to find a sparse representation α such that $x=D\alpha$

3

• This is actually its own compressed sensing problem!

- Unfortunately, finding best k- or 2k-sparse representation is NP-hard
- Given only x, we need to find a sparse representation α such that $x=D\alpha$

3

- This is actually its own compressed sensing problem!
- (A very ill-posed one)

- Unfortunately, finding best k- or 2k-sparse representation is NP-hard
- Given only x, we need to find a sparse representation α such that $x=D\alpha$
- This is actually its own compressed sensing problem!
- (A very ill-posed one)
- Instead, SSCoSaMP computes near-optimal sparse support using simpler CS algorithm such as L1, OMP, CoSaMP, etc...

- Unfortunately, finding best *k* or 2*k*-sparse representation is NP-hard
- Given only x, we need to find a sparse representation α such that $x=D\alpha$
- This is actually its own compressed sensing problem!
- (A very ill-posed one)
- Instead, SSCoSaMP computes near-optimal sparse support using simpler CS algorithm such as L1, OMP, CoSaMP, etc...
- SSCoSaMP (Alg) denotes which algorithm is used for the identify/prune steps

Deanna Needell

Problem	SSCoSaMP	Some Theory	Conclusion

SSCoSaMP vs. CoSaMP

Figure: *D* is an orthogonal but non-normalized basis.

イロン イロン イヨン イヨン

э

Difficulties with SSCoSaMP

• Near-optimal support has to satisfy certain conditions to guarantee accurate recovery of SSCoSaMP.

3

Difficulties with SSCoSaMP

- Near-optimal support has to satisfy certain conditions to guarantee accurate recovery of SSCoSaMP.
- Theroetical guarantees rely on strong conditions for the near-optimal approximation, and these conditions do *not* depend on the signal structure.

-

Difficulties with SSCoSaMP

- Near-optimal support has to satisfy certain conditions to guarantee accurate recovery of SSCoSaMP.
- Theroetical guarantees rely on strong conditions for the near-optimal approximation, and these conditions do *not* depend on the signal structure.

-

• However...

Deanna Needell

	SSCoSaMP	Some Theory	Conclusion
Behavior			

Figure: The figure on the left in the case where the non-zeros of α are clustered together. The figure on the left is the case where the non-zeros are well separated.

Deanna Needell

Figure: Left: separations represent the number of zeros between two clusters size k/2. Right: separations represent the number of zeros between each nonzero entry. Measurements and sparsity are m = 100 and k = 8, respectively with a $4 \times$ overcomplete DFT dictionary.

	SSCoSaMP	Catalog	Some Theory	Conclusion

Hybrid signal

Figure: SSCoSaMP recovering a sparse vector with a hybrid sparse support: a block of k/2 nonzeros with the remaining k/2 nonzeros spaced at least 8 slots apart from all other nonzeros.

Deanna Needell

	SSCoSaMP	Catalog	Some Theory	Conclusion

Neighborly Orthogonal Matching Pursuit (NOMP)

- In each iteration, OMP adds the largest coordinate of the proxy signal to the support set.
- Experimental results show that OMP only performs well when recovering well separated signals.
- NOMP is an alteration to OMP in that it takes coordinates adjacent to the largest one.
- In our experiments, we used NOMP with a window of six coordinates.

Figure: Section of a 1024 × 1024, 4× overcomplete DFT dictionary. NOMP takes advantage of the correlated columns.

<ロ> <同> <同> < 回> < 回>

	SSCoSaMP	Catalog	Some Theory	Conclusion

NOMP

Figure: Percent perfect recovery of clustered signals (left) and well separated signals (right) and hybrid signals (bottom). NOMP is the only algorithm that performs well in all three cases.

Deanna Needell

Figure: Left: Increasing the separation between single coefficients. Right: Increasing the separation between two clusters of coefficients.

(日) (同) (三) (三)

Figure: Percent perfect recovery as the number of clusters increases.

イロト イポト イヨト イヨト

3

Deanna Needell

Greedy Methods for Generalized Sparse Approximation

	SSCoSaMP	Catalog	Some Theory	Conclusion

USSCoSaMP Algorithm

Input: A , D , y , <i>k</i> , stopping criterion							
Initialize: $r = y$, $x_0 =$	0, $\ell = 0$, $\Gamma_{old} = \emptyset$						
while not converged d	0						
Proxy:	$\widetilde{\mathbf{v}} = \mathbf{A}^* \mathbf{r}$						
Identify:	$\Omega = \mathcal{S}_{\boldsymbol{D}}(\boldsymbol{\widetilde{v}}, 2k)$						
Merge:	$T = \Omega \cup \Gamma_{old}$						
Least Squares:	$\widetilde{\boldsymbol{w}} = \operatorname{argmin} \boldsymbol{z} - \boldsymbol{A}\boldsymbol{x} _2 \text{s.t.} \boldsymbol{z} \in \mathcal{R}(\boldsymbol{D}_T)$						
Prune:	$\Gamma_{omp} = \overset{z}{\mathcal{S}}_{\mathcal{D}}(\widetilde{\boldsymbol{w}}, k)$						
	$\Gamma_{cosamp} = \mathcal{S}_{\boldsymbol{D}}(\widetilde{\boldsymbol{w}}, k)$						
Union:	$\Gamma = \Gamma_{omp} \cup \Gamma_{cosamp}$						
Least Squares:	$\widetilde{\mathbf{x}} = \operatorname{argmin} \mathbf{z} - \mathbf{A}\mathbf{x} _2 \text{s.t.} \mathbf{z} \in \mathcal{R}(\mathbf{D}_{\Gamma})$						
Update:	$\mathbf{x}_{\ell+1} = \overset{z}{\mathcal{P}}_{\Gamma} \widetilde{\mathbf{x}}$						
	$\mathbf{r} = \mathbf{y} - \mathbf{A}\mathbf{x}_{\ell+1}$						
	$\ell = \ell + 1$						
	$\Gamma_{old} = \Gamma$						
end while							
Output: $\hat{\mathbf{x}} = \mathbf{x}_{\ell}$							

◆□▶◆□▶◆≧▶◆≧▶ ≧ めへで

Deanna Needell

	SSCoSaMP	Catalog	Some Theory	Conclusion

USSCoSaMP Performance

Figure: Left: Clustered. Right: Well-Separated. 500 trials with k = 8, n = 256, d = 1024.

USSCoSaMP succeeds simultaneously for both signal models!

Deanna Needell

	SSCoSaMP	Catalog	Some Theory	Conclusion

USSCoSaMP Performance

Figure: Hybrid signal. 500 trials with k = 8, n = 256, d = 1024.

Deanna Needell

Catalog of empirical results

Method	Clustered	Spread	Hybrid	2 Clust	4 Clust	Alternating	Pair Spread
SSCoSaMP (CoSaMP)	100	0	0	20	0	100	0
SSCoSaMP (ℓ_1)	20	100	30	10	60	25	35
SSCoSaMP (OMP)	0	100	0	0	0	0	5
CoSaMP	100	0	10	100	60	100	0
OMP	0	60	0	0	0	0	10
ℓ_1	20	100	20	10	50	20	25
USSCoSaMP	100	100	65	80	30	100	10
NOMP	100	100	100	100	100	100	100

Table: SSCoSaMP variants and new algorithms' performance on various types of sparse coefficient vectors. All of which are sparse with respect to a $4 \times$ overcomplete DFT dictionary. A minimum of 40 trials were performed on each test.

	SSCoSaMP	Some Theory	Conclusion

SSCoSaMP(ℓ_1): Well-separated Signal (no noise)

• **Theorem** Let *D* be an $n \times d(n \le d)$ overcomplete DFT dictionary. Let signal *x* have a *k*-sparse expansion in *D*, i.e. $x = D\alpha$. If *T* is the support of α and obeys

$$\min_{t,t'\in T:t\neq t'}|t-t'|\geq 4k/n \tag{1}$$

then the solution to

$$\min ||\alpha_{est}||_1 \text{ subject to } D\alpha_{est} = x \tag{2}$$

is exact.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ▲国 ● の Q @

Deanna Needell

	SSCoSaMP	Some Theory	Conclusion

SSCoSaMP(ℓ_1): Well-separated Signal (no noise)

• **Theorem** Let *D* be an $n \times d(n \le d)$ overcomplete DFT dictionary. Let signal *x* have a *k*-sparse expansion in *D*, i.e. $x = D\alpha$. If *T* is the support of α and obeys

$$\min_{t,t'\in T:t\neq t'}|t-t'|\geq 4k/n \tag{1}$$

-

then the solution to

$$\min ||\alpha_{est}||_1 \text{ subject to } D\alpha_{est} = x \tag{2}$$

is exact.

 Therefore the near-optimal support is the same as the optimal support, which guarantees accurate recovery of SSCoSaMP(l₁).

	SSCoSaMP	Some Theory	Conclusion

SSCoSaMP(ℓ_1): Well-separated Signal (with noise)

 Corollary Let D be an n × d(n ≤ d) overcomplete DFT dictionary. Let signal x have a k-sparse expansion in D, i.e. x = Dα. Assume noise model x = Dα + e where α is k-sparse and ||e||₂ ≤ ε. Let T be the support of α and {α_t} be the set of nonzeros in α. If {α_t} obeys

$$\min_{t,t'\in T:t\neq t'}|t-t'|\geq 4k/n \tag{3}$$

イロト 不得 トイヨト イヨト 二日

then the solution to

 $\min ||\alpha_{est}||_1 \text{ subject to } ||D\alpha_{est} - x||_2 \le \varepsilon$ (4)

obeys $||\alpha_{est} - \alpha||_2 \leq C\varepsilon$.

Deanna Needell

SSCoSaMP(ℓ_1): Well-separated Signal (with noise)

 Corollary Let D be an n × d(n ≤ d) overcomplete DFT dictionary. Let signal x have a k-sparse expansion in D, i.e. x = Dα. Assume noise model x = Dα + e where α is k-sparse and ||e||₂ ≤ ε. Let T be the support of α and {α_t} be the set of nonzeros in α. If {α_t} obeys

$$\min_{t,t'\in T:t\neq t'}|t-t'|\geq 4k/n \tag{3}$$

then the solution to

 $\min ||\alpha_{est}||_1 \text{ subject to } ||D\alpha_{est} - x||_2 \le \varepsilon$ (4)

obeys $||\alpha_{est} - \alpha||_2 \leq C\varepsilon$.

• Additionally, $||D(\alpha_{est,k} - \alpha_{opt})||_2$ is bounded by $C\varepsilon$.

Deanna Needell

SSCoSaMP(OMP): Well-seperated signal (noiseless)

Theorem Let D be an n × d overcomplete DFT dictionary, α a k-sparse vector with support T. If α is well-seperated such that D_T is incoherent, then OMP recovers α exactly from x = Dα. In particular, OMP gives exact recovery if

$$egin{aligned} B(d_{\textit{min}}) &:= rac{1}{n(1-\delta_k)} \sum_{\ell=0}^{k-\lfloorrac{k}{2}
floor-1} |\cscrac{(\ell\cdot d_{\textit{min}}+\mu)\pi}{d} \sinrac{(\ell\cdot d_{\textit{min}}+\mu)n\pi}{d}| \ &+ \sum_{\ell=1}^{\lfloorrac{k}{2}
floor} |\cscrac{(\ell\cdot d_{\textit{min}}-\mu)\pi}{d} \sinrac{(\ell\cdot d_{\textit{min}}-\mu)n\pi}{d}| \leq 1 \end{aligned}$$

where d_{min} denotes the minimum distance between columns in T and μ denotes the minimum distance between columns in T and columns in T^c .

イロン 不同 とくほう イロン

	SSCoSaMP	Some Theory	Conclusion

SSCoSaMP(OMP): Well-seperated signal (noiseless)

Figure: When $\mu = 1, n = 256, d = 1024$, the value of $B(d_{min})$ with increasing sparsity k.

Deanna Needell

 Theorem Let D be an n × d overcomplete DFT dictionary, α a k-sparse vector with support T. Assume signal is corrupted by noise, x = Dα + e, where ||e||₂ ≤ ε. If D satisfies

 $B(d_{min}) < 1$

and the minimum magnitude of nonzero elements of $\boldsymbol{\alpha}$ obeys

$$\min_{i \in T} |\alpha_i| \ge \frac{\epsilon(\sqrt{\frac{d}{n}} + \sqrt{1 + \delta_k})}{1 - B(d_{\min})}$$

(日) (周) (日) (日) (日)

then OMP will exactly recover the support T (and thus $\|\hat{\alpha} - \alpha\|_2 \leq \epsilon$).

Deanna Needell

	SSCoSaMP	Some Theory	Conclusion

SSCoSaMP(OMP): Well-seperated signal (with noise)

Figure: When $||e||_2 = 10^{-3}$, the minimum magnitude of nonzero elements of well-separated signal α .

イロト イポト イヨト イヨト

Deanna Needell

	SSCoSaMP	Some Theory	Conclusion
Summary			

• Rigorous empirical investigation into the recovery performance of several methods for several classes of sparse signals.

(日) (周) (日) (日) (日)

	SSCoSaMP	Some Theory	Conclusion
Summary			

• Rigorous empirical investigation into the recovery performance of several methods for several classes of sparse signals.

イロト 不得 とくほと くほとう ほ

 Algorithm design that successfully recovers arbitrary sparse signals in a DFT dictionary that improves upon existing methods.

	SSCoSaMP	Some Theory	Conclusion
Summary			

- Rigorous empirical investigation into the recovery performance of several methods for several classes of sparse signals.
- Algorithm design that successfully recovers arbitrary sparse signals in a DFT dictionary that improves upon existing methods.
- Provid theoretical backing for the success of SSCoSaMP(OMP) and SSCoSaMP(ℓ_1) in the well-separated case.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

Problem	SSCoSaMP	Catalog	Some Theory	Conclusion

Thank you!

References:

- M. A. Davenport and M. B. Wakin. Compressive sensing of analog signals using discrete prolate spheroidal sequences. Appl. Comput. Harmon. A., 2011, to appear.
- M. A. Davenport, D. Needell and M. B. Wakin. Signal Space CoSaMP for Sparse Recovery with Redundant Dictionaries, IEEE Trans. Info. Theory, vol. 59, iss. 10, 6820 - 6829, 2013.
- R. Giryes and D. Needell. Greedy Signal Space Methods for Incoherence and Beyond, Appl. Harmon. Analysis, to appear.
- D. Needell and J. A. Tropp. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 26(3):301-321, 2008.

イロト 不得 とくほと くほとう ほ