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What is Compressed Sensing?

It is a method of compression that can compress data
efficiently.

We can obtain this compression without having to acquire the
entire object.

CS works because most signals contain less information than
their dimension would suggest.

In our model we will only be working with sparse signals
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Why is compression possible?

Assume f is s-sparse:

In the coordinate basis: ‖f ‖0
def
= | supp(()f )| ≤ s � d

In some orthonormal basis: f = Dx where ‖x‖0 ≤ s � d

In practice, we encounter compressible signals.
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Mathematical Formulation

To compress a signal, we take a small number of measurements:

1 Signal of interest x ∈ Rn

2 Measurement operator A : Rn → Rm (m� n)

3 Measurements y = Ax .

y
 =

 A



x


4 y is the compression of x!
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Mathematical Formulation

To compress a signal, we take a small number of measurements:

1 Signal of interest x ∈ Rn

2 Measurement operator A : Rn → Rm (m� n)

3 Measurements y = Ax + ξ.

y
 =

 A



x

 +

ξ


4 y is the compression of x!

5 And then the measurements get corrupted with noise.
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MRI applications

Figure: Two different MRIs done on a young child. The left figures took 45 minutes.
The right only took 8 minutes using compressed sensing
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Compressed Sensing Algorithms

`1-minimization (Candès et. al., Donoho et. al. )

Orthogonal Matching Pursuit (OMP) (Gilbert-Tropp)

Compressive Sampling Matching Pursuit (CoSaMP)
(N-Tropp)

Many others (IHT, SP, ...)
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Compressive Sampling Matching Pursuit (CoSaMP)
Algorithm
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Motivation

Many CS algorithms can recover a signal with sparse
representation in orthonormal dictionary

Unfortunately, most real world signals are sparse in
non-orthonormal dictionaries

Little to no theory exists guaranteeing recovery in the
non-orthonormal case!

Signal Space CoSaMP (Davenport-N-Wakin) attempts to
provide a practical solution for poorly-behaved dictionaries
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Compression
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SSCoSaMP Algorithm
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SSCoSaMP Details

Unfortunately, finding best k- or 2k-sparse representation is
NP-hard

Given only x , we need to find a sparse representation α such
that x = Dα

This is actually its own compressed sensing problem!

(A very ill-posed one)

Instead, SSCoSaMP computes near-optimal sparse support
using simpler CS algorithm such as L1, OMP, CoSaMP, etc...

SSCoSaMP (Alg) denotes which algorithm is used for the
identify/prune steps
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SSCoSaMP vs. CoSaMP

Figure: D is an orthogonal but non-normalized basis.
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Difficulties with SSCoSaMP

Near-optimal support has to satisfy certain conditions to
guarantee accurate recovery of SSCoSaMP.

Theroetical guarantees rely on strong conditions for the
near-optimal approximation, and these conditions do not
depend on the signal structure.

However...
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Behavior

Figure: The figure on the left in the case where the non-zeros of α are clustered
together. The figure on the left is the case where the non-zeros are well separated.
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Signal Tests

Figure: Left: separations represent the number of zeros between two clusters size
k/2. Right: separations represent the number of zeros between each nonzero entry.
Measurements and sparsity are m = 100 and k = 8, respectively with a 4×
overcomplete DFT dictionary.
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Hybrid signal

Figure: SSCoSaMP recovering a sparse vector with a hybrid sparse
support: a block of k/2 nonzeros with the remaining k/2 nonzeros
spaced at least 8 slots apart from all other nonzeros.
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Neighborly Orthogonal Matching Pursuit (NOMP)

In each iteration, OMP adds
the largest coordinate of the
proxy signal to the support set.

Experimental results show that
OMP only performs well when
recovering well separated
signals.

NOMP is an alteration to OMP
in that it takes coordinates
adjacent to the largest one.

In our experiments, we used
NOMP with a window of six
coordinates.

Figure: Section of a 1024× 1024, 4× overcomplete
DFT dictionary. NOMP takes advantage of the
correlated columns.

Deanna Needell

Greedy Methods for Generalized Sparse Approximation



Introduction Problem SSCoSaMP Catalog Some Theory Conclusion

NOMP

Figure: Percent perfect recovery of clustered signals (left) and well separated signals
(right) and hybrid signals (bottom). NOMP is the only algorithm that performs well in
all three cases.
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NOMP

Figure: Left: Increasing the separation between single coefficients. Right:
Increasing the separation between two clusters of coefficients.
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NOMP

Figure: Percent perfect recovery as the number of clusters increases.

Deanna Needell

Greedy Methods for Generalized Sparse Approximation



Introduction Problem SSCoSaMP Catalog Some Theory Conclusion

USSCoSaMP Algorithm

Input: A, D, y , k, stopping criterion
Initialize: r = y , x0 = 0, ` = 0, Γold = ∅
while not converged do

Proxy: ṽ = A∗r
Identify: Ω = SD(ṽ , 2k)
Merge: T = Ω ∪ Γold

Least Squares: w̃ = argmin
z
||z − Ax ||2 s.t. z ∈ R(DT )

Prune: Γomp = SD(w̃ , k)
Γcosamp = SD(w̃ , k)

Union: Γ = Γomp ∪ Γcosamp

Least Squares: x̃ = argmin
z
||z − Ax ||2 s.t. z ∈ R(DΓ)

Update: x`+1 = PΓx̃

r = y − Ax`+1

` = `+ 1
Γold = Γ

end while
Output: x̂ = x`
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USSCoSaMP Performance

Figure: Left: Clustered. Right: Well-Separated. 500 trials with k = 8,
n = 256, d = 1024.

USSCoSaMP succeeds simultaneously for both signal models!
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USSCoSaMP Performance

Figure: Hybrid signal. 500 trials with k = 8, n = 256, d = 1024.
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Catalog of empirical results

Method Clustered Spread Hybrid 2 Clust 4 Clust Alternating Pair Spread

SSCoSaMP (CoSaMP) 100 0 0 20 0 100 0
SSCoSaMP (`1) 20 100 30 10 60 25 35
SSCoSaMP (OMP) 0 100 0 0 0 0 5
CoSaMP 100 0 10 100 60 100 0
OMP 0 60 0 0 0 0 10
`1 20 100 20 10 50 20 25
USSCoSaMP 100 100 65 80 30 100 10
NOMP 100 100 100 100 100 100 100

Table: SSCoSaMP variants and new algorithms’ performance on various
types of sparse coefficient vectors. All of which are sparse with respect to
a 4× overcomplete DFT dictionary. A minimum of 40 trials were
performed on each test.
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SSCoSaMP(`1): Well-separated Signal (no noise)

Theorem Let D be an n × d(n ≤ d) overcomplete DFT dictionary.
Let signal x have a k-sparse expansion in D, i.e. x = Dα. If T is
the support of α and obeys

min
t,t′∈T :t 6=t′

|t − t ′| ≥ 4k/n (1)

then the solution to

min ||αest ||1 subject to Dαest = x (2)

is exact.

Therefore the near-optimal support is the same as the optimal
support, which guarantees accurate recovery of SSCoSaMP(`1).
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SSCoSaMP(`1): Well-separated Signal (with noise)

Corollary Let D be an n × d(n ≤ d) overcomplete DFT dictionary.
Let signal x have a k-sparse expansion in D, i.e. x = Dα. Assume
noise model x = Dα + e where α is k-sparse and ||e||2 ≤ ε. Let T
be the support of α and {αt} be the set of nonzeros in α. If {αt}
obeys

min
t,t′∈T :t 6=t′

|t − t ′| ≥ 4k/n (3)

then the solution to

min ||αest ||1 subject to ||Dαest − x ||2 ≤ ε (4)

obeys ||αest − α||2 ≤ Cε.

Additionally, ||D(αest,k − αopt)||2 is bounded by Cε.

Deanna Needell

Greedy Methods for Generalized Sparse Approximation



Introduction Problem SSCoSaMP Catalog Some Theory Conclusion

SSCoSaMP(`1): Well-separated Signal (with noise)

Corollary Let D be an n × d(n ≤ d) overcomplete DFT dictionary.
Let signal x have a k-sparse expansion in D, i.e. x = Dα. Assume
noise model x = Dα + e where α is k-sparse and ||e||2 ≤ ε. Let T
be the support of α and {αt} be the set of nonzeros in α. If {αt}
obeys

min
t,t′∈T :t 6=t′

|t − t ′| ≥ 4k/n (3)

then the solution to

min ||αest ||1 subject to ||Dαest − x ||2 ≤ ε (4)

obeys ||αest − α||2 ≤ Cε.

Additionally, ||D(αest,k − αopt)||2 is bounded by Cε.

Deanna Needell

Greedy Methods for Generalized Sparse Approximation



Introduction Problem SSCoSaMP Catalog Some Theory Conclusion

SSCoSaMP(OMP): Well-seperated signal (noiseless)

Theorem Let D be an n × d overcomplete DFT dictionary, α
a k-sparse vector with support T . If α is well-seperated such
that DT is incoherent, then OMP recovers α exactly from
x = Dα. In particular, OMP gives exact recovery if

B(dmin) :=
1

n(1− δk)

k−b k
2
c−1∑

`=0

| csc (` · dmin + µ)π

d
sin

(` · dmin + µ)nπ

d
|

+

b k
2
c∑

`=1

| csc (` · dmin − µ)π
d

sin
(` · dmin − µ)nπ

d
| ≤ 1

where dmin denotes the minimum distance between columns
in T and µ denotes the minimum distance between columns
in T and columns in T c .
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SSCoSaMP(OMP): Well-seperated signal (noiseless)

Figure: When µ = 1, n = 256, d = 1024, the value of B(dmin) with increasing
sparsity k.
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SSCoSaMP(OMP): Well-seperated signal (with noise)

Theorem Let D be an n × d overcomplete DFT dictionary, α
a k-sparse vector with support T . Assume signal is corrupted
by noise, x = Dα + e, where ||e||2 ≤ ε. If D satisfies

B(dmin) < 1

and the minimum magnitude of nonzero elements of α obeys

min
i∈T
|αi | ≥

ε(
√

d
n +
√

1 + δk)

1− B(dmin)

then OMP will exactly recover the support T (and thus
‖α̂− α‖2 ≤ ε).
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SSCoSaMP(OMP): Well-seperated signal (with noise)

Figure: When ||e||2 = 10−3, the minimum magnitude of nonzero elements
of well-separated signal α.
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Summary

Rigorous empirical investigation into the recovery performance
of several methods for several classes of sparse signals.

Algorithm design that successfully recovers arbitrary sparse
signals in a DFT dictionary that improves upon existing
methods.

Provid theoretical backing for the success of
SSCoSaMP(OMP) and SSCoSaMP(`1) in the well-separated
case.
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Thank you!
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