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Introduction Applications Results

Problem Background

Notation

1 x is an unknown signal in R
d .

2 Measurement matrix A : Rd → R
m.

3 Noisy measurements y = Ax + e.
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4 Assume x is s-sparse: ‖x‖0 def

= | supp(x)| ≤ s ≪ d .

5 sparsity, measurements, dimension
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Problem Background

RIP

Restricted Isometry Property (RIP)

A satisfies the restricted isometry property (RIP) with
parameters (s, δ) (or with RIC δs) if

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 whenever ‖x‖0 ≤ s.

For Gaussian or Bernoulli measurement matrices, with high
probability

δ ≤ c < 1 when m & s log d .

Random Fourier and others with fast multiply have similar
property.
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Problem Background

Methods

The literature has provided us with many algorithms for recovery.
One of these is ℓ1-minimization:

x⋆ = argmin ||z ||1 such that ‖Az − y‖2 ≤ γ,

where ‖e‖2 ≤ γ.

L1-Minimization [Candès-Romberg-Tao]

Assume that the measurement matrix A satisfies the RIP with
parameters (3s, 0.2). Then the reconstructed signal x⋆ satisfies:

‖x⋆ − x‖2 ≤ C
‖x − xs‖1√

s
+ Cγ.

The sharpest result is due to Foucart who shows the above holds
with RIP parameters (2s, 0.4652).
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Problem Background

Methods

There are also greedy algorithms, which provide reconstruction
guarantees and are often faster. For example, we have Compressive
Sampling Matching Pursuit (N.-Tropp):

CoSaMP:

Initialize: a = 0, v = y

Signal Proxy: u = A∗v , Ω = supp (u2s),
T = Ω ∪ supp (a)

Signal Estimation: w |T = A
†
T
y , w |T c = 0

Prune: a = ws

Sample Update: v = y − Aa
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Problem Background

Guarantees

Theorem [N.-Tropp]:

For any measurement matrix satisfying the RIP with parameters
(2s, 0.1), the reconstructed signal x♯ from its noisy measurements
y = Ax + e in at most 6s iterations:

‖x♯ − x‖2 ≤ C
(

‖e‖2 +
‖x − xs‖1√

s

)

.
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CS Applications

Applications of CS

Some of the many applications of compressed sensing physically
implement the encoding matrix in a sensor. For example in remote
sensing we have:
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CS Applications

Applications of CS

The exact Green’s function for the Helmholtz equation for
monochromatic waves is

G ex(a, r) =
εiω|r−a|

4π|r − a| , a = (0, ξ, η), r = (z0, x , y).

The paraxial approximation to Green’s function is given by

G par(a, r) =
εiωz0

4πz0
εiω|x−ξ|2/(2z0) εiω|y−η|2/(2z0).

Then the encoding matrix A is given by

Aij = G ex(ai , rj), ith antenna, jth target location.

and the decoding matrix,

Φij = G par(ai , rj).
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CS Applications

Applications of CS

We may also assume the targets like on some lattice, inducing
error into the sensing matrix.
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CS Applications

Applications of CS

Another example - Screening for genetic disorders using DNA
samples. Error is introduced into the sensing matrix from human
handling when pipetting the DNA samples.
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CS Applications

Applications of CS

Another example - For source separation there are errors in
estimating the mixing matrix.
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CS Applications

Applications of CS

Another example - We may even encounter very small corruptions
in the measurement matrix from its storage throughout time in
memory.
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Mixed Operators

Framework

We will now consider the framework in which we encode with one
matrix A and decode with a possibly different matrix Φ. This
yields a completely perturbed system that allows for additive error
as well as multiplicative error.

Q: Why not simply treat the multiplicative noise in the same way
as the additive noise?
A: These type of errors are fundamentally different. Increasing the
strength of the signal will not reduce the signal to noise ratio in
the multiplicative case.
Goals: How does this affect reconstruction error? How different
can the two matrices be?
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Mixed Operators

Quantities & Assumptions

Quantities

Sparsity: αs =
‖x−xs‖2
‖xs‖2 , βs =

‖x−xs‖1√
s‖xs‖2

Perturbations: ε
(s)
A =

‖A−Φ‖(s)2

‖A‖(s)2

, εA = ‖A−Φ‖2
‖A‖2 , ε = ‖A− Φ‖2

RIP Ratios: κA =
√
1+δs√
1−δs

, γA = ‖A‖2√
1−δs

Assumptions

RIP on A: δ2s <
√
2

(

1+ε
(2s)
A

)2 − 1

Sparsity: αs + βs < 1

κ
(s)
A
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Mixed Operators

Results

Theorem [Herman-Strohmer]

Let x be an arbitrary signal with measurements b = Ax , corrupted
with noise to form y = Ax + e. Set the total noise parameter

εA,s,b :=

(

ε
(s)
A κA + εAγAαs

1− κA
(

αs + βs
)

)

‖b‖2 + ‖e‖2.

Then under the above assumptions, the ℓ1-reconstruction x⋆ using
matrix Φ and noisy measurements y = b + e satisfies

‖z⋆ − x‖2 ≤ C0√
s
‖x− xs‖1 + C1εA,s,b.
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Mixed Operators

Numerical Results

Figure: [“General Deviants: An Analysis of Perturbations in Compressed
Sensing,” Herman, Strohmer ’09] (m=128, d=512)
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Mixed Operators

Numerical Results

Figure: Simulation of remote sensing results.
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Mixed Operators

Results

Theorem [Herman-N.]

Let A be a measurement matrix with RIC

δ4s ≤
1.1

(1 + ε
(4s)
A )2

− 1.

Let x be an arbitrary signal with measurements b = Ax , corrupted
with noise to form y = Ax + e. Then under similar assumptions,
the reconstruction x♯ using matrix Φ from CoSaMP satisfies

‖x♯−x‖2 ≤ C ·
(

‖x − xs‖2 +
‖x − xs‖1√

s
+ (εαs + ε(s))‖b‖2 + ‖e‖2

)

.
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Mixed Operators

Numerical Results

[“Mixed Operators in Compressed Sensing,” Herman, N. ’10]
(m=128, d=512)
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Mixed Operators

Summary

Conclusions

Important to consider perturbations in the signal,
measurements, and measurement matrices for applications of
CS

Stability of ℓ1 and CoSaMP is a linear function of the
perturbations ‖A − Φ‖2, ‖e‖2
This type of analysis may lead to better strategies to minimize
recovery error in particular applications
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For more information

E-mail:

dneedell@stanford.edu

mattyh@math.ucla.edu

Web:

www-stat.stanford.edu/~dneedell

www.math.ucla.edu/~mattyh/
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