Bridging Matrix Recovery Gaps using Manifolds

Deanna Needell

Claremont McKenna College
Joint work with Y. C. Eldar [Technion], Y. Plan [Univ. of Michigan]

ANTC Seminar, Claremont, Jan. 2012

Outline

- Compressed Sensing (CS)
- Applications
- Mathematical Formulation
- Best known results
- CS's sister: Matrix recovery
- Applications
- Mathematical Formulation
- Best known results
- Comparison of the two problems
- The question unanswered
- Our answer
- Proof via manifold theory

Applications

Digital Cameras

Today's digital cameras already "old school?"

Applications

Digital Cameras

Save your nickels to buy the new digital camera?

Applications

Digital Cameras

Save your nickels to buy the new digital camera?

CS Applications

00000000000

Applications

Digital Cameras

Save your nickels to buy the new digital camera?

Applications

Digital Cameras

Save your nickels to buy the new digital camera?

(Original)

(2\%)

Applications

Digital Cameras

Save your nickels to buy the new digital camera?

(Original)

(10\%)

CS Applications 000000 00000
Applications

Digital Cameras

Save your nickels to buy the new digital camera?

20\%

CS Applications 00000000000

Applications

MRI

Feeling claustrophobic?

It'll only last a quick 45 minutes...

CS Applications 00000000000

Applications

MRI

Figure 1: Example of a simple recovery problem. (a) The Logan-Shepp phantom test image (b) Sampling domain Ω in the frequency plane; Fourier coefficients are sampled along 22 approximately radial lines. (c) Minimum energy reconstruction obtained by setting unobserved Fourier coefficients to zero. (d) Reconstruction obtained by minimizing the total variation, as in (1.1). The reconstruction is an exact replica of the image in (a).

CS Applications

Applications

Pediatric MRI

(a)

(c)

(b)

(d)
(a-d) Submillimeter near-isotropic-resolution contrast-enhanced T1-weighted MR images in 8 -year-old boy. (a, c) Standard and (b, d) compressed sensing reconstruction images. (c, d) Zoomed images show improved delineation of the pancreatic duct (vertical arrow), bowel (horizontal arrow), and gallbladder wall (arrowhead), and equivalent definition of portal vein (black arrow) with L1 SPIR-iT reconstruction.

CS Applications

Applications

Many more...

- Radar
- Error Correction
- Computational Biology (DNA Microarrays)
- Geophysical Data Analysis
- Data Mining, classification
- Neuroscience
- ...

The mathematical problem

(1) Signal of interest $f \in \mathbb{R}^{d}$
(2) Measurement matrix $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$
(3) Measurements $y=A f$.

(4) Problem: Reconstruct signal f from measurements y

The mathematical problem

(1) Signal of interest $f \in \mathbb{R}^{d}$
(2) Measurement matrix $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$.
(3) Measurements $y=A f$

(4) Problem: Reconstruct signal f from measurements y

The mathematical problem

(1) Signal of interest $f \in \mathbb{R}^{d}$
(2) Measurement matrix $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$.
(3) Measurements $y=A f$.

$$
[y]=[\quad A[f]
$$

(4) Problem: Reconstruct signal f from measurements y

The mathematical problem

(1) Signal of interest $f \in \mathbb{R}^{d}$
(2) Measurement matrix $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$.
(3) Measurements $y=A f$.

$$
[y]=\left[\begin{array}{ll}
& A \\
& \\
& \\
& \\
\\
\end{array}\right.
$$

(4) Problem: Reconstruct signal f from measurements y

The mathematical problem

reconstruct: $y \rightarrow f$

Wait, isn't this impossible?

Without further assumptions, this problem is ill-posed.

Why will this work?

Most signals of interest contain far less information than their dimension d suggests.

Assume f is sparse:

- In the coordinate basis: $\|f\|_{0} \stackrel{\text { def }}{=}|\operatorname{supp}(f)| \leq s \ll d$

In practice, we encounter compressible signals, and the
measurements have noise. (Not in this talk.)

Wait, isn't this impossible?

Without further assumptions, this problem is ill-posed.

Why will this work?

Most signals of interest contain far less information than their dimension d suggests.

Assume f is sparse:

- In the coordinate basis: $\|f\|_{0} \stackrel{\text { def }}{=}|\operatorname{supp}(f)| \leq s \ll d$

In practice, we encounter compressible signals, and the
measurements have noise. (Not in this talk.)

Wait, isn't this impossible?

Without further assumptions, this problem is ill-posed.

Why will this work?

Most signals of interest contain far less information than their dimension d suggests.

Assume f is sparse:

- In the coordinate basis: $\|f\|_{0} \stackrel{\text { def }}{=}|\operatorname{supp}(f)| \leq s \ll d$.

In practice, we encounter compressible signals, and the
measurements have noise. (Not in this talk.)

Wait, isn't this impossible?

Without further assumptions, this problem is ill-posed.

Why will this work?

Most signals of interest contain far less information than their dimension d suggests.

Assume f is sparse:

- In the coordinate basis: $\|f\|_{0} \stackrel{\text { def }}{=}|\operatorname{supp}(f)| \leq s \ll d$.

In practice, we encounter compressible signals, and the measurements have noise. (Not in this talk.)

How do we actually reconstruct?

$$
[y]=[
$$

A

Important Questions

- What kind(s) of measurement matrices A ?
- How many measurements needed?
- Are the guarantees uniform?
- Is algorithm stable?
- Fast runtime?

How do we actually reconstruct?

$$
[y]=[
$$

A

Important Questions

- What kind(s) of measurement matrices A?
- How many measurements needed?
- Are the guarantees uniform?
- Is algorithm stable?

Fast runtime?

How do we actually reconstruct?

$$
[y]=[
$$

A

Important Questions

- What kind(s) of measurement matrices A?
- How many measurements needed?
- Are the guarantees uniform?

- Is algorithm stable?

Fast runtime?

How do we actually reconstruct?

$$
[y]=[
$$

A

Important Questions

- What kind(s) of measurement matrices A?
- How many measurements needed?
- Are the guarantees uniform?
- Is algorithm stable?

Fast runtime?

How do we actually reconstruct?

$$
[y]=[\quad A \quad f
$$

Important Questions

- What kind(s) of measurement matrices A?
- How many measurements needed?
- Are the guarantees uniform?
- Is algorithm stable?
- Fast runtime?

ℓ_{0}-optimization

The First CS Theorem

Let A be one-to-one on s-sparse vectors and set:

$$
\hat{f}=\underset{g}{\operatorname{argmin}}\|g\|_{0} \quad \text { such that } \quad A g=y .
$$

Then in the noiseless case, we have perfect recovery of all s-sparse signals: $\hat{f}=f$.

Proof:

Easy!

Moral of the story:
Theoretically, we need only $m=2 s$ measurements.

ℓ_{0}-optimization

The First CS Theorem

Let A be one-to-one on s-sparse vectors and set:

$$
\hat{f}=\underset{g}{\operatorname{argmin}}\|g\|_{0} \quad \text { such that } \quad A g=y .
$$

Then in the noiseless case, we have perfect recovery of all s-sparse signals: $\hat{f}=f$.

Proof:

Easy!

Moral of the story:

Theoretically, we need only $m=2 s$ measurements.

ℓ_{0}-optimization

The First CS Theorem

Let A be one-to-one on s-sparse vectors and set:

$$
\hat{f}=\underset{g}{\operatorname{argmin}}\|g\|_{0} \quad \text { such that } \quad A g=y .
$$

Then in the noiseless case, we have perfect recovery of all s-sparse signals: $\hat{f}=f$.

Proof:

Easy!

Moral of the story:

Theoretically, we need only $m=2 s$ measurements.

Just relax: ℓ_{1}-optimization

Relaxation [Candès-Tao]

Let A satisfy the Restricted Isometry Property for $2 s$-sparse vectors and set:

$$
\hat{f}=\underset{g}{\operatorname{argmin}}\|g\|_{1} \quad \text { such that } \quad A g=y .
$$

Then in the noiseless case, we have perfect recovery of all s-sparse signals: $\hat{f}=f$.

Proof:

Just relax: ℓ_{1}-optimization

Relaxation [Candès-Tao]

Let A satisfy the Restricted Isometry Property for $2 s$-sparse vectors and set:

$$
\hat{f}=\underset{g}{\operatorname{argmin}}\|g\|_{1} \quad \text { such that } \quad A g=y .
$$

Then in the noiseless case, we have perfect recovery of all s-sparse signals: $\hat{f}=f$.

Proof:
 (Not so easy)

Restricted Isometry Property

- A satisfies the Restricted Isometry Property (RIP) when there is $\delta<c$ such that

$$
(1-\delta)\|f\|_{2} \leq\|A f\|_{2} \leq(1+\delta)\|f\|_{2} \quad \text { whenever }\|f\|_{0} \leq s
$$

- Gaussian or Bernoulli measurement matrices satisfy the RIP with high probability when

Restricted Isometry Property

- A satisfies the Restricted Isometry Property (RIP) when there is $\delta<c$ such that

$$
(1-\delta)\|f\|_{2} \leq\|A f\|_{2} \leq(1+\delta)\|f\|_{2} \quad \text { whenever }\|f\|_{0} \leq s
$$

- Gaussian or Bernoulli measurement matrices satisfy the RIP with high probability when

$$
m \gtrsim s \log d
$$

Random Fourier and others with fast multiply have similar property: $m \gtrsim s \log ^{4} d$.

Moral of the story:
Practically, we need only $m=s \log d$ measurements.

Restricted Isometry Property

- A satisfies the Restricted Isometry Property (RIP) when there is $\delta<c$ such that

$$
(1-\delta)\|f\|_{2} \leq\|A f\|_{2} \leq(1+\delta)\|f\|_{2} \quad \text { whenever }\|f\|_{0} \leq s
$$

- Gaussian or Bernoulli measurement matrices satisfy the RIP with high probability when

$$
m \gtrsim s \log d
$$

- Random Fourier and others with fast multiply have similar property: $m \gtrsim s \log ^{4} d$.

Restricted Isometry Property

- A satisfies the Restricted Isometry Property (RIP) when there is $\delta<c$ such that

$$
(1-\delta)\|f\|_{2} \leq\|A f\|_{2} \leq(1+\delta)\|f\|_{2} \quad \text { whenever }\|f\|_{0} \leq s
$$

- Gaussian or Bernoulli measurement matrices satisfy the RIP with high probability when

$$
m \gtrsim s \log d
$$

- Random Fourier and others with fast multiply have similar property: $m \gtrsim s \log ^{4} d$.

Moral of the story:

Practically, we need only $m=s \log d$ measurements.

CS Math 0000000 •

MR Applications

Mathematical Formulation

The gap

Problem:	CS		
Theoretical	min $\\|f\\|_{0}$		
Practical	min $\\|f\\|_{1}$		
m for Practical	$m \geq s \log n$		
m for Theoretical	$m \geq 2 s$		

The gap

Problem:	CS		
Theoretical	$\min \\|f\\|_{0}$		
Practical	$\min \\|f\\|_{1}$		
m for Practical	$m \geq s \log n$		
m for Theoretical	$m \geq 2 s$		

The gap

Problem:	CS		
Theoretical	$\min \\|f\\|_{0}$		
Practical	$\min \\|f\\|_{1}$		
m for Practical	$m \gtrsim s \log n$		
m for Theoretical	$m \geq 2 s$		

The gap

Problem:	CS		
Theoretical	$\min \\|f\\|_{0}$		
Practical	$\min \\|f\\|_{1}$		
m for Practical	$m \gtrsim s \log n$		
m for Theoretical	$m \geq 2 s$		

The gap

Problem:	CS		
Theoretical	$\min \\|f\\|_{0}$		
Practical	$\min \\|f\\|_{1}$		
m for Practical	$m \gtrsim s \log n$		
m for Theoretical	$m \geq 2 s$		

Applications

The Netflix problem

That check is worth how much??

Applications

The Netflix problem

Tell us how you really feel...

Movies You've Rated

Based on your 745 movie ratings, this is the list of movies you've seen. As you discover movies on the website that you've seen, rate them and they will show up on this list. On this page, you may change the rating for any movie you've seen, and you may remove a movie from this list by clicking the 'Clear Rating' button.

	TITLE	MPAA	GENRE	STAR RATING -	
Add	12 Angry Men (1957)	UR	Classics		[Clear Rating
Add	The 39 Steps (1935)	UR	Classics		E Clear Rating
Add	An American In Paris (1951)	UR	Classics		7-Clear Rating
Add	The Andromeda Strain (1971)	G	Sci-Fis Fantasy		E Clear Rating
Add	Apollo 13 (1995)	PG	Drama		- Clear Rating
Add	The Battle of Algiers (1965) La Battaglia di Algeri	UR	Foreign		B- Clear Rating
Add	Being There (1979)	PG	Drama		E Clear Rating
Add	Big Deal on Madonna Street (1958) I solitignoti	UR	Foreign		6- Clear Rating
Add	The Birds (1963)	PG-43	Thrilers		E Clear Rating
Add	Blade Runner (1982)	R	 Fantasy		\# Clear Rating

Applications

The Netflix problem

And we'll tell you how you really feel...

FOREIGN SUGGESTIONS (about 104) See all ?

Let the Right One In

Because you enjoyed:
Seven Samurai
This Is Spinal Tap
The Big Lebowsk

DRAMA SUGGESTIONS (about 82) See all ?

	The Wrestler		The Visitor
THE WRESTIER	Because you enjoyed:	(ia)	Because you enjoyed:
	Sin City	(s)	Gandhi
	The Big Lebowski	s-Visitor	The Motorcycle Diaries
		Fror	The Queen
Add		Add	
Q Not interested		Q Not Interested	

Applications

Collaborative Filtering

We can use other people's preferences too, but still...

Applications

Surveillance

Separation of foreground and background!

Applications

Computer Vision

Removing shadow and lighting effects!

Applications

Removing corruptions

And now enjoy the film...

Original D

Repaired A

Tilt [Candès et.al.]

For humans and computers who have trouble reading sideways...

Input (red window)

Applications

Tilt [Candès et.al.]

Fixing the leaning tower without any digging!

Input (red window)

Output (rectified green window)

The mathematical problem

(1) Signal of interest $X \in \mathbb{R}^{n \times n}$
(2) Linear measurement operator $\mathcal{A}: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{m}$
(3) Measurements $y=\mathcal{A}(X)$ of the form:
$(\mathcal{A}(X))_{i}=\left\langle A_{i}, X\right\rangle=\operatorname{trace}\left(A_{*}^{*} X\right)$ for $A_{i} \in \mathbb{R}^{n \times n}$
(4) Problem: Reconstruct signal X from measurements y

The mathematical problem

(1) Signal of interest $X \in \mathbb{R}^{n \times n}$
(2) Linear measurement operator $\mathcal{A}: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{m}$.
(3) Measurements $y=\mathcal{A}(X)$ of the form:
$(\mathcal{A}(X))_{i}=\left\langle A_{i}, X\right\rangle=\operatorname{trace}\left(A_{i}^{*} X\right)$ for $A_{i} \in \mathbb{R}^{n \times n}$
(ד) Problem: Reconstruct signal x from measurements y

The mathematical problem

(1) Signal of interest $X \in \mathbb{R}^{n \times n}$
(2) Linear measurement operator $\mathcal{A}: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{m}$.
(3) Measurements $y=\mathcal{A}(X)$ of the form:

$$
(\mathcal{A}(X))_{i}=\left\langle A_{i}, X\right\rangle=\operatorname{trace}\left(A_{i}^{*} X\right) \text { for } A_{i} \in \mathbb{R}^{n \times n}
$$

(4) Problem: Reconstruct signal X from measurements y

The mathematical problem

(1) Signal of interest $X \in \mathbb{R}^{n \times n}$
(2) Linear measurement operator $\mathcal{A}: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{m}$.
(3) Measurements $y=\mathcal{A}(X)$ of the form:

$$
(\mathcal{A}(X))_{i}=\left\langle A_{i}, X\right\rangle=\operatorname{trace}\left(A_{i}^{*} X\right) \text { for } A_{i} \in \mathbb{R}^{n \times n}
$$

(4) Problem: Reconstruct signal X from measurements y

Wait, isn't this impossible?

Without further assumptions, this problem is ill-posed.
Why will this work?
Most signals of interest contain far less information than their
dimension $n \times n$ suggests.
Assume X is low-rank: $\operatorname{rank}(X) \leq r$. In practice, we encounter approximately low-rank signals, and the measurements have noise. (Not in this talk.)

Wait, isn't this impossible?

Without further assumptions, this problem is ill-posed.

Why will this work?

Most signals of interest contain far less information than their dimension $n \times n$ suggests.

Assume X is low-rank: $\operatorname{rank}(X) \leq r$. In practice, we encounter approximately low-rank signals, and the measurements have noise. (Not in this talk.)

Wait, isn't this impossible?

Without further assumptions, this problem is ill-posed.

Why will this work?

Most signals of interest contain far less information than their dimension $n \times n$ suggests.

Assume X is low-rank: $\operatorname{rank}(X) \leq r$. In practice, we encounter approximately low-rank signals, and the measurements have noise (Not in this talk.)

Wait, isn't this impossible?

Without further assumptions, this problem is ill-posed.

Why will this work?

Most signals of interest contain far less information than their dimension $n \times n$ suggests.

Assume X is low-rank: $\operatorname{rank}(X) \leq r$. In practice, we encounter approximately low-rank signals, and the measurements have noise. (Not in this talk.)

How do we actually reconstruct?

Important Questions

- What kind(s) of linear operators \mathcal{A} ?

Are the guarantees uniform?

Is algorithm stable?
Fast runtime?

Critical Connection

A matrix X is low-rank if and only if its vector $\sigma(X)$ of singular values is sparse!

How do we actually reconstruct?

Important Questions

- What kind(s) of linear operators \mathcal{A} ?
- How many measurements needed?

Are the guarantees uniform?
Is algorithm stable?
Fast runtime?

Critical Connection

A matrix X is low-rank if and only if its vector $\sigma(X)$ of singular values is sparse!

How do we actually reconstruct?

Important Questions

- What kind(s) of linear operators \mathcal{A} ?
- How many measurements needed?
- Are the guarantees uniform?

Is algorithm stable?
Fast runtime?

Critical Connection

A matrix X is low-rank if and only if its vector $\sigma(X)$ of singular values is sparse!

How do we actually reconstruct?

Important Questions

- What kind(s) of linear operators \mathcal{A} ?
- How many measurements needed?
- Are the guarantees uniform?
- Is algorithm stable?

Fast runtime?

Critical Connection

A matrix X is low-rank if and only if its vector $\sigma(X)$ of singular values is sparse!

How do we actually reconstruct?

Important Questions

- What kind(s) of linear operators \mathcal{A} ?
- How many measurements needed?
- Are the guarantees uniform?
- Is algorithm stable?
- Fast runtime?

Critical Connection

A matrix X is low-rank if and only if its vector $\sigma(X)$ of singular values is sparse!

How do we actually reconstruct?

Important Questions

- What kind(s) of linear operators \mathcal{A} ?
- How many measurements needed?
- Are the guarantees uniform?
- Is algorithm stable?
- Fast runtime?

Critical Connection

A matrix X is low-rank if and only if its vector $\sigma(X)$ of singular values is sparse!

Rank optimization

ℓ_{0}-minimization

$$
\hat{f}=\underset{g}{\operatorname{argmin}}\|g\|_{0} \quad \text { such that } \quad A g=y .
$$

Rank-minimization

Rank optimization

ℓ_{0}-minimization

$$
\hat{f}=\underset{r}{\operatorname{argmin}}\|g\|_{0} \quad \text { such that } \quad A g=y .
$$

Rank-minimization

$$
\hat{X}=\underset{M}{\operatorname{argmin}}\|\sigma(M)\|_{0}=\underset{M}{\operatorname{argmin}} \operatorname{rank}(M) \quad \text { such that } \quad \mathcal{A}(M)=y
$$

Relaxed optimization

ℓ_{1}-minimization

$$
\hat{f}=\underset{g}{\operatorname{argmin}}\|g\|_{1} \quad \text { such that } \quad A g=y .
$$

Nuclear norm minimization

$$
\hat{X}=\underset{M}{\operatorname{argmin}}\|\sigma(M)\|_{1} \quad \text { such that } \quad \mathcal{A}(M)=y
$$

Nuclear norm

$$
\|M\|_{*}=\|\sigma(M)\|_{1}=\operatorname{trace}\left(\sqrt{M^{*} M}\right)
$$

Relaxed optimization

ℓ_{1}-minimization

$$
\hat{f}=\underset{g}{\operatorname{argmin}}\|g\|_{1} \quad \text { such that } \quad A g=y .
$$

Nuclear norm minimization

$$
\hat{X}=\underset{M}{\operatorname{argmin}}\|\sigma(M)\|_{1} \quad \text { such that } \quad \mathcal{A}(M)=y
$$

Nuclear norm

$$
\|M\|_{*}=\|\sigma(M)\|_{1}=\operatorname{trace}\left(\sqrt{M^{*} M}\right)
$$

Relaxed optimization

ℓ_{1}-minimization

$$
\hat{f}=\underset{g}{\operatorname{argmin}}\|g\|_{1} \quad \text { such that } \quad A g=y .
$$

Nuclear norm minimization

$$
\hat{X}=\underset{M}{\operatorname{argmin}}\|\sigma(M)\|_{1} \quad \text { such that } \quad \mathcal{A}(M)=y
$$

Nuclear norm

$$
\|M\|_{*}=\|\sigma(M)\|_{1}=\operatorname{trace}\left(\sqrt{M^{*} M}\right)
$$

Nuclear norm optimization

Theorem [Oymak-Hassibi]

Let \mathcal{A} be a Gaussian linear operator and set,

$$
\hat{X}=\underset{M}{\operatorname{argmin}}\|M\|_{*} \quad \text { such that } \quad \mathcal{A}(M)=y,
$$

where $\|M\|_{*}=\operatorname{trace}\left(\sqrt{M^{*} M}\right)=\|\sigma(M)\|_{1}$.
Then in the noiseless case, to guarantee perfect recovery of any
rank-r matrix X, we need only $m=16 n r$ measurements.

Moral of the story:

Practically, we need only $m=16 \mathrm{nr}$ measurements.

Nuclear norm optimization

Theorem [Oymak-Hassibi]

Let \mathcal{A} be a Gaussian linear operator and set,

$$
\hat{X}=\underset{M}{\operatorname{argmin}}\|M\|_{*} \quad \text { such that } \quad \mathcal{A}(M)=y,
$$

where $\|M\|_{*}=\operatorname{trace}\left(\sqrt{M^{*} M}\right)=\|\sigma(M)\|_{1}$.
Then in the noiseless case, to guarantee perfect recovery of any rank- r matrix X, we need only $m=16 n r$ measurements.

Moral of the story:

Practically, we need only $m=16 \mathrm{nr}$ measurements.

Nuclear norm optimization

Theorem [Oymak-Hassibi]

Let \mathcal{A} be a Gaussian linear operator and set,

$$
\hat{X}=\underset{M}{\operatorname{argmin}}\|M\|_{*} \quad \text { such that } \quad \mathcal{A}(M)=y,
$$

where $\|M\|_{*}=\operatorname{trace}\left(\sqrt{M^{*} M}\right)=\|\sigma(M)\|_{1}$.
Then in the noiseless case, to guarantee perfect recovery of any rank- r matrix X, we need only $m=16 n r$ measurements.

Moral of the story:

Practically, we need only $m=16 \mathrm{nr}$ measurements.

Mathematical Formulation

The gaps

Problem:	CS	MR				
Theoretical	min $\\|f\\|_{0}$	min rank (X)				
Practical	min $\\|f\\|_{1}$	min $\\|X\\|_{*}$				
m for Practical	$m \geq s \log n$	$m \geq 16 n r$				
m for Theoretical	$m \geq 2 s$	$? ?$				

Mathematical Formulation

The gaps

Problem:	CS	MR				
Theoretical	$\min \\|f\\|_{0}$	$\min \operatorname{rank}(X)$				
Practical	$\min \\|f\\|_{1}$	$\min \\|X\\|_{*}$				
m for Practical	$m \geq s \log n$	$m \geq 16 n r$				
m for Theoretical	$m \geq 2 s$	$? ?$				

Mathematical Formulation

The gaps

Problem:	CS	MR				
Theoretical	$\min \\|f\\|_{0}$	$\min \operatorname{rank}(X)$				
Practical	$\min \\|f\\|_{1}$	$\min \\|X\\|_{*}$				
m for Practical	$m \gtrsim s \log n$	$m \geq 16 n r$				
m for Theoretical	$m \geq 2 s$	$? ?$				

Mathematical Formulation

The gaps

Problem:	CS	MR				
Theoretical	$\min \\|f\\|_{0}$	$\min \operatorname{rank}(X)$				
Practical	$\min \\|f\\|_{1}$	$\min \\|X\\|_{*}$				
m for Practical	$m \gtrsim s \log n$	$m \geq 16 n r$				
m for Theoretical	$m \geq 2 s$	$? ?$				

The gaps

Problem:	CS	MR				
Theoretical	$\min \\|f\\|_{0}$	$\min \operatorname{rank}(X)$				
Practical	$\min \\|f\\|_{1}$	$\min \\|X\\|_{*}$				
m for Practical	$m \gtrsim s \log n$	$m \geq 16 n r$				
m for Theoretical	$m \geq 2 s$	$? ?$				

The missing gap

The unanswered question

How many measurements m are needed to guarantee exact recovery of a rank-r matrix X via the rank minimization method?

$$
\hat{X}=\underset{M}{\operatorname{argmin}} \operatorname{rank}(M) \quad \text { such that } \quad \mathcal{A}(M)=y
$$

Answering the question

Theorem [Eldar-N-Plan]

Let $r \leq n / 2$. When $\mathcal{A}: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{m}$ is a Gaussian operator with $m \geq 4 n r-4 r^{2}$, any rank- r (or less) matrix X is exactly recovered via rank minimization:

$$
\hat{X}=\underset{M}{\operatorname{argmin}} \operatorname{rank}(M) \quad \text { such that } \quad \mathcal{A}(M)=y
$$

Theoretical MR

The gaps

Problem:	CS	MR				
Theoretical	min $\\|f\\|_{0}$	min rank (X)				
Practical	min $\\|f\\|_{1}$	$\min \\|X\\|_{*}$				
m for Practical	$m \geq s \log n$	$m \geq 16 n r$				
m for Theoretical	$m \geq 2 s$	$4 n r-4 r^{2}$				

Theoretical MR

The gaps

Problem:	CS	MR				
Theoretical	$\min \\|f\\|_{0}$	$\min \operatorname{rank}(X)$				
Practical	$\min \\|f\\|_{1}$	$\min \\|X\\|_{*}$				
m for Practical	$m \geq s \log n$	$m \geq 16 n r$				
m for Theoretical	$m \geq 2 s$	$4 n r-4 r^{2}$				

Theoretical MR

The gaps

Problem:	CS	MR				
Theoretical	$\min \\|f\\|_{0}$	$\min \operatorname{rank}(X)$				
Practical	$\min \\|f\\|_{1}$	$\min \\|X\\|_{*}$				
m for Practical	$m \gtrsim s \log n$	$m \geq 16 n r$				
m for Theoretical	$m \geq 2 s$	$4 n r-4 r^{2}$				

Theoretical MR

The gaps

Problem:	CS	MR				
Theoretical	$\min \\|f\\|_{0}$	$\min \operatorname{rank}(X)$				
Practical	$\min \\|f\\|_{1}$	$\min \\|X\\|_{*}$				
m for Practical	$m \gtrsim s \log n$	$m \geq 16 n r$				
m for Theoretical	$m \geq 2 s$	$4 n r-4 r^{2}$				

The gaps

Problem:	CS	MR				
Theoretical	$\min \\|f\\|_{0}$	$\min \operatorname{rank}(X)$				
Practical	$\min \\|f\\|_{1}$	$\min \\|X\\|_{*}$				
m for Practical	$m \gtrsim s \log n$	$m \geq 16 n r$				
m for Theoretical	$m \geq 2 s$	$4 n r-4 r^{2}$				

Proof Sketch

$$
\hat{X}=\underset{M}{\operatorname{argmin}} \operatorname{rank}(M) \quad \text { such that } \quad \mathcal{A}(M)=y
$$

- Success of rank minimization is equivalent to asking that no rank-2r or less matrix resides in the kernel of \mathcal{A}.
- Set $\mathcal{R}=\left\{X \in \mathbb{R}^{n \times n}: \operatorname{rank}(X)=2 r,\|X\|_{F}=1\right\}$
- \mathcal{R} is a smooth manifold of $4 n r-4 r^{2}-1$ dimensions.
- Sten 1: Compute how large m must be to guarantee null(A) is disjoint from \mathcal{R}
- Step 2: Repeat for smaller values of the rank.

Proof Sketch

$$
\hat{X}=\underset{M}{\operatorname{argmin}} \operatorname{rank}(M) \quad \text { such that } \quad \mathcal{A}(M)=y
$$

- Success of rank minimization is equivalent to asking that no rank- $2 r$ or less matrix resides in the kernel of \mathcal{A}.
- Set $\mathcal{R}=\left\{X \in \mathbb{R}^{n \times n}: \operatorname{rank}(X)=2 r,\|X\|_{F}=1\right\}$
- \mathcal{R} is a smooth manifold of $4 n r-4 r^{2}-1$ dimensions.

Step 1: Compute how large m must be to guarantee nul ($\mathcal{A})$ is disjoint from \mathcal{R}
Step 2: Repeat for smaller values of the rank.

Proof Sketch

$$
\hat{X}=\underset{M}{\operatorname{argmin}} \operatorname{rank}(M) \quad \text { such that } \quad \mathcal{A}(M)=y
$$

- Success of rank minimization is equivalent to asking that no rank- $2 r$ or less matrix resides in the kernel of \mathcal{A}.
- Set $\mathcal{R}=\left\{X \in \mathbb{R}^{n \times n}: \operatorname{rank}(X)=2 r,\|X\|_{F}=1\right\}$.
- \mathcal{R} is a smooth manifold of $4 n r-4 r^{2}-1$ dimensions.
- Step 1: Compute how large m must be to guarantee null (\mathcal{A}) is disjoint from \mathcal{R}.
Step 2: Repeat for smaller values of the rank.

Proof Sketch

$$
\hat{X}=\underset{M}{\operatorname{argmin}} \operatorname{rank}(M) \quad \text { such that } \quad \mathcal{A}(M)=y
$$

- Success of rank minimization is equivalent to asking that no rank- $2 r$ or less matrix resides in the kernel of \mathcal{A}.
- Set $\mathcal{R}=\left\{X \in \mathbb{R}^{n \times n}: \operatorname{rank}(X)=2 r,\|X\|_{F}=1\right\}$.
- \mathcal{R} is a smooth manifold of $4 n r-4 r^{2}-1$ dimensions.

Step 1: Compute how large m must be to guarantee null (\mathcal{A}) is disjoint from \mathcal{R}.
Step 2: Repeat for smaller values of the rank.

Proof Sketch

$$
\hat{X}=\underset{M}{\operatorname{argmin}} \operatorname{rank}(M) \quad \text { such that } \quad \mathcal{A}(M)=y
$$

- Success of rank minimization is equivalent to asking that no rank- $2 r$ or less matrix resides in the kernel of \mathcal{A}.
- Set $\mathcal{R}=\left\{X \in \mathbb{R}^{n \times n}: \operatorname{rank}(X)=2 r,\|X\|_{F}=1\right\}$.
- \mathcal{R} is a smooth manifold of $4 n r-4 r^{2}-1$ dimensions.
- Step 1: Compute how large m must be to guarantee null (\mathcal{A}) is disjoint from \mathcal{R}.
Step 2: Repeat for smaller values of the rank.

Proof Sketch

$$
\hat{X}=\underset{M}{\operatorname{argmin}} \operatorname{rank}(M) \quad \text { such that } \quad \mathcal{A}(M)=y
$$

- Success of rank minimization is equivalent to asking that no rank- $2 r$ or less matrix resides in the kernel of \mathcal{A}.
- Set $\mathcal{R}=\left\{X \in \mathbb{R}^{n \times n}: \operatorname{rank}(X)=2 r,\|X\|_{F}=1\right\}$.
- \mathcal{R} is a smooth manifold of $4 n r-4 r^{2}-1$ dimensions.
- Step 1: Compute how large m must be to guarantee null (\mathcal{A}) is disjoint from \mathcal{R}.
- Step 2: Repeat for smaller values of the rank.

Covering Numbers

- For a set B, norm $\|\cdot\|$, and value ε, we define $N(B,\|\cdot\|, \varepsilon)$ to be the smallest number of $\|\cdot\|$-balls of radius ε whose union contains B.

The covering itself is called an ε-net.
Euclidean covering numbers are well-known:

Covering Numbers

- For a set B, norm $\|\cdot\|$, and value ε, we define $N(B,\|\cdot\|, \varepsilon)$ to be the smallest number of $\|\cdot\|$-balls of radius ε whose union contains B.

- The covering itself is called an ε-net.

Euclidean covering numbers are well-known:

Covering Numbers

- For a set B, norm $\|\cdot\|$, and value ε, we define $N(B,\|\cdot\|, \varepsilon)$ to be the smallest number of $\|\cdot\|$-balls of radius ε whose union contains B.

- The covering itself is called an ε-net.
- Euclidean covering numbers are well-known:

$$
N\left(B_{2}^{d},\|\cdot\|_{2}, \varepsilon\right) \leq\left(\frac{3}{\varepsilon}\right)^{d}
$$

Proof Sketch

$$
\begin{aligned}
\mathcal{R}= & \left\{X \in \mathbb{R}^{n \times n}: \operatorname{rank}(X)=2 r,\|X\|_{F}=1\right\}, d=4 n r-4 r^{2}-1 \\
& \text { Since } \mathcal{R} \text { is a smooth manifold, there is a countable partition } \\
& \left\{\mathcal{V}_{i}\right\} \text { of closed sets with } C^{1} \text {-diffeomorphisms } \phi_{i}: \mathcal{V}_{i} \rightarrow B_{2}^{d} . \\
& \text { Fix } i . \phi^{-1} \text { is Lipschitz: }\left\|\phi^{-1}(x)-\phi^{-1}(y)\right\|_{F} \leq L\|x-y\|_{2} . \\
& \text { Let } \overline{B_{2}^{d}} \text { be an }(\varepsilon / L) \text {-net for } B_{2}^{d} \text { of size at most }\left(\frac{3 L}{\varepsilon}\right)^{d} \\
& \text { Then } \bar{\nu} \text { defined by } \bar{\nu}=\phi^{-1}\left(\overline{B_{2}^{d}}\right) \text { is an } \varepsilon \text {-net for } \mathcal{V} .
\end{aligned}
$$

Proof Sketch

$$
\mathcal{R}=\left\{X \in \mathbb{R}^{n \times n}: \operatorname{rank}(X)=2 r,\|X\|_{F}=1\right\}, d=4 n r-4 r^{2}-1
$$

- Since \mathcal{R} is a smooth manifold, there is a countable partition $\left\{\mathcal{V}_{i}\right\}$ of closed sets with C^{1}-diffeomorphisms $\phi_{i}: \mathcal{V}_{i} \rightarrow B_{2}^{d}$.

Proof Sketch

$$
\mathcal{R}=\left\{X \in \mathbb{R}^{n \times n}: \operatorname{rank}(X)=2 r,\|X\|_{F}=1\right\}, d=4 n r-4 r^{2}-1
$$

- Since \mathcal{R} is a smooth manifold, there is a countable partition $\left\{\mathcal{V}_{i}\right\}$ of closed sets with C^{1}-diffeomorphisms $\phi_{i}: \mathcal{V}_{i} \rightarrow B_{2}^{d}$.
- Fix $i . \phi^{-1}$ is Lipschitz: $\left\|\phi^{-1}(x)-\phi^{-1}(y)\right\|_{F} \leq L\|x-y\|_{2}$.

- Then $\overline{\mathcal{V}}$ defined by $\overline{\mathcal{V}}=\phi^{-1}\left(\overline{B_{2}^{d}}\right)$ is an ε-net for \mathcal{V}

Proof Sketch

$$
\mathcal{R}=\left\{X \in \mathbb{R}^{n \times n}: \operatorname{rank}(X)=2 r,\|X\|_{F}=1\right\}, d=4 n r-4 r^{2}-1
$$

- Since \mathcal{R} is a smooth manifold, there is a countable partition $\left\{\mathcal{V}_{i}\right\}$ of closed sets with C^{1}-diffeomorphisms $\phi_{i}: \mathcal{V}_{i} \rightarrow B_{2}^{d}$.
- Fix $i . \phi^{-1}$ is Lipschitz: $\left\|\phi^{-1}(x)-\phi^{-1}(y)\right\|_{F} \leq L\|x-y\|_{2}$.
- Let $\overline{B_{2}^{d}}$ be an (ε / L)-net for B_{2}^{d} of size at $\operatorname{most}\left(\frac{3 L}{\varepsilon}\right)^{d}$.
- Then $\overline{\mathcal{V}}$ defined by $\overline{\mathcal{V}}=\phi^{-1}\left(\overline{B_{2}^{d}}\right)$ is an ε-net for \mathcal{V}

Proof Sketch

$$
\mathcal{R}=\left\{X \in \mathbb{R}^{n \times n}: \operatorname{rank}(X)=2 r,\|X\|_{F}=1\right\}, d=4 n r-4 r^{2}-1
$$

- Since \mathcal{R} is a smooth manifold, there is a countable partition $\left\{\mathcal{V}_{i}\right\}$ of closed sets with C^{1}-diffeomorphisms $\phi_{i}: \mathcal{V}_{i} \rightarrow B_{2}^{d}$.
- Fix i. ϕ^{-1} is Lipschitz: $\left\|\phi^{-1}(x)-\phi^{-1}(y)\right\|_{F} \leq L\|x-y\|_{2}$.
- Let $\overline{B_{2}^{d}}$ be an (ε / L)-net for B_{2}^{d} of size at $\operatorname{most}\left(\frac{3 L}{\varepsilon}\right)^{d}$.
- Then $\overline{\mathcal{V}}$ defined by $\overline{\mathcal{V}}=\phi^{-1}\left(\overline{B_{2}^{d}}\right)$ is an ε-net for \mathcal{V}.

Proof Sketch

- Since $\overline{\mathcal{V}}$ is an ε-net,

$$
\inf _{X \in \mathcal{V}}\|\mathcal{A}(X)\|_{\infty} \geq \min _{\bar{X} \in \overline{\mathcal{V}}}\|\mathcal{A}(\bar{X})\|_{\infty}-\varepsilon \cdot\|\mathcal{A}\|_{F \rightarrow \infty}
$$

- Therefore,

Proof Sketch

- Since $\overline{\mathcal{V}}$ is an ε-net,

$$
\inf _{X \in \mathcal{V}}\|\mathcal{A}(X)\|_{\infty} \geq \min _{\bar{X} \in \overline{\mathcal{V}}}\|\mathcal{A}(\bar{X})\|_{\infty}-\varepsilon \cdot\|\mathcal{A}\|_{F \rightarrow \infty}
$$

- Therefore,

$$
\begin{aligned}
& \mathbb{P}\left(\inf _{X \in \mathcal{V}}\|\mathcal{A}(X)\|_{\infty}=0\right) \leq \mathbb{P}\left(\inf _{X \in \mathcal{V}}\|\mathcal{A}(X)\|_{\infty} \leq \varepsilon \log (1 / \varepsilon)\right) \\
& \leq \mathbb{P}\left(\min _{\bar{X} \in \overline{\mathcal{V}}}\|\mathcal{A}(\bar{X})\|_{\infty}-\varepsilon \cdot\|\mathcal{A}\|_{F \rightarrow \infty} \leq \varepsilon \log (1 / \varepsilon)\right)
\end{aligned}
$$

Proof Sketch

$$
\mathcal{R}=\left\{X \in \mathbb{R}^{n \times n}: \operatorname{rank}(X)=2 r,\|X\|_{F}=1\right\}, d=4 n r-4 r^{2}-1
$$

Proof Sketch

$$
\mathcal{R}=\left\{X \in \mathbb{R}^{n \times n}: \operatorname{rank}(X)=2 r,\|X\|_{F}=1\right\}, d=4 n r-4 r^{2}-1
$$

$$
0
$$

$$
\mathbb{P}\left(\inf _{X \in \mathcal{V}}\|\mathcal{A}(X)\|_{\infty}=0\right) \lesssim \mathbb{P}\left(\min _{X \in \bar{V}}\|\mathcal{A}(\bar{X})\|_{\infty} \leq 2 \varepsilon \log (1 / \varepsilon)\right)
$$

$$
-\leq\left(\frac{3 L}{\varepsilon}\right)^{d} \cdot \prod_{i=1}^{m}\left(\mathbb{P}\left(\left|z_{i}\right| \leq 2 \varepsilon \log (1 / \varepsilon)\right)\right),\left(\text { where } z_{i}\right. \text { is an entry }
$$

$$
-\lesssim \varepsilon^{m-d} \cdot(\log (1 / \varepsilon))^{m}
$$

- So we choose $m=d+1$ and take $\varepsilon \rightarrow 0$!

Proof Sketch

$$
\begin{aligned}
\mathcal{R}= & \left\{X \in \mathbb{R}^{n \times n}: \operatorname{rank}(X)=2 r,\|X\|_{F}=1\right\}, d=4 n r-4 r^{2}-1 \\
& \mathbb{P}\left(\inf _{X \in \mathcal{V}}\|\mathcal{A}(X)\|_{\infty}=0\right) \lesssim \mathbb{P}\left(\frac{\min }{X \in \overline{\mathcal{V}}}\|\mathcal{A}(\bar{X})\|_{\infty} \leq 2 \varepsilon \log (1 / \varepsilon)\right) \\
& \leq\left(\frac{3 L}{\varepsilon}\right)^{d} \cdot \prod_{i=1}^{m}\left(\mathbb{P}\left(\left|z_{i}\right| \leq 2 \varepsilon \log (1 / \varepsilon)\right)\right),\left(\text { where } z_{i}\right. \text { is an entry } \\
& \text { of } \mathcal{A}(\bar{X}))
\end{aligned}
$$

- $\lesssim \varepsilon^{m-d} \cdot(\log (1 / \varepsilon))^{m}$
- So we choose $m=d+1$ and take $\varepsilon \rightarrow 0$!

Proof Sketch

$$
\begin{aligned}
& \mathcal{R}=\left\{X \in \mathbb{R}^{n \times n}: \operatorname{rank}(X)=2 r,\|X\|_{F}=1\right\}, d=4 n r-4 r^{2}-1 \\
& \mathbb{P}\left(\inf _{X \in \mathcal{V}}\|\mathcal{A}(X)\|_{\infty}=0\right) \lesssim \mathbb{P}\left(\min _{\bar{X} \in \overline{\mathcal{V}}}\|\mathcal{A}(\bar{X})\|_{\infty} \leq 2 \varepsilon \log (1 / \varepsilon)\right) \\
& \text { - } \leq\left(\frac{3 L}{\varepsilon}\right)^{d} \cdot \prod_{i=1}^{m}\left(\mathbb{P}\left(\left|z_{i}\right| \leq 2 \varepsilon \log (1 / \varepsilon)\right)\right),\left(\text { where } z_{i}\right. \text { is an entry } \\
&\text { of } \mathcal{A}(\bar{X})) \\
&- \lesssim \varepsilon^{m-d} \cdot(\log (1 / \varepsilon))^{m}
\end{aligned}
$$

- So we choose $m=d+1$ and take $\varepsilon \rightarrow 0$!

Proof Sketch

$$
\begin{aligned}
\mathcal{R}= & \left\{X \in \mathbb{R}^{n \times n}: \operatorname{rank}(X)=2 r,\|X\|_{F}=1\right\}, d=4 n r-4 r^{2}-1 \\
& \mathbb{P}\left(\inf _{X \in \mathcal{V}}\|\mathcal{A}(X)\|_{\infty}=0\right) \lesssim \mathbb{P}\left(\left.\frac{\min }{\bar{X} \in \overline{\mathcal{V}}} \right\rvert\,\|\mathcal{A}(\bar{X})\|_{\infty} \leq 2 \varepsilon \log (1 / \varepsilon)\right) \\
& \leq\left(\frac{3 L}{\varepsilon}\right)^{d} \cdot \prod_{i=1}^{m}\left(\mathbb{P}\left(\left|z_{i}\right| \leq 2 \varepsilon \log (1 / \varepsilon)\right)\right),\left(\text { where } z_{i}\right. \text { is an entry } \\
& \text { of } \mathcal{A}(\bar{X})) \\
& \lesssim \varepsilon^{m-d} \cdot(\log (1 / \varepsilon))^{m}
\end{aligned}
$$

- So we choose $m=d+1$ and take $\varepsilon \rightarrow 0$!

Proof Sketch

- Therefore, $\mathbb{P}\left(\inf _{X \in \mathcal{V}}\|\mathcal{A}(X)\|_{\infty}=0\right)=0$ when $m=d+1=4 n r-4 r^{2}$.
Apply a union bound over all (countably many) \mathcal{V}_{i} : $\mathbb{P}\left(\inf _{X \in \mathcal{R}}\|\mathcal{A}(X)\|_{\infty}=0\right)=0$ Applying this same argument for all ranks less than $2 r$ proves our result.

Proof Sketch

- Therefore, $\mathbb{P}\left(\inf _{X \in \mathcal{V}}\|\mathcal{A}(X)\|_{\infty}=0\right)=0$ when $m=d+1=4 n r-4 r^{2}$.
- Apply a union bound over all (countably many) \mathcal{V}_{i} : $\mathbb{P}\left(\inf _{X \in \mathcal{R}}\|\mathcal{A}(X)\|_{\infty}=0\right)=0$
Applying this same argument for all ranks less than $2 r$ proves our result.

Proof Sketch

- Therefore, $\mathbb{P}\left(\inf _{X \in \mathcal{V}}\|\mathcal{A}(X)\|_{\infty}=0\right)=0$ when $m=d+1=4 n r-4 r^{2}$.
- Apply a union bound over all (countably many) \mathcal{V}_{i} : $\mathbb{P}\left(\inf _{X \in \mathcal{R}}\|\mathcal{A}(X)\|_{\infty}=0\right)=0$
- Applying this same argument for all ranks less than $2 r$ proves our result.

The gaps

Problem:	CS	MR				
Theoretical	$\min \\|f\\|_{0}$	$\min \operatorname{rank}(X)$				
Practical	$\min \\|f\\|_{1}$	$\min \\|X\\|_{*}$				
m for Practical	$m \gtrsim s \log n$	$m \geq 16 n r$				
m for Theoretical	$m \geq 2 s$	$4 n r-4 r^{2}$				

For more information

Thank you!

E-mail:

- dneedell@cmc.edu

Web:

- www.cmc.edu/pages/faculty/DNeedell

References:

- E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 59(8):12071223, 2006.
- Oymak, S. and Hassibi, B., Tight Recovery Thresholds and Robustness Analysis for Matrix Rank Minimization, Submitted.
- Y. C. Eldar, D. Needell and Y. Plan. Uniqueness Conditions For Low-Rank Matrix Recovery. Submitted.

