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Outline

Compressed Sensing (CS)

Applications
Mathematical Formulation
Best known results

CS’s sister: Matrix recovery

Applications
Mathematical Formulation
Best known results

Comparison of the two problems

The question unanswered
Our answer
Proof via manifold theory
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Applications

Digital Cameras

Today’s digital cameras already “old school?”
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Applications

Digital Cameras

Save your nickels to buy the new digital camera?
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Applications

MRI

Feeling claustrophobic?

It’ll only last a quick 45 minutes...
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Applications

MRI
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Applications

Pediatric MRI
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Applications

Many more...

Radar

Error Correction

Computational Biology (DNA Microarrays)

Geophysical Data Analysis

Data Mining, classification

Neuroscience

...
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Mathematical Formulation

The mathematical problem

1 Signal of interest f ∈ R
d

2 Measurement matrix A : Rd → R
m.

3 Measurements y = Af .
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4 Problem: Reconstruct signal f from measurements y

Deanna Needell Bridging Matrix Recovery Gaps using Manifolds



CS Applications CS Math MR Applications MR Math MR Theory Proof

Mathematical Formulation

The mathematical problem

1 Signal of interest f ∈ R
d

2 Measurement matrix A : Rd → R
m.

3 Measurements y = Af .



y



 =



 A





















f

















4 Problem: Reconstruct signal f from measurements y

Deanna Needell Bridging Matrix Recovery Gaps using Manifolds



CS Applications CS Math MR Applications MR Math MR Theory Proof

Mathematical Formulation

The mathematical problem

1 Signal of interest f ∈ R
d

2 Measurement matrix A : Rd → R
m.

3 Measurements y = Af .



y



 =



 A





















f

















4 Problem: Reconstruct signal f from measurements y

Deanna Needell Bridging Matrix Recovery Gaps using Manifolds



CS Applications CS Math MR Applications MR Math MR Theory Proof

Mathematical Formulation

The mathematical problem

1 Signal of interest f ∈ R
d

2 Measurement matrix A : Rd → R
m.

3 Measurements y = Af .



y



 =



 A





















f

















4 Problem: Reconstruct signal f from measurements y

Deanna Needell Bridging Matrix Recovery Gaps using Manifolds



CS Applications CS Math MR Applications MR Math MR Theory Proof

Mathematical Formulation

The mathematical problem
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Mathematical Formulation

Wait, isn’t this impossible?

Without further assumptions, this problem is ill-posed.

Why will this work?

Most signals of interest contain far less information than their
dimension d suggests.

Assume f is sparse:

In the coordinate basis: ‖f ‖0 def

= | supp(f )| ≤ s ≪ d .

In practice, we encounter compressible signals, and the
measurements have noise. (Not in this talk.)
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Mathematical Formulation

How do we actually reconstruct?
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Important Questions

What kind(s) of measurement matrices A?

How many measurements needed?

Are the guarantees uniform?

Is algorithm stable?

Fast runtime?
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Mathematical Formulation

ℓ0-optimization

The First CS Theorem

Let A be one-to-one on s-sparse vectors and set:

f̂ = argmin
g

‖g‖0 such that Ag = y .

Then in the noiseless case, we have perfect recovery of all s-sparse
signals: f̂ = f .

Proof:

Easy!

Moral of the story:

Theoretically, we need only m = 2s measurements.
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Mathematical Formulation

Just relax: ℓ1-optimization

Relaxation [Candès-Tao]

Let A satisfy the Restricted Isometry Property for 2s-sparse
vectors and set:

f̂ = argmin
g

‖g‖1 such that Ag = y .

Then in the noiseless case, we have perfect recovery of all s-sparse
signals: f̂ = f .

Proof:

(Not so easy)
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Mathematical Formulation

Restricted Isometry Property

A satisfies the Restricted Isometry Property (RIP) when there
is δ < c such that

(1− δ)‖f ‖2 ≤ ‖Af ‖2 ≤ (1 + δ)‖f ‖2 whenever ‖f ‖0 ≤ s.

Gaussian or Bernoulli measurement matrices satisfy the RIP
with high probability when

m & s log d .

Random Fourier and others with fast multiply have similar
property: m & s log4 d .

Moral of the story:

Practically, we need only m = s log d measurements.
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Mathematical Formulation

The gap

Problem: CS

Theoretical min ‖f ‖0
Practical min ‖f ‖1
m for Practical m & s log n

m for Theoretical m ≥ 2s
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Applications

The Netflix problem

That check is worth how much??
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Applications

The Netflix problem

Tell us how you really feel...
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Applications

The Netflix problem

And we’ll tell you how you really feel...

Deanna Needell Bridging Matrix Recovery Gaps using Manifolds



CS Applications CS Math MR Applications MR Math MR Theory Proof

Applications

Collaborative Filtering

We can use other people’s preferences too, but still...
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Applications

Surveillance

Separation of foreground and background!
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Applications

Computer Vision

Removing shadow and lighting effects!
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Applications

Removing corruptions

And now enjoy the film...
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Applications

Tilt [Candès et.al.]

For humans and computers who have trouble reading sideways...
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Applications

Tilt [Candès et.al.]

Fixing the leaning tower without any digging!
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Mathematical Formulation

The mathematical problem

1 Signal of interest X ∈ R
n×n

2 Linear measurement operator A : Rn×n → R
m.

3 Measurements y = A(X ) of the form:

(A(X ))i = 〈Ai ,X 〉 = trace(A∗
i X ) for Ai ∈ R

n×n

4 Problem: Reconstruct signal X from measurements y
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Mathematical Formulation

Wait, isn’t this impossible?

Without further assumptions, this problem is ill-posed.

Why will this work?

Most signals of interest contain far less information than their
dimension n × n suggests.

Assume X is low-rank: rank(X ) ≤ r . In practice, we encounter
approximately low-rank signals, and the measurements have noise.
(Not in this talk.)
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Mathematical Formulation

How do we actually reconstruct?

Important Questions

What kind(s) of linear operators A?

How many measurements needed?

Are the guarantees uniform?

Is algorithm stable?

Fast runtime?

Critical Connection

A matrix X is low-rank if and only if its vector σ(X ) of singular
values is sparse!
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Mathematical Formulation

Rank optimization

ℓ0-minimization

f̂ = argmin
g

‖g‖0 such that Ag = y .

Rank-minimization

X̂ = argmin
M

‖σ(M)‖0 = argmin
M

rank(M) such that A(M) = y
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Mathematical Formulation

Relaxed optimization

ℓ1-minimization

f̂ = argmin
g

‖g‖1 such that Ag = y .

Nuclear norm minimization

X̂ = argmin
M

‖σ(M)‖1 such that A(M) = y

Nuclear norm

‖M‖∗ = ‖σ(M)‖1 = trace(
√
M∗M)
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Mathematical Formulation

Nuclear norm optimization

Theorem [Oymak-Hassibi]

Let A be a Gaussian linear operator and set,

X̂ = argmin
M

‖M‖∗ such that A(M) = y ,

where ‖M‖∗ = trace(
√
M∗M) = ‖σ(M)‖1.

Then in the noiseless case, to guarantee perfect recovery of any
rank-r matrix X , we need only m = 16nr measurements.

Moral of the story:

Practically, we need only m = 16nr measurements.
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Mathematical Formulation

The gaps

Problem: CS MR

Theoretical min ‖f ‖0 min rank(X )

Practical min ‖f ‖1 min ‖X‖∗
m for Practical m & s log n m ≥ 16nr

m for Theoretical m ≥ 2s ??
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Theoretical MR

The missing gap

The unanswered question

How many measurements m are needed to guarantee exact
recovery of a rank-r matrix X via the rank minimization method?

X̂ = argmin
M

rank(M) such that A(M) = y
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Theoretical MR

Answering the question

Theorem [Eldar-N-Plan]

Let r ≤ n/2. When A : Rn×n → R
m is a Gaussian operator with

m ≥ 4nr − 4r2, any rank-r (or less) matrix X is exactly recovered
via rank minimization:

X̂ = argmin
M

rank(M) such that A(M) = y
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MR Theory Proof Sketch

Proof Sketch

X̂ = argmin
M

rank(M) such that A(M) = y

Success of rank minimization is equivalent to asking that no
rank-2r or less matrix resides in the kernel of A.

Set R = {X ∈ R
n×n : rank(X ) = 2r , ‖X‖F = 1}.

R is a smooth manifold of 4nr − 4r2 − 1 dimensions.

Step 1: Compute how large m must be to guarantee null(A)
is disjoint from R.

Step 2: Repeat for smaller values of the rank.
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MR Theory Proof Sketch

Covering Numbers

For a set B , norm ‖ · ‖, and value ε, we define N(B , ‖ · ‖, ε) to
be the smallest number of ‖ · ‖-balls of radius ε whose union
contains B .

The covering itself is called an ε-net.

Euclidean covering numbers are well-known:

N(Bd
2 , ‖ · ‖2, ε) ≤

(

3

ε

)d
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Proof Sketch

R = {X ∈ R
n×n : rank(X ) = 2r , ‖X‖F = 1}, d = 4nr − 4r2 − 1

Since R is a smooth manifold, there is a countable partition
{Vi} of closed sets with C 1-diffeomorphisms φi : Vi → Bd

2 .

Fix i . φ−1 is Lipschitz: ‖φ−1(x) − φ−1(y)‖F ≤ L‖x − y‖2.
Let Bd

2 be an (ε/L)-net for Bd
2 of size at most

(

3L
ε

)d
.

Then V defined by V = φ−1(Bd
2 ) is an ε-net for V.
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Proof Sketch

Since V is an ε-net,

inf
X∈V

‖A(X )‖∞ ≥ min
X∈V

‖A(X )‖∞ − ε · ‖A‖F→∞.

Therefore,

P

(

inf
X∈V

‖A(X )‖∞ = 0
)

≤ P

(

inf
X∈V

‖A(X )‖∞ ≤ ε log(1/ε)

)

≤ P

(

min
X∈V

‖A(X )‖∞ − ε · ‖A‖F→∞ ≤ ε log(1/ε)

)

.

Deanna Needell Bridging Matrix Recovery Gaps using Manifolds



CS Applications CS Math MR Applications MR Math MR Theory Proof

MR Theory Proof Sketch

Proof Sketch

Since V is an ε-net,

inf
X∈V

‖A(X )‖∞ ≥ min
X∈V

‖A(X )‖∞ − ε · ‖A‖F→∞.

Therefore,

P

(

inf
X∈V

‖A(X )‖∞ = 0
)

≤ P

(

inf
X∈V

‖A(X )‖∞ ≤ ε log(1/ε)

)

≤ P

(

min
X∈V

‖A(X )‖∞ − ε · ‖A‖F→∞ ≤ ε log(1/ε)

)

.

Deanna Needell Bridging Matrix Recovery Gaps using Manifolds



CS Applications CS Math MR Applications MR Math MR Theory Proof

MR Theory Proof Sketch

Proof Sketch

R = {X ∈ R
n×n : rank(X ) = 2r , ‖X‖F = 1}, d = 4nr − 4r2 − 1

P

(

inf
X∈V

‖A(X )‖∞ = 0

)

. P

(

min
X∈V

‖A(X )‖∞ ≤ 2ε log(1/ε)

)

≤
(

3L
ε

)d ·∏m
i=1

(

P (|zi | ≤ 2ε log(1/ε))
)

, (where zi is an entry

of A(X ))

. εm−d · (log(1/ε))m

So we choose m = d + 1 and take ε → 0 !
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Proof Sketch

Therefore, P (infX∈V ‖A(X )‖∞ = 0) = 0 when
m = d + 1 = 4nr − 4r2.

Apply a union bound over all (countably many) Vi :
P (infX∈R ‖A(X )‖∞ = 0) = 0

Applying this same argument for all ranks less than 2r proves
our result.
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For more information

Thank you!

E-mail:

dneedell@cmc.edu

Web:

www.cmc.edu/pages/faculty/DNeedell
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