CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof

Bridging Matrix Recovery Gaps using Manifolds

Deanna Needell

Claremont McKenna College Joint work with Y. C. Eldar [Technion], Y. Plan [Univ. of Michigan]

ANTC Seminar, Claremont, Jan. 2012

DQC

CS Applications	CS Math 00000000	MR Applications	MR Math 0000000	MR Theory 000	Proof 000000
Outline					

- Compressed Sensing (CS)
 - Applications
 - Mathematical Formulation
 - Best known results
- CS's sister: Matrix recovery
 - Applications
 - Mathematical Formulation
 - Best known results
- Comparison of the two problems
 - The question unanswered
 - Our answer
 - Proof via manifold theory

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
•000000000					
Applications					
Digital Ca	meras				

Today's digital cameras already "old school?"

 \exists

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
0000000000					
Applications					
Digital Ca	meras				

イロト イヨト イヨト イヨト

Ξ

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
0000000000					
Applications					

Digital Cameras

Save your nickels to buy the new digital camera?

Deanna Needell Bridging Matrix Recovery Gaps using Manifolds

DQC

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
0000000000					
Applications					
Digital Ca	meras				

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
0000000000					
Applications					
Digital Ca	meras				

(Original)

(2%)

< 급 > < 글 > < 글 >

Ξ

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
0000000000					
Applications					
Digital Ca	meras				

(Original)

(10%)

Ξ

=

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
0000000000					
Applications					
Digital Ca	meras				

20%

Ξ

Ξ

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
00000000000	00000000	00000000	0000000	000	000000
Applications					
MRI					

Feeling claustrophobic?

It'll only last a quick 45 minutes...

Deanna Needell Bridging Matrix Recovery Gaps using Manifolds

 \exists

CS Applications	CS Math 00000000	MR Applications	MR Math	MR Theory	Proof
Applications					
MRI					

Figure 1: Example of a simple recovery problem. (a) The Logan-Shepp phanotn test image. (b) Sampling domain Ω in the frequency phase, Fourier coefficients are sampled long 22 approximately radial lines. (c) Minimum energy reconstruction obtained by satting unobserved Fourier coefficients to zero. (d) Reconstruction obtained by minimizing the total variation, sei in (1.1). The reconstruction is an easter treplica of the image in (a).

《口》 《國》 《注》 《注》

 \exists

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
00000000000					
Applications					

Pediatric MRI

(a-d) Submillimeter near-isotropic-resolution contrast-enhanced T1-weighted MR images in 8-year-old boy. (a, c) Standard and (b, d) compressed sensing reconstruction images. (c, d) Zoomed images show improved delineation of the pancreatic duct (vertical arrow), bowel (horizontal arrow), and gallbladder wall (arrowhead), and equivalent definition of portal vein (black arrow) with L1 SPIR-IT reconstruction.

(Caffey Award : Faster Pediatric MRI Via Compressed Sensing - Shreyas Vasanawala et.al. (Stanford University)) ≣⊳ Ξ DQC

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
0000000000					
Applications					
Many mor	e				

- Radar
- Error Correction
- Computational Biology (DNA Microarrays)
- Geophysical Data Analysis
- Data Mining, classification
- Neuroscience
- ...

∃ >

1

Ξ

CS Applications	CS Math ●0000000	MR Applications	MR Math	MR Theory	Proof 00000
Mathematical Formula	ation				
·					

1 Signal of interest $f \in \mathbb{R}^d$

- 2 Measurement matrix $A : \mathbb{R}^d \to \mathbb{R}^m$.
- 3 Measurements y = Af.

Problem: Reconstruct signal f from measurements y

A B > A B > A B >

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
00000000000	0000000	00000000	0000000	000	00000
Mathematical Formul	ation				

- **(1)** Signal of interest $f \in \mathbb{R}^d$
- 2 Measurement matrix $A : \mathbb{R}^d \to \mathbb{R}^m$.
- 3 Measurements y = Af.

- 4 同下 - 4 戸下 - 4 戸下

CS Applications	CS Math ●0000000	MR Applications	MR Math	MR Theory	Proof 00000
Mathematical Formula	ation				
·					

- **1** Signal of interest $f \in \mathbb{R}^d$
- 2 Measurement matrix $A : \mathbb{R}^d \to \mathbb{R}^m$.
- **3** Measurements y = Af.

④ Problem: Reconstruct signal f from measurements y

A B > A B > A B >

CS Applications	CS Math ●0000000	MR Applications	MR Math	MR Theory	Proof 00000
Mathematical Formula	ation				
·					

- **1** Signal of interest $f \in \mathbb{R}^d$
- 2 Measurement matrix $A : \mathbb{R}^d \to \mathbb{R}^m$.
- **3** Measurements y = Af.

4 Problem: Reconstruct signal f from measurements y

向下 イヨト イヨト

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
	0000000				
Mathematical Formula	tion				

< 급 > < 글 > < 글 >

Ξ

DQC

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
	0000000				
Mathematical Formula	ation				

Without further assumptions, this problem is ill-posed.

Why will this work?

Most signals of interest contain far less information than their dimension d suggests.

Assume *f* is sparse:

• In the coordinate basis: $||f||_0 \stackrel{\text{def}}{=} |\operatorname{supp}(f)| \leq s \ll d$. In practice, we encounter compressible signals, and the measurements have noise. (Not in this talk.)

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
	0000000				
Mathematical Formula	ation				

Without further assumptions, this problem is ill-posed.

Why will this work?

Most signals of interest contain far less information than their dimension d suggests.

Assume *f* is sparse:

• In the coordinate basis: $||f||_0 \stackrel{\text{def}}{=} |\operatorname{supp}(f)| \leq s \ll d$. In practice, we encounter compressible signals, and the measurements have noise. (Not in this talk.)

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
	0000000				
Mathematical Formula	ation				

Without further assumptions, this problem is ill-posed.

Why will this work?

Most signals of interest contain far less information than their dimension d suggests.

Assume *f* is sparse:

• In the coordinate basis: $||f||_0 \stackrel{\text{def}}{=} |\operatorname{supp}(f)| \leq s \ll d$.

In practice, we encounter compressible signals, and the measurements have noise. (Not in this talk.)

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
	0000000				
Mathematical Formula	ation				

Without further assumptions, this problem is ill-posed.

Why will this work?

Most signals of interest contain far less information than their dimension d suggests.

Assume *f* is sparse:

• In the coordinate basis: $||f||_0 \stackrel{\text{def}}{=} |\operatorname{supp}(f)| \leq s \ll d$. In practice, we encounter compressible signals, and the measurements have noise. (Not in this talk.)

CS Applications	CS Math ○○○●○○○○	MR Applications	MR Math	MR Theory	Proof 00000
Mathematical Formula	ntion				
		~			

Important Questions

- What kind(s) of measurement matrices A?
- How many measurements needed?
- Are the guarantees uniform?
- Is algorithm stable?
- Fast runtime?

nan

CS Applications	CS Math 000●0000	MR Applications	MR Math	MR Theory	Proof
Mathematical Formula	ation				
		~			

Important Questions

- What kind(s) of measurement matrices A?
- How many measurements needed?
- Are the guarantees uniform?
- Is algorithm stable?
- Fast runtime?

nan

CS Applications	CS Math ○○○●○○○○	MR Applications	MR Math	MR Theory	Proof 00000
Mathematical Formula	ation				
		~			

Important Questions

- What kind(s) of measurement matrices A?
- How many measurements needed?
- Are the guarantees uniform?
- Is algorithm stable?
- Fast runtime?

nan

CS Applications	CS Math ○○○●○○○○	MR Applications	MR Math	MR Theory	Proof 00000
Mathematical Formula	ation				
		~			

Important Questions

- What kind(s) of measurement matrices A?
- How many measurements needed?
- Are the guarantees uniform?
- Is algorithm stable?
- Fast runtime?

CS Applications	CS Math ○○○●○○○○	MR Applications	MR Math	MR Theory	Proof 00000
Mathematical Formula	ation				
		~			

Important Questions

- What kind(s) of measurement matrices A?
- How many measurements needed?
- Are the guarantees uniform?
- Is algorithm stable?
- Fast runtime?

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
0000000000	00000000	00000000	0000000	000	000000
Mathematical Formul	ation				
ℓ_0 -optimiz	ation				

The First CS Theorem

Let *A* be one-to-one on *s*-sparse vectors and set:

$$\hat{f} = \operatorname*{argmin}_{g} \|g\|_{0}$$
 such that $Ag = y$.

Then in the noiseless case, we have perfect recovery of all *s*-sparse signals: $\hat{f} = f$.

Proof: Easy!

```
Moral of the story:

Theoretically, we need only m = 2s measurements.

a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a = b + a =
```

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
0000000000	00000000	00000000	0000000	000	000000
Mathematical Formul	ation				
ℓ_0 -optimiz	ation				

The First CS Theorem

Let *A* be one-to-one on *s*-sparse vectors and set:

$$\hat{f} = \operatorname*{argmin}_{g} \|g\|_{0}$$
 such that $Ag = y$.

Then in the noiseless case, we have perfect recovery of all s-sparse signals: $\hat{f} = f$.

Proof: Easy!

Moral of the story: *Theoretically*, we need only m = 2s measurements.

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
0000000000	00000000	00000000	0000000	000	000000
Mathematical Formul	ation				
ℓ_0 -optimiz	ation				

The First CS Theorem

Let *A* be one-to-one on *s*-sparse vectors and set:

$$\hat{f} = \operatorname*{argmin}_{g} \|g\|_{0}$$
 such that $Ag = y$.

Then in the noiseless case, we have perfect recovery of all s-sparse signals: $\hat{f} = f$.

Proof:

Easy!

Moral of the story:

Theoretically, we need only m = 2s measurements.

Deanna Needell Bridging Matrix Recovery Gaps using Manifolds

20 P

3 ×

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
	00000000				
Mathematical Formulation	on				

Just relax: ℓ_1 -optimization

Relaxation [Candès-Tao]

Let A satisfy the *Restricted Isometry Property* for 2*s*-sparse vectors and set:

$$\hat{f} = \underset{g}{\operatorname{argmin}} \|g\|_{1}$$
 such that $Ag = y$.

Then in the noiseless case, we have perfect recovery of all s-sparse signals: $\hat{f} = f$.

Proof:

(Not so easy)

イロト イポト イヨト イヨト

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
	00000000				
Mathematical Formulati	on				

Just relax: ℓ_1 -optimization

Relaxation [Candès-Tao]

Let A satisfy the *Restricted Isometry Property* for 2*s*-sparse vectors and set:

$$\hat{f} = \underset{g}{\operatorname{argmin}} \|g\|_{1}$$
 such that $Ag = y$.

Then in the noiseless case, we have perfect recovery of all s-sparse signals: $\hat{f} = f$.

Proof:

(Not so easy)

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
	00000000				
Mathematical Formulation	1				

 A satisfies the Restricted Isometry Property (RIP) when there is δ < c such that

 $(1-\delta)\|f\|_2\leq \|Af\|_2\leq (1+\delta)\|f\|_2$ whenever $\|f\|_0\leq s.$

 Gaussian or Bernoulli measurement matrices satisfy the RIP with high probability when

 $m \gtrsim s \log d$.

 Random Fourier and others with fast multiply have similar property: m ≥ s log⁴ d.

Moral of the story:

Practically, we need only $m = s \log d$ measurements.

San

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
	00000000				
Mathematical Formulation	n				

• A satisfies the Restricted Isometry Property (RIP) when there is $\delta < c$ such that

$$(1-\delta)\|f\|_2 \leq \|Af\|_2 \leq (1+\delta)\|f\|_2$$
 whenever $\|f\|_0 \leq s$.

 Gaussian or Bernoulli measurement matrices satisfy the RIP with high probability when

$$m \gtrsim s \log d$$
.

 Random Fourier and others with fast multiply have similar property: m ≥ s log⁴ d.

Moral of the story:

Practically, we need only $m = s \log d$ measurements.

San

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
	00000000				
Mathematical Formulatio	n				

• A satisfies the Restricted Isometry Property (RIP) when there is $\delta < c$ such that

$$(1-\delta)\|f\|_2 \leq \|Af\|_2 \leq (1+\delta)\|f\|_2$$
 whenever $\|f\|_0 \leq s$.

 Gaussian or Bernoulli measurement matrices satisfy the RIP with high probability when

$$m \gtrsim s \log d$$
.

 Random Fourier and others with fast multiply have similar property: m ≥ s log⁴ d.

Moral of the story:

Practically, we need only $m = s \log d$ measurements.

DQQ

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
	00000000				
Mathematical Formulation	1				

• A satisfies the Restricted Isometry Property (RIP) when there is $\delta < c$ such that

$$(1-\delta)\|f\|_2 \leq \|Af\|_2 \leq (1+\delta)\|f\|_2$$
 whenever $\|f\|_0 \leq s$.

 Gaussian or Bernoulli measurement matrices satisfy the RIP with high probability when

$$m \gtrsim s \log d$$
.

 Random Fourier and others with fast multiply have similar property: m ≥ s log⁴ d.

Moral of the story:

Practically, we need only $m = s \log d$ measurements.

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
	0000000				
Mathematical Formul	ation				
The gap					

Problem:	CS
Theoretical	$\min \ f\ _0$
Practical	$\min \ f\ _1$
<i>m</i> for Practical	$m\gtrsim s\log n$
<i>m</i> for Theoretical	$m \ge 2s$

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
	0000000				
Mathematical Formul	ation				
The gap					

Problem:	CS
Theoretical	$\min \ f\ _0$
Practical	$\min \ f\ _1$
<i>m</i> for Practical	$m\gtrsim s\log n$
<i>m</i> for Theoretical	$m \ge 2s$

CS Applications	CS Math 0000000●	MR Applications	MR Math	MR Theory	Proof
Mathematical Formul	ation				
The gap					

Problem:	CS
Theoretical	$\min \ f\ _0$
Practical	$\min \ f\ _1$
<i>m</i> for Practical	$m\gtrsim s\log n$
<i>m</i> for Theoretical	$m \ge 2s$

CS Applications	CS Math 0000000●	MR Applications	MR Math	MR Theory	Proof
Mathematical Formul	ation				
The gap					

Problem:	CS	
Theoretical	$\min \ f\ _0$	
Practical	$\min \ f\ _1$	
<i>m</i> for Practical	$m\gtrsim s\log n$	
<i>m</i> for Theoretical	$m \ge 2s$	

CS Applications	CS Math 0000000●	MR Applications	MR Math	MR Theory	Proof
Mathematical Formul	ation				
The gap					

Problem:	CS
Theoretical	$\min \ f\ _0$
Practical	$\min \ f\ _1$
<i>m</i> for Practical	$m\gtrsim s\log n$
<i>m</i> for Theoretical	$m \ge 2s$

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
		•0000000			
Applications					

The Netflix problem

That check is worth how much??

Deanna Needell Bridging Matrix Recovery Gaps using Manifolds

3

∃ ⊳

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
		00000000			
Applications					

The Netflix problem

Tell us how you really feel...

Mo	vies You've F	late	d	
you've seen, ra you ma	on your 745 movie ratings, this is th seen. As you discover movies on th see them and they will show up on t y change the rating for any movie y move a movie from this list by click	Sort by > Star Rating + Jump to > 5 Stars +		
	TITLE	MPAA	GENRE	STAR RATING -
Add	12 Angry Men (1957)	UR	Classics	◎☆☆☆☆ @ Clear Rating)
Add	The 39 Steps (1935)	UR	Classics	◎☆☆☆☆ @ Clear Rating
Add	An American in Paris (1951)	UR	Classics	◎☆☆☆☆☆ @ Clear Rating
Add	The Andromeda Strain (1971)	G	Sci-Fi & Fantasy	◎ 숲 숲 숲 ☆ ☆ 한 Clear Rating
Add	Apollo 13 (1995)	PG	Drama	◎☆☆☆☆☆
Add	The Battle of Algiers (1965) La Battagla di Algeri	UR	Foreign	◎☆☆☆☆ @ Clear Rating
Add	Being There (1979)	PG	Drama	◎☆☆☆☆☆ @ Clear Rating
Add	Big Deal on Madonna Street (1958) I soliti ignoti	UR	Foreign	◎☆☆☆☆ @ Clear Rating
Add	The Birds (1963)	PG-13	Thrilors	◎☆☆☆☆☆
Add	Blade Runner (1982)	R	Sci-Fi & Fantasy	◎☆☆☆☆ Clear Rating

Deanna Needell

Bridging Matrix Recovery Gaps using Manifolds

Ξ

Э

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
		00000000			
Applications					

The Netflix problem

And we'll tell you how you really feel...

FOREIGN SUGGESTIONS (about 104) See all >

DRAMA SUGGESTIONS (about 82) See all >

Deanna Needell

Bridging Matrix Recovery Gaps using Manifolds

<ロト < 回 > < 三 > < 三 >

3

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
0000000000	00000000	00000000	0000000	000	00000
Applications					

Collaborative Filtering

We can use other people's preferences too, but still...

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
Applications		00000000			
Surveilland	ce				

Separation of foreground and background!

Deanna Needell Bridging Matrix Recovery Gaps using Manifolds

E

1

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
		000000000			
Applications					
_					

Computer Vision

Removing shadow and lighting effects!

Deanna Needell

Bridging Matrix Recovery Gaps using Manifolds DQC

1

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
		000000000			
Applications					

Removing corruptions

And now enjoy the film ...

Repaired A

Corruptions

Deanna Needell Bridging Matrix Recovery Gaps using Manifolds

Ξ

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
Applications					
Tilt [Cand	ès et.al.]				

For humans and computers who have trouble reading sideways...

Input (red window)

Output (rectified green window)

I D > I D > I

-

3

1

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
00000000000	00000000	00000000	0000000	000	00000
Applications					
Tilt [Cand	ès et al l				

Fixing the leaning tower without any digging!

Т

Input (red window)

Output (rectified green window)

 \exists

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
			000000		
Mathematical Formula	tion				

The mathematical problem

1 Signal of interest $X \in \mathbb{R}^{n \times n}$

- 2 Linear measurement operator $\mathcal{A}: \mathbb{R}^{n imes n} o \mathbb{R}^m$.
- 3 Measurements $y = \mathcal{A}(X)$ of the form:

 $(\mathcal{A}(X))_i = \langle A_i, X \rangle = \operatorname{trace}(A_i^*X) \text{ for } A_i \in \mathbb{R}^{n \times n}$

In the second struct of the

- (日) - (日) - (日)

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
			000000		
Mathematical Formul	ation				
T I .1					

The mathematical problem

- **1** Signal of interest $X \in \mathbb{R}^{n \times n}$
- **2** Linear measurement operator $\mathcal{A} : \mathbb{R}^{n \times n} \to \mathbb{R}^m$.
- 3 Measurements $y = \mathcal{A}(X)$ of the form:

 $(\mathcal{A}(X))_i = \langle A_i, X \rangle = \operatorname{trace}(A_i^*X) \text{ for } A_i \in \mathbb{R}^{n \times n}$

In the second struct of the

- 4 同下 - 4 日下 - 4 日下

CS Applications	CS Math	MR Applications	MR Math ●000000	MR Theory	Proof
Mathematical Formu	lation				
The math	ematical p	roblem			

- **1** Signal of interest $X \in \mathbb{R}^{n \times n}$
- **2** Linear measurement operator $\mathcal{A} : \mathbb{R}^{n \times n} \to \mathbb{R}^m$.
- **3** Measurements $y = \mathcal{A}(X)$ of the form:

$$(\mathcal{A}(X))_i = \langle A_i, X \rangle = \mathsf{trace}(A_i^*X) \text{ for } A_i \in \mathbb{R}^{n imes n}$$

In the second struct of the

(4回) (1日) (日)

CS Applications	CS Math 00000000	MR Applications	MR Math ●000000	MR Theory	Proof 000000
Mathematical Formul	lation				
The math	ematical p	roblem			

- **1** Signal of interest $X \in \mathbb{R}^{n \times n}$
- **2** Linear measurement operator $\mathcal{A} : \mathbb{R}^{n \times n} \to \mathbb{R}^m$.
- **3** Measurements $y = \mathcal{A}(X)$ of the form:

$$(\mathcal{A}(X))_i = \langle A_i, X \rangle = \operatorname{trace}(A_i^*X) \text{ for } A_i \in \mathbb{R}^{n \times n}$$

4 Problem: Reconstruct signal X from measurements y

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
			000000		
Mathematical Formula	ation				

Wait, isn't this impossible?

Without further assumptions, this problem is ill-posed.

Why will this work?

Most signals of interest contain far less information than their dimension $n \times n$ suggests.

Assume X is low-rank: rank $(X) \le r$. In practice, we encounter approximately low-rank signals, and the measurements have noise. (Not in this talk.)

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
			000000		
Mathematical Formul	ation				
XA/ *. * /.					

Wait, isn't this impossible?

Without further assumptions, this problem is ill-posed.

Why will this work?

Most signals of interest contain far less information than their dimension $n \times n$ suggests.

Assume X is low-rank: rank $(X) \le r$. In practice, we encounter approximately low-rank signals, and the measurements have noise. (Not in this talk.)

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
			000000		
Mathematical Formula	ation				
Wait, isn't	this impo	ssible?			

Without further assumptions, this problem is ill-posed.

Why will this work?

Most signals of interest contain far less information than their dimension $n \times n$ suggests.

Assume X is low-rank: rank(X) $\leq r$. In practice, we encounter approximately low-rank signals, and the measurements have noise. (Not in this talk.)

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
			000000		
Mathematical Formul	ation				
Wait, isn'i	this impo	ssible?			

Without further assumptions, this problem is ill-posed.

Why will this work?

Most signals of interest contain far less information than their dimension $n \times n$ suggests.

Assume X is low-rank: rank $(X) \le r$. In practice, we encounter approximately low-rank signals, and the measurements have noise. (Not in this talk.)

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
			000000		
Mathematical Formula	tion				

Important Questions

- What kind(s) of linear operators \mathcal{A} ?
- How many measurements needed?
- Are the guarantees uniform?
- Is algorithm stable?
- Fast runtime?

Critical Connection

A matrix X is low-rank if and only if its vector $\sigma(X)$ of singular values is sparse!

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
			000000		
Mathematical Formula	tion				

Important Questions

- What kind(s) of linear operators \mathcal{A} ?
- How many measurements needed?
- Are the guarantees uniform?
- Is algorithm stable?
- Fast runtime?

Critical Connection

A matrix X is low-rank if and only if its vector $\sigma(X)$ of singular values is sparse!

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
			000000		
Mathematical Formula	tion				

Important Questions

- What kind(s) of linear operators \mathcal{A} ?
- How many measurements needed?
- Are the guarantees uniform?
- Is algorithm stable?
- Fast runtime?

Critical Connection

A matrix X is low-rank if and only if its vector $\sigma(X)$ of singular values is sparse!

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
			000000		
Mathematical Formula	tion				

Important Questions

- What kind(s) of linear operators \mathcal{A} ?
- How many measurements needed?
- Are the guarantees uniform?
- Is algorithm *stable*?
- Fast runtime?

Critical Connection

A matrix X is low-rank if and only if its vector $\sigma(X)$ of singular values is sparse!

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
			000000		
Mathematical Formula	tion				

Important Questions

- What kind(s) of linear operators \mathcal{A} ?
- How many measurements needed?
- Are the guarantees uniform?
- Is algorithm *stable*?
- Fast runtime?

Critical Connection

A matrix X is low-rank if and only if its vector $\sigma(X)$ of singular values is sparse!

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
			000000		
Mathematical Formulat	ion				

Important Questions

- What kind(s) of linear operators \mathcal{A} ?
- How many measurements needed?
- Are the guarantees uniform?
- Is algorithm *stable*?
- Fast runtime?

Critical Connection

A matrix X is low-rank if and only if its vector $\sigma(X)$ of singular values is sparse!

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
			0000000		
Mathematical Formul	ation				
Rank opti	mization				

ℓ_0 -minimization

$$\hat{f} = \operatorname*{argmin}_{g} \|g\|_{0}$$
 such that $Ag = y$.

Rank-minimization

$$\hat{X} = \underset{M}{\operatorname{argmin}} \|\sigma(M)\|_0 = \underset{M}{\operatorname{argmin}} \operatorname{rank}(M) \text{ such that } \mathcal{A}(M) = y$$

< ロ > < 回 > < 注 > < 注 >

Ξ

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
Mathematical Formul					
Rank opti	mization				

ℓ_0 -minimization

$$\hat{f} = \operatorname*{argmin}_{g} \|g\|_{0}$$
 such that $Ag = y$.

Rank-minimization

$$\hat{X} = \operatorname*{argmin}_{M} \|\sigma(M)\|_0 = \operatorname*{argmin}_{M} \operatorname{rank}(M)$$
 such that $\mathcal{A}(M) = y$

・ロト ・ 同ト ・ ヨト ・ ヨト

 \exists

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
			0000000		
Mathematical Formula	tion				

Relaxed optimization

ℓ_1 -minimization

$$\hat{f} = \underset{g}{\operatorname{argmin}} \|g\|_1$$
 such that $Ag = y$.

Nuclear norm minimization

$$\hat{X} = \operatorname*{argmin}_{M} \|\sigma(M)\|_1$$
 such that $\mathcal{A}(M) = y$

Nuclear norm

$$\|M\|_* = \|\sigma(M)\|_1 = \operatorname{trace}(\sqrt{M^*M})$$

Deanna Needell Bridging Matrix Recovery Gaps using Manifolds

< ロ > < 回 > < 注 > < 注 >

Ξ

CS Applications	CS Math	MR Applications	MR Math ○○○○●○○	MR Theory	Proof
Mathematical Formula	tion				

Relaxed optimization

ℓ_1 -minimization

$$\hat{f} = \underset{g}{\operatorname{argmin}} \|g\|_1$$
 such that $Ag = y$.

Nuclear norm minimization

$$\hat{X} = \operatorname*{argmin}_{M} \| \sigma(M) \|_1$$
 such that $\mathcal{A}(M) = y$

Nuclear norm

$$\|M\|_* = \|\sigma(M)\|_1 = \operatorname{trace}(\sqrt{M^*M})$$

Deanna Needell Bridging Matrix Recovery Gaps using Manifolds

 \exists

CS Applications	CS Math	MR Applications	MR Math ○○○○●○○	MR Theory	Proof
Mathematical Formula	tion				

Relaxed optimization

ℓ_1 -minimization

$$\hat{f} = \underset{g}{\operatorname{argmin}} \|g\|_1$$
 such that $Ag = y$.

Nuclear norm minimization

$$\hat{X} = \mathop{\mathrm{argmin}}_{M} \|\sigma(M)\|_1$$
 such that $\mathcal{A}(M) = y$

Nuclear norm

$$\|M\|_* = \|\sigma(M)\|_1 = ext{trace}(\sqrt{M^*M})$$

Deanna Needell Bridging Matrix Recovery Gaps using Manifolds

 \exists

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
			0000000		
Mathematical Formula	tion				

Nuclear norm optimization

Theorem [Oymak-Hassibi]

Let \mathcal{A} be a Gaussian linear operator and set,

$$\hat{X} = \underset{M}{\operatorname{argmin}} \|M\|_*$$
 such that $\mathcal{A}(M) = y$,

where $||M||_{*} = trace(\sqrt{M^{*}M}) = ||\sigma(M)||_{1}$.

Then in the noiseless case, to guarantee perfect recovery of any rank-r matrix X, we need only m = 16nr measurements.

Moral of the story:

Practically, we need only m = 16nr measurements.

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
			0000000		
Mathematical Formula	tion				

Nuclear norm optimization

Theorem [Oymak-Hassibi]

Let \mathcal{A} be a Gaussian linear operator and set,

$$\hat{X} = \operatorname*{argmin}_{M} \|M\|_{*}$$
 such that $\mathcal{A}(M) = y$,

where $||M||_{*} = \text{trace}(\sqrt{M^{*}M}) = ||\sigma(M)||_{1}$.

Then in the noiseless case, to guarantee perfect recovery of any rank-*r* matrix *X*, we need only m = 16nr measurements.

Moral of the story:

Practically, we need only m = 16nr measurements

イロト イポト イヨト イヨト

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
			0000000		
Mathematical Formulat	tion				

Nuclear norm optimization

Theorem [Oymak-Hassibi]

Let \mathcal{A} be a Gaussian linear operator and set,

$$\hat{X} = \underset{M}{\operatorname{argmin}} \|M\|_*$$
 such that $\mathcal{A}(M) = y$,

where $||M||_{*} = \text{trace}(\sqrt{M^{*}M}) = ||\sigma(M)||_{1}$.

Then in the noiseless case, to guarantee perfect recovery of any rank-*r* matrix *X*, we need only m = 16nr measurements.

Moral of the story:

Practically, we need only m = 16nr measurements.

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
			000000		
Mathematical Formu	ation				
The gaps					

Problem:	CS	MR
Theoretical	$\ \min \ f\ _0$	min rank (X)
Practical	$\min \ f\ _1$	$\min \ X\ _*$
<i>m</i> for Practical	$m\gtrsim s\log n$	$m \ge 16nr$
<i>m</i> for Theoretical	$m \ge 2s$??

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
			000000		
Mathematical Formul	ation				
The gaps					

Problem:	CS	MR
Theoretical	$\min \ f\ _0$	min rank (X)
Practical	$\min \ f\ _1$	$\min \ X\ _*$
<i>m</i> for Practical	$m\gtrsim s\log n$	$m \ge 16nr$
<i>m</i> for Theoretical	$m \ge 2s$	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
			000000		
Mathematical Formul	ation				
The gaps					

Problem:	CS	MR
Theoretical	$\min \ f\ _0$	min rank (X)
Practical	$\min \ f\ _1$	$\min \ X\ _*$
<i>m</i> for Practical	$m\gtrsim s\log n$	$m \ge 16nr$
<i>m</i> for Theoretical	$m \ge 2s$	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
			000000		
Mathematical Formul	ation				
The gaps					

Problem:	CS	MR
Theoretical	$\min \ f\ _0$	min rank (X)
Practical	$\min \ f\ _1$	$\min \ X\ _*$
<i>m</i> for Practical	$m\gtrsim s\log n$	$m \ge 16 nr$
<i>m</i> for Theoretical	$m \ge 2s$??

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
			000000		
Mathematical Formu	ation				
The gaps					

Problem:	CS	MR
Theoretical	$\min \ f\ _0$	min rank (X)
Practical	$\min \ f\ _1$	$\min \ X\ _*$
<i>m</i> for Practical	$m\gtrsim s\log n$	$m \ge 16 nr$
<i>m</i> for Theoretical	$m \ge 2s$??

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
				00	
Theoretical MR					
The missing	ng gap				

The unanswered question

How many measurements m are needed to guarantee exact recovery of a rank-r matrix X via the rank minimization method?

$$\hat{X} = \operatorname{argmin}_{M} \operatorname{rank}(M)$$
 such that $\mathcal{A}(M) = y$

프 문 문 프 문

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
				000	
Theoretical MR					

Answering the question

Theorem [Eldar-N-Plan]

Let $r \leq n/2$. When $\mathcal{A} : \mathbb{R}^{n \times n} \to \mathbb{R}^m$ is a Gaussian operator with $m \geq 4nr - 4r^2$, any rank-*r* (or less) matrix *X* is exactly recovered via rank minimization:

$$\hat{X} = \operatorname*{argmin}_{M} \operatorname{rank}(M)$$
 such that $\mathcal{A}(M) = y$

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
Theoretical MR					
The gaps					

Problem:	CS	MR
Theoretical	$\min \ f\ _0$	min rank (X)
Practical	$\min \ f\ _1$	$\min \ X\ _*$
<i>m</i> for Practical	$m\gtrsim s\log n$	$m \ge 16 nr$
<i>m</i> for Theoretical	$m \ge 2s$	

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
Theoretical MR					
The gaps					

Problem:	CS	MR
Theoretical	$\min \ f\ _0$	min rank (X)
Practical	$\ \min \ f\ _1$	$\min \ X\ _*$
<i>m</i> for Practical	$m\gtrsim s\log n$	$m \ge 16 nr$
<i>m</i> for Theoretical	$m \ge 2s$	

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
Theoretical MR					
The gaps					

Problem:	CS	MR
Theoretical	$\min \ f\ _0$	min rank (X)
Practical	$\min \ f\ _1$	$\min \ X\ _*$
<i>m</i> for Practical	$m\gtrsim s\log n$	$m \ge 16nr$
<i>m</i> for Theoretical	$m \ge 2s$	

CS Applications	CS Math 00000000	MR Applications	MR Math	MR Theory ○○●	Proof
Theoretical MR					
The gaps					

Problem:	CS	MR
Theoretical	$\min \ f\ _0$	min rank (X)
Practical	$\min \ f\ _1$	$\min \ X\ _*$
<i>m</i> for Practical	$m\gtrsim s\log n$	$m \ge 16 nr$
<i>m</i> for Theoretical	$m \ge 2s$	$4nr - 4r^2$

CS Applications	CS Math 00000000	MR Applications	MR Math	MR Theory ○○●	Proof
Theoretical MR					
The gaps					

Problem:	CS	MR
Theoretical	$\min \ f\ _0$	min rank (X)
Practical	$\min \ f\ _1$	$\min \ X\ _*$
<i>m</i> for Practical	$m\gtrsim s\log n$	$m \ge 16 nr$
<i>m</i> for Theoretical	$m \ge 2s$	$4nr - 4r^2$

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
					•00000
MR Theory Proof Sk	etch				
Proof Ske	tch				

$\hat{X} = \operatorname{argmin}_{M} \operatorname{rank}(M)$ such that $\mathcal{A}(M) = y$

- Success of rank minimization is equivalent to asking that no rank-2*r* or less matrix resides in the kernel of *A*.
- Set $\mathcal{R} = \{X \in \mathbb{R}^{n \times n} : \operatorname{rank}(X) = 2r, \|X\|_F = 1\}.$
- \mathcal{R} is a smooth manifold of $4nr 4r^2 1$ dimensions.
- Step 1: Compute how large *m* must be to guarantee null(*A*) is disjoint from *R*.
- Step 2: Repeat for smaller values of the rank.

- 4 同下 4 三下 4 三

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof ●00000
MR Theory Proof Ske	etch				
Proof Ske	tch				

$$\hat{X} = \operatorname{argmin}_{M} \operatorname{rank}(M)$$
 such that $\mathcal{A}(M) = y$

- Success of rank minimization is equivalent to asking that no rank-2*r* or less matrix resides in the kernel of *A*.
- Set $\mathcal{R} = \{X \in \mathbb{R}^{n \times n} : \operatorname{rank}(X) = 2r, \|X\|_F = 1\}.$
- \mathcal{R} is a smooth manifold of $4nr 4r^2 1$ dimensions.
- Step 1: Compute how large *m* must be to guarantee null(*A*) is disjoint from *R*.
- Step 2: Repeat for smaller values of the rank.

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof ●00000
MR Theory Proof Ske	etch				
Proof Ske	tch				

$$\hat{X} = \operatorname{argmin}_{M} \operatorname{rank}(M)$$
 such that $\mathcal{A}(M) = y$

• Success of rank minimization is equivalent to asking that no rank-2*r* or less matrix resides in the kernel of *A*.

• Set
$$\mathcal{R} = \{X \in \mathbb{R}^{n \times n} : \operatorname{rank}(X) = 2r, \|X\|_F = 1\}.$$

- \mathcal{R} is a smooth manifold of $4nr 4r^2 1$ dimensions.
- Step 1: Compute how large *m* must be to guarantee null(*A*) is disjoint from *R*.
- Step 2: Repeat for smaller values of the rank.

- 4 回 ト 4 ヨ ト 4 ヨ

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof ●00000
MR Theory Proof Ske	etch				
Proof Ske	tch				

$$\hat{X} = \operatorname{argmin}_{M} \operatorname{rank}(M)$$
 such that $\mathcal{A}(M) = y$

- Success of rank minimization is equivalent to asking that no rank-2*r* or less matrix resides in the kernel of *A*.
- Set $\mathcal{R} = \{X \in \mathbb{R}^{n \times n} : \operatorname{rank}(X) = 2r, \|X\|_F = 1\}.$
- \mathcal{R} is a smooth manifold of $4nr 4r^2 1$ dimensions.
- Step 1: Compute how large *m* must be to guarantee null(*A*) is disjoint from *R*.
- Step 2: Repeat for smaller values of the rank.

- 4 回 🕨 - 4 三 🕨 - 4 三 🕨

CS Applications	CS Math 00000000	MR Applications	MR Math	MR Theory	Proof ●00000
MR Theory Proof Ske	etch				
Proof Ske	tch				

$$\hat{X} = \operatorname{argmin}_{M} \operatorname{rank}(M)$$
 such that $\mathcal{A}(M) = y$

- Success of rank minimization is equivalent to asking that no rank-2*r* or less matrix resides in the kernel of *A*.
- Set $\mathcal{R} = \{X \in \mathbb{R}^{n \times n} : \operatorname{rank}(X) = 2r, \|X\|_F = 1\}.$
- \mathcal{R} is a smooth manifold of $4nr 4r^2 1$ dimensions.
- Step 1: Compute how large *m* must be to guarantee null(*A*) is disjoint from *R*.
- Step 2: Repeat for smaller values of the rank

- 4 同下 - 4 戸下 - 4 戸下

CS Applications	CS Math 00000000	MR Applications	MR Math	MR Theory	Proof ●00000
MR Theory Proof Ske	etch				
Proof Ske	tch				

$$\hat{X} = \operatorname*{argmin}_{M} \operatorname{rank}(M)$$
 such that $\mathcal{A}(M) = y$

• Success of rank minimization is equivalent to asking that no rank-2*r* or less matrix resides in the kernel of *A*.

• Set
$$\mathcal{R} = \{X \in \mathbb{R}^{n \times n} : \operatorname{rank}(X) = 2r, \|X\|_F = 1\}.$$

- \mathcal{R} is a smooth manifold of $4nr 4r^2 1$ dimensions.
- Step 1: Compute how large *m* must be to guarantee null(*A*) is disjoint from *R*.
- Step 2: Repeat for smaller values of the rank.

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof ○●○○○○
MR Theory Proof Ske	etch				
Covering I	Numbers				

 For a set B, norm || · ||, and value ε, we define N(B, || · ||, ε) to be the smallest number of || · ||-balls of radius ε whose union contains B.

- The covering itself is called an ε-net.
- Euclidean covering numbers are well-known:

$$N(B_2^d, \|\cdot\|_2, \varepsilon) \le \left(\frac{3}{\varepsilon}\right)^d$$

Deanna Needell Bridging Matrix Recovery Gaps using Manifolds

DQC

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof ○●○○○○
MR Theory Proof Ske	etch				
Covering I	Numbers				

 For a set B, norm || · ||, and value ε, we define N(B, || · ||, ε) to be the smallest number of || · ||-balls of radius ε whose union contains B.

- The covering itself is called an ε -net.
- Euclidean covering numbers are well-known:

$$N(B_2^d, \|\cdot\|_2, \varepsilon) \le \left(\frac{3}{\varepsilon}\right)^d$$

Deanna Needell Bridging Matrix Recovery Gaps using Manifolds

DQC

CS Applications	CS Math 00000000	MR Applications	MR Math	MR Theory	Proof ○●○○○○
MR Theory Proof Ske	etch				
Covering [Numbers				

 For a set B, norm || · ||, and value ε, we define N(B, || · ||, ε) to be the smallest number of || · ||-balls of radius ε whose union contains B.

- The covering itself is called an ε -net.
- Euclidean covering numbers are well-known:

$$N(B_2^d, \|\cdot\|_2, \varepsilon) \leq \left(\frac{3}{\varepsilon}\right)^d$$

DQC

4 E > 4

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
					00000
MR Theory Proof Sk	etch				
Droof Ska	tah				

$\mathcal{R} = \{X \in \mathbb{R}^{n \times n} : \operatorname{rank}(X) = 2r, \|X\|_F = 1\}, \ d = 4nr - 4r^2 - 1$

- Since \mathcal{R} is a smooth manifold, there is a countable partition $\{\mathcal{V}_i\}$ of closed sets with C^1 -diffeomorphisms $\phi_i : \mathcal{V}_i \to B_2^d$.
- Fix *i*. ϕ^{-1} is Lipschitz: $\|\phi^{-1}(x) \phi^{-1}(y)\|_F \le L\|x y\|_2$.
- Let $\overline{B_2^d}$ be an (ε/L) -net for B_2^d of size at most $\left(\frac{3L}{\varepsilon}\right)^d$.
- Then $\overline{\mathcal{V}}$ defined by $\overline{\mathcal{V}} = \phi^{-1}(\overline{B_2^d})$ is an ε -net for \mathcal{V} .

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
00000000000	00000000	00000000	0000000	000	000000
MR Theory Proof Ske	etch				
Proof Ska	tch				

 $\mathcal{R} = \{X \in \mathbb{R}^{n \times n} : rank(X) = 2r, \|X\|_F = 1\}, \ d = 4nr - 4r^2 - 1$

- Since \mathcal{R} is a smooth manifold, there is a countable partition $\{\mathcal{V}_i\}$ of closed sets with C^1 -diffeomorphisms $\phi_i : \mathcal{V}_i \to B_2^d$.
- Fix *i*. ϕ^{-1} is Lipschitz: $\|\phi^{-1}(x) \phi^{-1}(y)\|_F \le L\|x y\|_2$.
- Let $\overline{B_2^d}$ be an (ε/L) -net for B_2^d of size at most $\left(\frac{3L}{\varepsilon}\right)^d$

• Then $\overline{\mathcal{V}}$ defined by $\overline{\mathcal{V}} = \phi^{-1}(\overline{B_2^d})$ is an ε -net for \mathcal{V} .

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
					00000
MR Theory Proof Sk	etch				
Droof Ska	tah				

$$\mathcal{R} = \{X \in \mathbb{R}^{n \times n} : rank(X) = 2r, \|X\|_F = 1\}, \ d = 4nr - 4r^2 - 1$$

- Since \mathcal{R} is a smooth manifold, there is a countable partition $\{\mathcal{V}_i\}$ of closed sets with C^1 -diffeomorphisms $\phi_i : \mathcal{V}_i \to B_2^d$.
- Fix *i*. ϕ^{-1} is Lipschitz: $\|\phi^{-1}(x) \phi^{-1}(y)\|_F \le L\|x y\|_2$.
- Let B_2^d be an (ε/L) -net for B_2^d of size at most $\left(rac{3L}{arepsilon}
 ight)^a$
- Then $\overline{\mathcal{V}}$ defined by $\overline{\mathcal{V}} = \phi^{-1}(\overline{B_2^d})$ is an ε -net for \mathcal{V} .

CS Applications	CS Math 00000000	MR Applications	MR Math	MR Theory	Proof 00●000
MR Theory Proof Sk	etch				
Proof Ske	tch				

$$\mathcal{R} = \{X \in \mathbb{R}^{n \times n} : rank(X) = 2r, \|X\|_F = 1\}, d = 4nr - 4r^2 - 1$$

- Since \mathcal{R} is a smooth manifold, there is a countable partition $\{\mathcal{V}_i\}$ of closed sets with C^1 -diffeomorphisms $\phi_i : \mathcal{V}_i \to B_2^d$.
- Fix *i*. ϕ^{-1} is Lipschitz: $\|\phi^{-1}(x) \phi^{-1}(y)\|_F \le L\|x y\|_2$.
- Let $\overline{B_2^d}$ be an (ε/L) -net for B_2^d of size at most $(\frac{3L}{\varepsilon})^d$.
- Then $\overline{\mathcal{V}}$ defined by $\overline{\mathcal{V}} = \phi^{-1}(\overline{B_2^d})$ is an ε -net for \mathcal{V} .

CS Applications	CS Math 00000000	MR Applications	MR Math	MR Theory	Proof 00●000
MR Theory Proof Sk	etch				
Proof Ske	tch				

$$\mathcal{R} = \{X \in \mathbb{R}^{n \times n} : \operatorname{rank}(X) = 2r, \|X\|_F = 1\}, \ d = 4nr - 4r^2 - 1$$

- Since \mathcal{R} is a smooth manifold, there is a countable partition $\{\mathcal{V}_i\}$ of closed sets with C^1 -diffeomorphisms $\phi_i : \mathcal{V}_i \to B_2^d$.
- Fix *i*. ϕ^{-1} is Lipschitz: $\|\phi^{-1}(x) \phi^{-1}(y)\|_F \le L\|x y\|_2$.
- Let $\overline{B_2^d}$ be an (ε/L) -net for B_2^d of size at most $\left(\frac{3L}{\varepsilon}\right)^d$.
- Then $\overline{\mathcal{V}}$ defined by $\overline{\mathcal{V}} = \phi^{-1}(\overline{B_2^d})$ is an ε -net for \mathcal{V} .

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
MR Theory Proof Sk					
Proof Ske	tch				

• Since $\overline{\mathcal{V}}$ is an ε -net,

$$\inf_{X\in\mathcal{V}}\|\mathcal{A}(X)\|_{\infty}\geq\min_{\overline{X}\in\overline{\mathcal{V}}}\|\mathcal{A}(\overline{X})\|_{\infty}-\varepsilon\cdot\|\mathcal{A}\|_{F\to\infty}.$$

• Therefore,

$$\mathbb{P}\Big(\inf_{X\in\mathcal{V}}\|\mathcal{A}(X)\|_{\infty}=0\Big)\leq \mathbb{P}\left(\inf_{X\in\mathcal{V}}\|\mathcal{A}(X)\|_{\infty}\leq \varepsilon\log(1/\varepsilon)\Big)\ \leq \mathbb{P}\left(\min_{\overline{X}\in\overline{\mathcal{V}}}\|\mathcal{A}(\overline{X})\|_{\infty}-\varepsilon\cdot\|\mathcal{A}\|_{F
ightarrow\infty}\leq \varepsilon\log(1/\varepsilon)\Big)\,.$$

イロト イヨト イヨト イヨト

E

CS Applications	CS Math 00000000	MR Applications	MR Math	MR Theory	Proof 000●00		
MR Theory Proof Ske	MR Theory Proof Sketch						
Proof Ske							

$$\inf_{X\in\mathcal{V}}\|\mathcal{A}(X)\|_{\infty}\geq\min_{\overline{X}\in\overline{\mathcal{V}}}\|\mathcal{A}(\overline{X})\|_{\infty}-\varepsilon\cdot\|\mathcal{A}\|_{F\to\infty}.$$

• Therefore,

$$egin{split} \mathbb{P}\Big(\inf_{X\in\mathcal{V}}\|\mathcal{A}(X)\|_{\infty}=0\Big)&\leq\mathbb{P}\left(\inf_{X\in\mathcal{V}}\|\mathcal{A}(X)\|_{\infty}\leqarepsilon\log(1/arepsilon)
ight)\ &\leq\mathbb{P}\left(\min_{\overline{X}\in\overline{\mathcal{V}}}\|\mathcal{A}(\overline{X})\|_{\infty}-arepsilon\cdot\|\mathcal{A}\|_{F
ightarrow\infty}\leqarepsilon\log(1/arepsilon)
ight). \end{split}$$

《口》 《國》 《注》 《注》

≡ ∽ ९ (~

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
MR Theory Proof Sk					
Proof Ske	tch				

$$\mathcal{R} = \{X \in \mathbb{R}^{n \times n} : \operatorname{rank}(X) = 2r, \|X\|_F = 1\}, \ d = 4nr - 4r^2 - 1$$

$$\mathbb{P}\left(\inf_{X\in\mathcal{V}}\|\mathcal{A}(X)\|_{\infty}=0\right)\lesssim\mathbb{P}\left(\min_{\overline{X}\in\overline{\mathcal{V}}}\|\mathcal{A}(\overline{X})\|_{\infty}\leq 2\varepsilon\log(1/\varepsilon)\right)$$

- $\leq \left(\frac{3L}{\varepsilon}\right)^d \cdot \prod_{i=1}^m \left(\mathbb{P}\left(|z_i| \leq 2\varepsilon \log(1/\varepsilon)\right)\right)$, (where z_i is an entry of $\mathcal{A}(\overline{X})$)
- $ullet \lesssim arepsilon^{m-d} \cdot (\log(1/arepsilon))^m$
- So we choose m = d + 1 and take $\varepsilon
 ightarrow 0$!

3

DQC

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
MR Theory Proof Ske	oooooooooooooooooooooooooooooooooooooo	00000000	0000000	000	00000
Proof Ske	tch				

$$\mathcal{R} = \{ X \in \mathbb{R}^{n \times n} : \operatorname{rank}(X) = 2r, \|X\|_F = 1 \}, \ d = 4nr - 4r^2 - 1$$

$$\mathbb{P}\left(\inf_{X\in\mathcal{V}}\|\mathcal{A}(X)\|_{\infty}=0\right)\lesssim\mathbb{P}\left(\min_{\overline{X}\in\overline{\mathcal{V}}}\|\mathcal{A}(\overline{X})\|_{\infty}\leq 2\varepsilon\log(1/\varepsilon)\right)$$

- $\leq \left(\frac{3L}{\varepsilon}\right)^d \cdot \prod_{i=1}^m \left(\mathbb{P}\left(|z_i| \leq 2\varepsilon \log(1/\varepsilon)\right) \right)$, (where z_i is an entry of $\mathcal{A}(\overline{X})$)
- $ullet \lesssim arepsilon^{m-d} \cdot (\log(1/arepsilon))^m$
- So we choose m = d + 1 and take $\varepsilon \rightarrow 0$!

(4回) (1日) (日)

DQC

CS Applications	CS Math 00000000	MR Applications	MR Math	MR Theory	Proof ○○○○●○		
MR Theory Proof Sketch							
Proof Sket	tch						

$$\mathcal{R} = \{ X \in \mathbb{R}^{n \times n} : \operatorname{rank}(X) = 2r, \|X\|_F = 1 \}, \ d = 4nr - 4r^2 - 1$$

$$\mathbb{P}\left(\inf_{X\in\mathcal{V}}\|\mathcal{A}(X)\|_{\infty}=0\right)\lesssim\mathbb{P}\left(\min_{\overline{X}\in\overline{\mathcal{V}}}\|\mathcal{A}(\overline{X})\|_{\infty}\leq 2\varepsilon\log(1/\varepsilon)\right)$$

- $\leq \left(\frac{3L}{\varepsilon}\right)^d \cdot \prod_{i=1}^m \left(\mathbb{P}\left(|z_i| \leq 2\varepsilon \log(1/\varepsilon) \right) \right)$, (where z_i is an entry of $\mathcal{A}(\overline{X})$)
- $\lesssim \varepsilon^{m-d} \cdot (\log(1/\varepsilon))^n$
- So we choose m = d + 1 and take $\varepsilon \rightarrow 0$!

DQC

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof ○○○○●○		
MR Theory Proof Sketch							
Proof Sket	tch						

$$\mathcal{R} = \{ X \in \mathbb{R}^{n \times n} : \operatorname{rank}(X) = 2r, \|X\|_F = 1 \}, \ d = 4nr - 4r^2 - 1$$

$$\mathbb{P}\left(\inf_{X\in\mathcal{V}}\|\mathcal{A}(X)\|_{\infty}=0\right)\lesssim\mathbb{P}\left(\min_{\overline{X}\in\overline{\mathcal{V}}}\|\mathcal{A}(\overline{X})\|_{\infty}\leq 2\varepsilon\log(1/\varepsilon)\right)$$

- $\leq \left(\frac{3L}{\varepsilon}\right)^d \cdot \prod_{i=1}^m \left(\mathbb{P}\left(|z_i| \leq 2\varepsilon \log(1/\varepsilon) \right) \right)$, (where z_i is an entry of $\mathcal{A}(\overline{X})$)
- $\lesssim \varepsilon^{m-d} \cdot (\log(1/\varepsilon))^m$
- So we choose m = d + 1 and take $\varepsilon \rightarrow 0$!

向下 イヨト イヨト

DQC

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
MR Theory Proof Ske	oooooooooooooooooooooooooooooooooooooo	00000000	0000000	000	00000
Proof Ske	tch				

$$\mathcal{R} = \{X \in \mathbb{R}^{n \times n} : \operatorname{rank}(X) = 2r, \|X\|_F = 1\}, \ d = 4nr - 4r^2 - 1$$

$$\mathbb{P}\left(\inf_{X\in\mathcal{V}}\|\mathcal{A}(X)\|_{\infty}=0\right)\lesssim\mathbb{P}\left(\min_{\overline{X}\in\overline{\mathcal{V}}}\|\mathcal{A}(\overline{X})\|_{\infty}\leq 2\varepsilon\log(1/\varepsilon)\right)$$

•
$$\leq \left(\frac{3L}{\varepsilon}\right)^d \cdot \prod_{i=1}^m \left(\mathbb{P}\left(|z_i| \leq 2\varepsilon \log(1/\varepsilon)\right) \right)$$
, (where z_i is an entry of $\mathcal{A}(\overline{X})$)

•
$$\lesssim \varepsilon^{m-d} \cdot (\log(1/\varepsilon))^m$$

• So we choose m = d + 1 and take $\varepsilon \to 0$!

イロト イヨト イヨト イヨト

≡ ∽ < (~

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof		
					00000		
MR Theory Proof Sketch							
Proof Ske	tch						

- Therefore, $\mathbb{P}(\inf_{X \in \mathcal{V}} ||\mathcal{A}(X)||_{\infty} = 0) = 0$ when $m = d + 1 = 4nr 4r^2$.
- Apply a union bound over all (countably many) \mathcal{V}_i : $\mathbb{P}(\inf_{X \in \mathcal{R}} ||\mathcal{A}(X)||_{\infty} = 0) = 0$
- Applying this same argument for all ranks less than 2r proves our result.

- 4 同下 - 4 日下 - 4 日

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
MR Theory Proof Sk	etch				
Proof Ske	tch				

- Therefore, $\mathbb{P}(\inf_{X \in \mathcal{V}} ||\mathcal{A}(X)||_{\infty} = 0) = 0$ when $m = d + 1 = 4nr 4r^2$.
- Apply a union bound over all (countably many) \mathcal{V}_i : $\mathbb{P}(\inf_{X \in \mathcal{R}} \|\mathcal{A}(X)\|_{\infty} = 0) = 0$
- Applying this same argument for all ranks less than 2r proves our result.

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
MR Theory Proof Sk	etch				
Proof Ske	tch				

- Therefore, $\mathbb{P}(\inf_{X \in \mathcal{V}} ||\mathcal{A}(X)||_{\infty} = 0) = 0$ when $m = d + 1 = 4nr 4r^2$.
- Apply a union bound over all (countably many) \mathcal{V}_i : $\mathbb{P}(\inf_{X \in \mathcal{R}} \|\mathcal{A}(X)\|_{\infty} = 0) = 0$
- Applying this same argument for all ranks less than 2r proves our result.

向下 イヨト イヨト

San

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
					00000
MR Theory Proof Sk	etch				
The gaps					

Problem:	CS	MR
Theoretical	$\min \ f\ _0$	min rank (X)
Practical	$\min \ f\ _1$	$\min \ X\ _*$
<i>m</i> for Practical	$m\gtrsim s\log n$	$m \ge 16 nr$
<i>m</i> for Theoretical	$m \ge 2s$	$4nr - 4r^2$

CS Applications	CS Math	MR Applications	MR Math	MR Theory	Proof
For more information					
Thank you	!				

E-mail:

o dneedell@cmc.edu

Web:

• www.cmc.edu/pages/faculty/DNeedell

References:

- E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 59(8):12071223, 2006.
- Oymak, S. and Hassibi, B., Tight Recovery Thresholds and Robustness Analysis for Matrix Rank Minimization, Submitted.
- Y. C. Eldar, D. Needell and Y. Plan. Uniqueness Conditions For Low-Rank Matrix Recovery. Submitted.

- 4 回 ト 4 ヨト 4 ヨト