Exponential decay of reconstruction error from binary measurements of sparse signals

Deanna Needell

Joint work with R. Baraniuk, S. Foucart, Y. Plan, and M. Wootters

Outline

- ♦ Introduction
 - Mathematical Formulation & Methods
- ♦ Practical CS
 - ♦ Other notions of sparsity
 - ♦ Heavy quantization
 - ♦ Adaptive sampling

The mathematical problem

- 1. Signal of interest $f \in \mathbb{C}^d (= \mathbb{C}^{N \times N})$
- 2. Measurement operator $\mathscr{A} : \mathbb{C}^d \to \mathbb{C}^m \ (m \ll d)$
- 3. Measurements $y = \mathscr{A}f + \xi$ $\begin{bmatrix} y \\ y \end{bmatrix} = \begin{bmatrix} \mathscr{A} \\ & \end{bmatrix} \begin{bmatrix} f \\ & \\ & \end{bmatrix} + \begin{bmatrix} \xi \\ & \\ & \end{bmatrix}$
- 4. *Problem:* Reconstruct signal *f* from measurements *y*

r 1

Measurements $y = \mathscr{A}f + \xi$.

$$\begin{bmatrix} y \end{bmatrix} = \begin{bmatrix} & \mathscr{A} & & \end{bmatrix} \begin{bmatrix} f \\ + \begin{bmatrix} \xi \end{bmatrix}$$

Assume *f* is *sparse*:

♦ In the coordinate basis: $||f||_0 \stackrel{\text{def}}{=} |\operatorname{supp}(f)| \le s \ll d$

♦ In orthonormal basis: f = Bx where $||x||_0 \le s \ll d$

In practice, we encounter *compressible* signals.

• f_s is the best *s*-sparse approximation to *f*

Many applications...

- ♦ Radar, Error Correction
- Computational Biology, Geophysical Data Analysis
- ♦ Data Mining, classification
- ♦ Neuroscience
- ♦ Imaging
- Sparse channel estimation, sparse initial state estimation
- Topology identification of interconnected systems

Sparsity...

Sparsity in coordinate basis: f=x

Reconstructing the signal *f* **from measurements** *y*

\bullet ℓ_1 -minimization [Candès-Romberg-Tao]

Let A satisfy the *Restricted Isometry Property* and set:

$$\hat{f} = \underset{g}{\operatorname{argmin}} \|g\|_1$$
 such that $\|\mathscr{A}f - y\|_2 \leq \varepsilon$,

where $\|\xi\|_2 \leq \varepsilon$. Then we can stably recover the signal *f*:

$$\|f - \hat{f}\|_2 \lesssim \varepsilon + \frac{\|x - x_s\|_1}{\sqrt{s}}$$

This error bound is optimal.

$$(1-\delta) \|f\|_2 \le \|\mathscr{A}f\|_2 \le (1+\delta) \|f\|_2$$
 whenever $\|f\|_0 \le s$.

 $\Leftrightarrow m \times d$ Gaussian or Bernoulli measurement matrices satisfy the RIP with high probability when

 $m \gtrsim s \log d$.

♦ Random Fourier and others with fast multiply have similar property: $m \gtrsim s \log^4 d.$

Other recovery methods

Greedy Algorithms

- If A satisfies the RIP, then A*A is "close" to the identity on sparse vectors
- $\Rightarrow \text{ Use proxy } p = A^* y = A^* A x \approx x$
- ♦ Threshold to maintain sparsity: $\hat{x} = H_s(p)$
- ♦ Repeat
- ♦ (Iterative Hard Thresholding)

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めへの

Standard CS: vectors x ∈ ℝⁿ with ||x||₀ ≤ s acquired via nonadaptive linear measurements (a_i, x), i = 1,..., m.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Standard CS: vectors x ∈ ℝⁿ with ||x||₀ ≤ s acquired via nonadaptive linear measurements (a_i, x), i = 1,..., m.

▶ In practice, measurements need to be quantized.

- Standard CS: vectors x ∈ ℝⁿ with ||x||₀ ≤ s acquired via nonadaptive linear measurements (a_i, x), i = 1,..., m.
- In practice, measurements need to be quantized.
- One-Bit CS: extreme quantization as $\mathbf{y} = \operatorname{sign}(\mathbf{A}\mathbf{x})$, i.e.,

$$y_i = \operatorname{sign}\langle \mathbf{a}_i, \mathbf{x} \rangle, \qquad i = 1, \ldots, m.$$

- Standard CS: vectors x ∈ ℝⁿ with ||x||₀ ≤ s acquired via nonadaptive linear measurements (a_i, x), i = 1,..., m.
- In practice, measurements need to be quantized.
- One-Bit CS: extreme quantization as $\mathbf{y} = \operatorname{sign}(\mathbf{A}\mathbf{x})$, i.e.,

$$y_i = \operatorname{sign} \langle \mathbf{a}_i, \mathbf{x} \rangle, \qquad i = 1, \ldots, m.$$

• Goal: find reconstruction maps $\Delta : \{\pm 1\}^m \to \mathbb{R}^n$ such that,

- Standard CS: vectors x ∈ ℝⁿ with ||x||₀ ≤ s acquired via nonadaptive linear measurements (a_i, x), i = 1,..., m.
- In practice, measurements need to be quantized.
- One-Bit CS: extreme quantization as $\mathbf{y} = \operatorname{sign}(\mathbf{A}\mathbf{x})$, i.e.,

$$y_i = \operatorname{sign}\langle \mathbf{a}_i, \mathbf{x} \rangle, \qquad i = 1, \ldots, m.$$

► Goal: find reconstruction maps $\Delta : \{\pm 1\}^m \to \mathbb{R}^n$ such that, assuming the ℓ_2 -normalization of **x** (why?),

- Standard CS: vectors x ∈ ℝⁿ with ||x||₀ ≤ s acquired via nonadaptive linear measurements (a_i, x), i = 1,..., m.
- In practice, measurements need to be quantized.
- One-Bit CS: extreme quantization as $\mathbf{y} = \operatorname{sign}(\mathbf{A}\mathbf{x})$, i.e.,

$$y_i = \operatorname{sign}\langle \mathbf{a}_i, \mathbf{x} \rangle, \qquad i = 1, \ldots, m.$$

► Goal: find reconstruction maps $\Delta : \{\pm 1\}^m \to \mathbb{R}^n$ such that, assuming the ℓ_2 -normalization of **x** (why?),

$$\|\mathbf{x} - \Delta(\mathbf{y})\| \leq \gamma$$

provided the oversampling factor satisfies

$$\lambda := \frac{m}{s \ln(n/s)} \ge f(\gamma)$$

for f slowly increasing when γ decreases to zero

- Standard CS: vectors x ∈ ℝⁿ with ||x||₀ ≤ s acquired via nonadaptive linear measurements (a_i, x), i = 1,..., m.
- In practice, measurements need to be quantized.
- One-Bit CS: extreme quantization as $\mathbf{y} = \operatorname{sign}(\mathbf{A}\mathbf{x})$, i.e.,

$$y_i = \operatorname{sign}\langle \mathbf{a}_i, \mathbf{x} \rangle, \qquad i = 1, \ldots, m.$$

► Goal: find reconstruction maps $\Delta : \{\pm 1\}^m \to \mathbb{R}^n$ such that, assuming the ℓ_2 -normalization of **x** (why?),

$$\|\mathbf{x} - \Delta(\mathbf{y})\| \leq \gamma$$

provided the oversampling factor satisfies

$$\lambda := \frac{m}{s \ln(n/s)} \ge f(\gamma)$$

for f slowly increasing when γ decreases to zero, equivalently

$$\|\mathbf{x} - \Delta(\mathbf{y})\| \le g(\lambda)$$

for g rapidly decreasing to zero when λ increases.

A visual

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 二臣

A visual

<ロ>

► Convex optimization algorithms [Plan–Vershynin 13a, 13b].

- ► Convex optimization algorithms [Plan–Vershynin 13a, 13b].
- ► Uniform, nonadaptive, no quantization error: If $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a Gaussian matrix, then w/hp

$$\left\|\mathbf{x} - \frac{\Delta_{\mathrm{LP}}(\mathbf{y})}{\|\Delta_{\mathrm{LP}}(\mathbf{y})\|_2}\right\|_2 \lesssim \lambda^{-1/5} \quad \text{whenever } \|\mathbf{x}\|_0 \leq s, \|\mathbf{x}\|_2 = 1.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ► Convex optimization algorithms [Plan–Vershynin 13a, 13b].
- ▶ Uniform, nonadaptive, no quantization error: If $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a Gaussian matrix, then w/hp

$$\left\|\mathbf{x} - \frac{\Delta_{\mathrm{LP}}(\mathbf{y})}{\|\Delta_{\mathrm{LP}}(\mathbf{y})\|_2}\right\|_2 \lesssim \lambda^{-1/5} \quad \text{whenever } \|\mathbf{x}\|_0 \leq s, \|\mathbf{x}\|_2 = 1.$$

Nonuniform, nonadaptive, random quantization error: Fix x ∈ ℝⁿ with ||x||₀ ≤ s, ||x||₂ = 1. If A ∈ ℝ^{m×n} is a Gaussian matrix, then w/hp

$$\|\mathbf{x} - \Delta_{ ext{SOCP}}(\mathbf{y})\|_2 \lesssim \lambda^{-1/4}$$

- Convex optimization algorithms [Plan–Vershynin 13a, 13b].
- ▶ Uniform, nonadaptive, no quantization error: If $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a Gaussian matrix, then w/hp

$$\left\|\mathbf{x} - \frac{\Delta_{\mathrm{LP}}(\mathbf{y})}{\|\Delta_{\mathrm{LP}}(\mathbf{y})\|_2}\right\|_2 \lesssim \lambda^{-1/5} \quad \text{whenever } \|\mathbf{x}\|_0 \leq s, \|\mathbf{x}\|_2 = 1.$$

▶ Nonuniform, nonadaptive, random quantization error: Fix $\mathbf{x} \in \mathbb{R}^n$ with $\|\mathbf{x}\|_0 \leq s$, $\|\mathbf{x}\|_2 = 1$. If $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a Gaussian matrix, then w/hp

$$\|\mathbf{x} - \Delta_{\mathrm{SOCP}}(\mathbf{y})\|_2 \lesssim \lambda^{-1/4}$$

► Uniform, nonadaptive, adversarial quantization error: If $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a Gaussian matrix, then w/hp

$$\|\mathbf{x} - \Delta_{\mathrm{SOCP}}(\mathbf{y})\|_2 \lesssim \lambda^{-1/12}$$
 whenever $\|\mathbf{x}\|_0 \leq s, \|\mathbf{x}\|_2 = 1.$

Power decay is optimal since

$$\|\mathbf{x} - \Delta_{ ext{opt}}(\mathbf{y})\|_2 \gtrsim \lambda^{-1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

even if $supp(\mathbf{x})$ known in advance [Goyal-Vetterli-Thao 98].

Power decay is optimal since

$$\|\mathbf{x} - \Delta_{ ext{opt}}(\mathbf{y})\|_2 \gtrsim \lambda^{-1}$$

even if $supp(\mathbf{x})$ known in advance [Goyal–Vetterli–Thao 98].

Geometric intuition

http://dsp.rice.edu/1bitCS/choppyanimated.gif

Power decay is optimal since

$$\|\mathbf{x} - \Delta_{ ext{opt}}(\mathbf{y})\|_2 \gtrsim \lambda^{-1}$$

even if supp(x) known in advance [Goyal-Vetterli-Thao 98].

Geometric intuition

http://dsp.rice.edu/1bitCS/choppyanimated.gif

• Remedy: adaptive choice of dithers τ_1, \ldots, τ_m in

$$y_i = \operatorname{sign}(\langle \mathbf{a}_i, \mathbf{x} \rangle - \tau_i), \quad i = 1, \dots, m.$$

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 → のへで

▶ Rely on an order-one quantization/recovery scheme: for any x ∈ ℝⁿ with ||x||₀ ≤ s, ||x||₂ ≤ R, take q ≍ s ln(n/s) one-bit measurements and estimate both the direction and the magnitude of x by producing x̂ such that

$$\|\mathbf{x} - \widehat{\mathbf{x}}\|_2 \le R/4.$$

▶ Rely on an order-one quantization/recovery scheme: for any x ∈ ℝⁿ with ||x||₀ ≤ s, ||x||₂ ≤ R, take q ≍ s ln(n/s) one-bit measurements and estimate both the direction and the magnitude of x by producing x̂ such that

$$\|\mathbf{x} - \widehat{\mathbf{x}}\|_2 \le R/4.$$

• Let $\mathbf{x} \in \mathbb{R}^n$ with $\|\mathbf{x}\|_0 \leq s$, $\|\mathbf{x}\|_2 \leq R$. Start with $\mathbf{x}^0 = \mathbf{0}$.

▶ Rely on an order-one quantization/recovery scheme: for any x ∈ ℝⁿ with ||x||₀ ≤ s, ||x||₂ ≤ R, take q ≍ s ln(n/s) one-bit measurements and estimate both the direction and the magnitude of x by producing x̂ such that

$$\|\mathbf{x} - \widehat{\mathbf{x}}\|_2 \le R/4.$$

Let x ∈ ℝⁿ with ||x||₀ ≤ s, ||x||₂ ≤ R. Start with x⁰ = 0.
For t = 0, 1, ..., estimate x - x^t by x - x^t, then set

$$\mathbf{x}^{t+1} = \mathbf{x}^t + \widehat{\mathbf{x} - \mathbf{x}^t}$$
, so that $\|\mathbf{x} - \mathbf{x}^{t+1}\|_2 \le R/4^{t+1}$

(日) (同) (三) (三) (三) (○) (○)

▶ Rely on an order-one quantization/recovery scheme: for any x ∈ ℝⁿ with ||x||₀ ≤ s, ||x||₂ ≤ R, take q ≍ s ln(n/s) one-bit measurements and estimate both the direction and the magnitude of x by producing x̂ such that

$$\|\mathbf{x} - \widehat{\mathbf{x}}\|_2 \le R/4.$$

Let x ∈ ℝⁿ with ||x||₀ ≤ s, ||x||₂ ≤ R. Start with x⁰ = 0.
For t = 0, 1, ..., estimate x − x^t by x − x^t, then set

$$\mathbf{x}^{t+1} = H_s(\mathbf{x}^t + \widehat{\mathbf{x} - \mathbf{x}^t}), \text{ so that } \|\mathbf{x} - \mathbf{x}^{t+1}\|_2 \leq R/2^{t+1}.$$

▶ Rely on an order-one quantization/recovery scheme: for any x ∈ ℝⁿ with ||x||₀ ≤ s, ||x||₂ ≤ R, take q ≍ s ln(n/s) one-bit measurements and estimate both the direction and the magnitude of x by producing x̂ such that

$$\|\mathbf{x} - \widehat{\mathbf{x}}\|_2 \le R/4.$$

Let x ∈ ℝⁿ with ||x||₀ ≤ s, ||x||₂ ≤ R. Start with x⁰ = 0.
For t = 0, 1, ..., estimate x − x^t by x − x^t, then set

$$\mathbf{x}^{t+1} = H_{s}(\mathbf{x}^{t} + \widehat{\mathbf{x} - \mathbf{x}^{t}}), \quad \text{so that} \quad \|\mathbf{x} - \mathbf{x}^{t+1}\|_{2} \leq R/2^{t+1}.$$

• After T iterations, number of measurements is m = qT, and

$$\|\mathbf{x} - \mathbf{x}^{\mathsf{T}}\|_{2} \leq R 2^{-\mathsf{T}} = R 2^{-\frac{m}{q}} = R \exp(-c\lambda).$$

▶ Rely on an order-one quantization/recovery scheme: for any x ∈ ℝⁿ with ||x||₀ ≤ s, ||x||₂ ≤ R, take q ≍ s ln(n/s) one-bit measurements and estimate both the direction and the magnitude of x by producing x̂ such that

$$\|\mathbf{x} - \widehat{\mathbf{x}}\|_2 \le R/4.$$

Let x ∈ ℝⁿ with ||x||₀ ≤ s, ||x||₂ ≤ R. Start with x⁰ = 0.
For t = 0, 1, ..., estimate x - x^t by x - x^t, then set

$$\mathbf{x}^{t+1} = H_s(\mathbf{x}^t + \widehat{\mathbf{x} - \mathbf{x}^t}), \quad \text{so that} \quad \|\mathbf{x} - \mathbf{x}^{t+1}\|_2 \leq R/2^{t+1}.$$

• After T iterations, number of measurements is m = qT, and

$$\|\mathbf{x} - \mathbf{x}^{\mathsf{T}}\|_2 \leq R \, 2^{-\mathsf{T}} = R \, 2^{-\frac{m}{q}} = R \exp\left(-c\lambda\right).$$

► Software step needed to compute the thresholds $\tau_i = \langle \mathbf{a}_i, \mathbf{x}^t \rangle$.

Order-One Scheme Based on Convex Optimization

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 → りへぐ
• Measurement vectors $\mathbf{a}_1, \ldots, \mathbf{a}_q$: independent $\mathcal{N}(0, \mathbf{I}_q)$.

• Measurement vectors $\mathbf{a}_1, \ldots, \mathbf{a}_q$: independent $\mathcal{N}(0, I_q)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Dithers τ_1, \ldots, τ_q : independent $\mathcal{N}(0, \mathbb{R}^2)$.

- Measurement vectors $\mathbf{a}_1, \ldots, \mathbf{a}_q$: independent $\mathcal{N}(0, I_q)$.
- Dithers τ_1, \ldots, τ_q : independent $\mathcal{N}(0, \mathbb{R}^2)$.
- $\widehat{\mathbf{x}} = \operatorname{argmin} \|\mathbf{z}\|_1$ subject to $\|\mathbf{z}\|_2 \leq R$, $y_i(\langle \mathbf{a}_i, \mathbf{z} \rangle \tau_i) \geq 0$.

- Measurement vectors $\mathbf{a}_1, \ldots, \mathbf{a}_q$: independent $\mathcal{N}(0, I_q)$.
- Dithers τ_1, \ldots, τ_q : independent $\mathcal{N}(0, \mathbb{R}^2)$.
- $\widehat{\mathbf{x}} = \operatorname{argmin} \|\mathbf{z}\|_1$ subject to $\|\mathbf{z}\|_2 \leq R$, $y_i(\langle \mathbf{a}_i, \mathbf{z} \rangle \tau_i) \geq 0$.

• If
$$q \ge c \delta^{-4} s \ln(n/s)$$
, then w/hp

$$\|\mathbf{x} - \hat{\mathbf{x}}\| \le \delta R$$
 whenever $\|\mathbf{x}\|_0 \le s, \|\mathbf{x}\|_2 \le R$.

- ▶ Measurement vectors a₁,..., a_q: independent N(0, I_q).
- Dithers τ_1, \ldots, τ_q : independent $\mathcal{N}(0, \mathbb{R}^2)$.
- $\widehat{\mathbf{x}} = \operatorname{argmin} \|\mathbf{z}\|_1$ subject to $\|\mathbf{z}\|_2 \leq R$, $y_i(\langle \mathbf{a}_i, \mathbf{z} \rangle \tau_i) \geq 0$.

• If
$$q \ge c \delta^{-4} s \ln(n/s)$$
, then w/hp

$$\|\mathbf{x} - \hat{\mathbf{x}}\| \le \delta R$$
 whenever $\|\mathbf{x}\|_0 \le s, \|\mathbf{x}\|_2 \le R$.

Pros: dithers are nonadaptive.

- ▶ Measurement vectors a₁,..., a_q: independent N(0, I_q).
- Dithers τ_1, \ldots, τ_q : independent $\mathcal{N}(0, \mathbb{R}^2)$.
- $\widehat{\mathbf{x}} = \operatorname{argmin} \|\mathbf{z}\|_1$ subject to $\|\mathbf{z}\|_2 \leq R$, $y_i(\langle \mathbf{a}_i, \mathbf{z} \rangle \tau_i) \geq 0$.

• If
$$q \ge c \delta^{-4} s \ln(n/s)$$
, then w/hp

$$\|\mathbf{x} - \hat{\mathbf{x}}\| \le \delta R$$
 whenever $\|\mathbf{x}\|_0 \le s, \|\mathbf{x}\|_2 \le R$.

- Pros: dithers are nonadaptive.
- Cons: slow, post-quantization error not handled.

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲臣 ▶ ○臣 ○ のへで

• Measurement vectors $\mathbf{a}_1, \ldots, \mathbf{a}_q$: independent $\mathcal{N}(0, \mathbf{I}_q)$.

- Measurement vectors $\mathbf{a}_1, \ldots, \mathbf{a}_q$: independent $\mathcal{N}(0, I_q)$.
- Use half of them to estimate the direction of x as

 $\mathbf{u} = H'_s(\mathbf{A}^* \operatorname{sign}(\mathbf{A}\mathbf{x})).$

・ロト・日本・モート モー うへぐ

- Measurement vectors $\mathbf{a}_1, \ldots, \mathbf{a}_q$: independent $\mathcal{N}(0, \mathbf{I}_q)$.
- Use half of them to estimate the direction of x as

$$\mathbf{u} = H'_s(\mathbf{A}^*\operatorname{sign}(\mathbf{Ax})).$$

Construct sparse vectors v, w (supp(v) ⊂ supp(u)) according to

- Measurement vectors $\mathbf{a}_1, \ldots, \mathbf{a}_q$: independent $\mathcal{N}(0, I_q)$.
- Use half of them to estimate the direction of x as

$$\mathbf{u} = H'_s(\mathbf{A}^*\operatorname{sign}(\mathbf{Ax})).$$

Construct sparse vectors v, w (supp(v) ⊂ supp(u)) according to

Use other half to estimate the direction of x – w applying hard thresholding again.

- Measurement vectors $\mathbf{a}_1, \ldots, \mathbf{a}_q$: independent $\mathcal{N}(0, \mathbf{I}_q)$.
- Use half of them to estimate the direction of x as

$$\mathbf{u} = H'_s(\mathbf{A}^*\operatorname{sign}(\mathbf{Ax})).$$

Construct sparse vectors v, w (supp(v) ⊂ supp(u)) according to

- Use other half to estimate the direction of x w applying hard thresholding again.
- Plane geometry to estimate direction and magnitude of x.

- Measurement vectors $\mathbf{a}_1, \ldots, \mathbf{a}_q$: independent $\mathcal{N}(0, \mathbf{I}_q)$.
- Use half of them to estimate the direction of x as

$$\mathbf{u} = H'_s(\mathbf{A}^*\operatorname{sign}(\mathbf{Ax})).$$

Construct sparse vectors v, w (supp(v) ⊂ supp(u)) according to

- Use other half to estimate the direction of x w applying hard thresholding again.
- Plane geometry to estimate direction and magnitude of x.
- Cons: dithers $\langle \mathbf{a}_i, \mathbf{w} \rangle$ are adaptive.

- Measurement vectors $\mathbf{a}_1, \ldots, \mathbf{a}_q$: independent $\mathcal{N}(0, \mathbf{I}_q)$.
- Use half of them to estimate the direction of x as

$$\mathbf{u} = H'_s(\mathbf{A}^*\operatorname{sign}(\mathbf{Ax})).$$

Construct sparse vectors v, w (supp(v) ⊂ supp(u)) according to

- Use other half to estimate the direction of x w applying hard thresholding again.
- Plane geometry to estimate direction and magnitude of x.
- Cons: dithers $\langle \mathbf{a}_i, \mathbf{w} \rangle$ are adaptive.
- Pros: deterministic, fast, handles pre/post-quantization errors.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

• Pre-quantization error $\mathbf{e} \in \mathbb{R}^m$ in

$$y_i = \operatorname{sign}(\langle \mathbf{a}_i, \mathbf{x} \rangle - \tau_i + e_i).$$

• Pre-quantization error $\mathbf{e} \in \mathbb{R}^m$ in

$$y_i = \operatorname{sign}(\langle \mathbf{a}_i, \mathbf{x} \rangle - \tau_i + e_i).$$

► If $\|\mathbf{e}\|_{\infty} \leq \varepsilon R 2^{-T}$ (or $\|\mathbf{e}^t\|_2 \leq \varepsilon \sqrt{q} \|\mathbf{x} - \mathbf{x}^t\|_2$ throughout), then

$$\|\mathbf{x} - \mathbf{x}^{\mathsf{T}}\|_2 \le R \, 2^{-\mathsf{T}} = R \exp(-c\lambda)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for the convex-optimization and hard-thresholding schemes.

• Pre-quantization error $\mathbf{e} \in \mathbb{R}^m$ in

$$y_i = \operatorname{sign}(\langle \mathbf{a}_i, \mathbf{x} \rangle - \tau_i + e_i).$$

► If $\|\mathbf{e}\|_{\infty} \leq \varepsilon R 2^{-T}$ (or $\|\mathbf{e}^t\|_2 \leq \varepsilon \sqrt{q} \|\mathbf{x} - \mathbf{x}^t\|_2$ throughout), then

$$\|\mathbf{x} - \mathbf{x}^{\mathsf{T}}\|_2 \le R \, 2^{-\mathsf{T}} = R \exp(-c\lambda)$$

for the convex-optimization and hard-thresholding schemes.

• Post-quantization error $\mathbf{f} \in \{\pm 1\}^m$ in

$$y_i = f_i \operatorname{sign}(\langle \mathbf{a}_i, \mathbf{x} \rangle - \tau_i).$$

• Pre-quantization error $\mathbf{e} \in \mathbb{R}^m$ in

$$y_i = \operatorname{sign}(\langle \mathbf{a}_i, \mathbf{x} \rangle - \tau_i + e_i).$$

► If $\|\mathbf{e}\|_{\infty} \leq \varepsilon R 2^{-T}$ (or $\|\mathbf{e}^t\|_2 \leq \varepsilon \sqrt{q} \|\mathbf{x} - \mathbf{x}^t\|_2$ throughout), then

$$\|\mathbf{x} - \mathbf{x}^{\mathsf{T}}\|_2 \leq R \, 2^{-\mathsf{T}} = R \exp(-c\lambda)$$

for the convex-optimization and hard-thresholding schemes.

• Post-quantization error $\mathbf{f} \in \{\pm 1\}^m$ in

$$y_i = f_i \operatorname{sign}(\langle \mathbf{a}_i, \mathbf{x} \rangle - \tau_i).$$

• If $card(\{i: f_i^t = -1\}) \le \eta q$ throughout, then

$$\|\mathbf{x} - \mathbf{x}^T\|_2 \le R 2^{-T} = R \exp(-c\lambda)$$

for the hard-thresholding scheme.

Numerical Illustration

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Numerical Illustration, ctd

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めへの

• Let $\mathbf{A} \in \mathbb{R}^{q \times n}$ with independent $\mathcal{N}(0, 1)$ entries.

- Let $\mathbf{A} \in \mathbb{R}^{q \times n}$ with independent $\mathcal{N}(0, 1)$ entries.
- Sign Product Embedding Property: if q ≥ Cδ⁻⁶s ln(n/s), then with w/hp

$$\left|rac{\sqrt{\pi/2}}{q}\langle \mathbf{A}\mathbf{w}, \operatorname{sign}(\mathbf{A}\mathbf{x})
angle - \langle \mathbf{w}, \mathbf{x}
angle
ight| \leq \delta$$

for all $\mathbf{w}, \mathbf{x} \in \mathbb{R}^n$ with $\|\mathbf{w}\|_0, \|\mathbf{x}\|_0 \leq s$ and $\|\mathbf{w}\|_2 = \|\mathbf{x}\|_2 = 1$.

- Let $\mathbf{A} \in \mathbb{R}^{q \times n}$ with independent $\mathcal{N}(0,1)$ entries.
- Sign Product Embedding Property: if q ≥ Cδ⁻⁶s ln(n/s), then with w/hp

$$\left|rac{\sqrt{\pi/2}}{q}\langle \mathsf{A}\mathsf{w}, \operatorname{sign}(\mathsf{A}\mathsf{x})
angle - \langle \mathsf{w}, \mathsf{x}
angle
ight| \leq \delta$$

for all $\mathbf{w}, \mathbf{x} \in \mathbb{R}^n$ with $\|\mathbf{w}\|_0, \|\mathbf{x}\|_0 \leq s$ and $\|\mathbf{w}\|_2 = \|\mathbf{x}\|_2 = 1$. Simultaneous (ℓ_2, ℓ_1) -Quotient Property: w/hp, every $\mathbf{e} \in \mathbb{R}^q$ can be written as

$$\mathbf{e} = \mathbf{A}\mathbf{u} \quad \text{with} \quad \begin{cases} \|\mathbf{u}\|_2 \leq d\|\mathbf{e}\|_2/\sqrt{q}, \\ \|\mathbf{u}\|_1 \leq d'\sqrt{s_*}\|\mathbf{e}\|_2/\sqrt{q}. \end{cases}$$

where $s_* = q/\ln(n/q)$.

- Let $\mathbf{A} \in \mathbb{R}^{q \times n}$ with independent $\mathcal{N}(0,1)$ entries.
- Sign Product Embedding Property: if q ≥ Cδ⁻⁶s ln(n/s), then with w/hp

$$\left|rac{\sqrt{\pi/2}}{q}\langle \mathsf{A} \mathsf{w}, \operatorname{sign}(\mathsf{A} \mathsf{x})
angle - \langle \mathsf{w}, \mathsf{x}
angle
ight| \leq \delta$$

for all $\mathbf{w}, \mathbf{x} \in \mathbb{R}^n$ with $\|\mathbf{w}\|_0, \|\mathbf{x}\|_0 \le s$ and $\|\mathbf{w}\|_2 = \|\mathbf{x}\|_2 = 1$. Simultaneous (ℓ_2, ℓ_1) -Quotient Property: w/hp, every $\mathbf{e} \in \mathbb{R}^q$

can be written as

$$\mathbf{e} = \mathbf{A}\mathbf{u} \quad \text{with} \quad \begin{cases} \|\mathbf{u}\|_2 \leq d\|\mathbf{e}\|_2/\sqrt{q}, \\ \|\mathbf{u}\|_1 \leq d'\sqrt{s_*}\|\mathbf{e}\|_2/\sqrt{q}, \end{cases}$$

where $s_* = q/\ln(n/q)$.

▶ Restricted Isometry Property: if $q \ge C\delta^{-2}s\ln(n/s)$, then with w/hp

$$\left|\frac{1}{q}\|\mathbf{A}\mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \delta \|\mathbf{x}\|_{2}^{2}$$

for all $\mathbf{x} \in \mathbb{R}^n$ with $\|\mathbf{x}\|_0 \leq s$.

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 → のへで

▶ Random hyperplane tessellations of $\sqrt{s}B_1^n \cap S^{n-1}$:

(ロ)、(型)、(E)、(E)、 E) の(の)

▶ Random hyperplane tessellations of $\sqrt{s}B_1^n \cap S^{n-1}$:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ $\mathbf{a}_1, \ldots, \mathbf{a}_q \in \mathbb{R}^n$ independent $\mathcal{N}(0, \mathbf{I}_q)$.

- ▶ Random hyperplane tessellations of $\sqrt{s}B_1^n \cap S^{n-1}$:
 - $\mathbf{a}_1, \ldots, \mathbf{a}_q \in \mathbb{R}^n$ independent $\mathcal{N}(0, \mathrm{I}_q)$.
 - ▶ If $q \ge C\delta^{-4}s\ln(n/s)$, then w/hp all $\mathbf{x}, \mathbf{x}' \in \sqrt{s}B_1^n \cap S^{n-1}$ with $\operatorname{sign}\langle \mathbf{a}_i, \mathbf{x} \rangle = \operatorname{sign}\langle \mathbf{a}_i, \mathbf{x}' \rangle$, $i = 1, \ldots, q$, satisfy

$$\|\mathbf{x} - \mathbf{x}'\|_2 \le \delta.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ Random hyperplane tessellations of √sB₁ⁿ ∩ Sⁿ⁻¹:
▶ a₁,..., a_q ∈ ℝⁿ independent N(0, I_q).
▶ If q ≥ Cδ⁻⁴s ln(n/s), then w/hp all x, x' ∈ √sB₁ⁿ ∩ Sⁿ⁻¹ with sign⟨a_i, x⟩ = sign⟨a_i, x'⟩, i = 1,...,q, satisfy

$$\|\mathbf{x} - \mathbf{x}'\|_2 \le \delta.$$

• Random hyperplane tessellations of $\sqrt{s}B_1^n \cap B_2^n$:

Random hyperplane tessellations of √sB₁ⁿ ∩ Sⁿ⁻¹:
a₁,..., a_q ∈ ℝⁿ independent N(0, I_q).
If q ≥ Cδ⁻⁴s ln(n/s), then w/hp all x, x' ∈ √sB₁ⁿ ∩ Sⁿ⁻¹ with sign⟨a_i, x⟩ = sign⟨a_i, x'⟩, i = 1,...,q, satisfy

$$\|\mathbf{x}-\mathbf{x}'\|_2 \le \delta.$$

- Random hyperplane tessellations of $\sqrt{s}B_1^n \cap B_2^n$:
 - $\mathbf{a}_1, \ldots, \mathbf{a}_q \in \mathbb{R}^n$ independent $\mathcal{N}(0, \mathrm{I}_q)$,

- Random hyperplane tessellations of $\sqrt{s}B_1^n \cap S^{n-1}$:
 - ▶ $\mathbf{a}_1, \ldots, \mathbf{a}_q \in \mathbb{R}^n$ independent $\mathcal{N}(0, \mathrm{I}_q)$.
 - ▶ If $q \ge C\delta^{-4}s \ln(n/s)$, then w/hp all $\mathbf{x}, \mathbf{x}' \in \sqrt{s}B_1^n \cap S^{n-1}$ with $\operatorname{sign}\langle \mathbf{a}_i, \mathbf{x} \rangle = \operatorname{sign}\langle \mathbf{a}_i, \mathbf{x}' \rangle$, $i = 1, \ldots, q$, satisfy

$$\|\mathbf{x} - \mathbf{x}'\|_2 \le \delta.$$

- Random hyperplane tessellations of $\sqrt{s}B_1^n \cap B_2^n$:
 - ▶ $\mathbf{a}_1, \dots, \mathbf{a}_q \in \mathbb{R}^n$ independent $\mathcal{N}(0, \mathrm{I}_q)$,
 - $\tau_1, \ldots, \tau_q \in \mathbb{R}$ independent $\mathcal{N}(0, 1)$,

- ▶ Random hyperplane tessellations of $\sqrt{s}B_1^n \cap S^{n-1}$:
 - ▶ $\mathbf{a}_1, \ldots, \mathbf{a}_q \in \mathbb{R}^n$ independent $\mathcal{N}(0, \mathrm{I}_q)$.
 - ▶ If $q \ge C\delta^{-4}s\ln(n/s)$, then w/hp all $\mathbf{x}, \mathbf{x}' \in \sqrt{s}B_1^n \cap S^{n-1}$ with $\operatorname{sign}\langle \mathbf{a}_i, \mathbf{x} \rangle = \operatorname{sign}\langle \mathbf{a}_i, \mathbf{x}' \rangle$, $i = 1, \ldots, q$, satisfy

$$\|\mathbf{x} - \mathbf{x}'\|_2 \le \delta.$$

- Random hyperplane tessellations of $\sqrt{s}B_1^n \cap B_2^n$:
 - ▶ $\mathbf{a}_1, \dots, \mathbf{a}_q \in \mathbb{R}^n$ independent $\mathcal{N}(0, \mathrm{I}_q)$,
 - $\tau_1, \ldots, \tau_q \in \mathbb{R}$ independent $\mathcal{N}(0, 1)$,
 - apply the previous results to $[\mathbf{a}_i, -\tau_i]$, $[\mathbf{x}, 1]$, $[\mathbf{x}', 1]$.

- ▶ Random hyperplane tessellations of $\sqrt{s}B_1^n \cap S^{n-1}$:
 - $\mathbf{a}_1, \ldots, \mathbf{a}_q \in \mathbb{R}^n$ independent $\mathcal{N}(0, \mathrm{I}_q)$.
 - ▶ If $q \ge C\delta^{-4}s \ln(n/s)$, then w/hp all $\mathbf{x}, \mathbf{x}' \in \sqrt{s}B_1^n \cap S^{n-1}$ with $\operatorname{sign}\langle \mathbf{a}_i, \mathbf{x} \rangle = \operatorname{sign}\langle \mathbf{a}_i, \mathbf{x}' \rangle$, $i = 1, \ldots, q$, satisfy

$$\|\mathbf{x} - \mathbf{x}'\|_2 \le \delta.$$

- ▶ Random hyperplane tessellations of $\sqrt{s}B_1^n \cap B_2^n$:
 - ▶ $\mathbf{a}_1, \dots, \mathbf{a}_q \in \mathbb{R}^n$ independent $\mathcal{N}(0, \mathrm{I}_q)$,
 - $au_1, \ldots, au_q \in \mathbb{R}$ independent $\mathcal{N}(0, 1)$,
 - apply the previous results to $[\mathbf{a}_i, -\tau_i]$, $[\mathbf{x}, 1]$, $[\mathbf{x}', 1]$.
 - ▶ If $q \ge C\delta^{-4}s\ln(n/s)$, then w/hp all $\mathbf{x}, \mathbf{x}' \in \sqrt{s}B_1^n \cap B_2^n$ with $\operatorname{sign}(\langle \mathbf{a}_i, \mathbf{x} \rangle \tau_i) = \operatorname{sign}(\langle \mathbf{a}_i, \mathbf{x}' \rangle \tau_i)$, $i = 1, \ldots, q$, satisfy

$$\|\mathbf{x} - \mathbf{x}'\|_2 \le \delta.$$

Thank you!

E-mail:

♦ dneedell@cmc.edu

Web:

\$ www.cmc.edu/pages/faculty/DNeedell

References:

- R. Baraniuk, S. Foucart, D. Needell, Y. Plan, M. Wootters. Exponential decay of reconstruction error from binary measurements of sparse signal, submitted.
- E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 59(8):1207Ű1223, 2006.
- E. J. Candès, Y. C. Eldar, D. Needell and P. Randall. Compressed sensing with coherent and redundant dictionaries. Applied and Computational Harmonic Analysis, 31(1):59-73, 2010.
- M. A. Davenport, D. Needell and M. B. Wakin. Signal Space CoSaMP for Sparse Recovery with Redundant Dictionaries, submitted.
- D. Needell and R. Ward. Stable image reconstruction using total variation minimization. J. Fourier Analysis and Applications, to appear.
- Y. Plan and R. Vershynin. One-bit compressed sensing by linear programming, Comm. Pure Appl. Math., to appear.