Exponential decay of reconstruction error from binary measurements of sparse signals

Deanna Needell

Joint work with R. Baraniuk, S. Foucart, Y. Plan, and M. Wootters

Outline

\diamond Introduction
\triangleleft Mathematical Formulation \& Methods
\diamond Practical CS
\diamond Other notions of sparsity
\diamond Heavy quantization
↔ Adaptive sampling

The mathematical problem

1. Signal of interest $f \in \mathbb{C}^{d}\left(=\mathbb{C}^{N \times N}\right)$
2. Measurement operator $\mathscr{A}: \mathbb{C}^{d} \rightarrow \mathbb{C}^{m}(m \ll d)$
3. Measurements $y=\mathscr{A} f+\xi$

$$
[y]=[\quad \mathscr{A} \quad] f]+[\xi]
$$

4. Problem: Reconstruct signal from measurements y

Sparsity

Measurements $y=\mathscr{A} f+\xi$.

Assume f is sparse:
\diamond In the coordinate basis: $\|f\|_{0} \stackrel{\text { def }}{=}|\operatorname{supp}(f)| \leq s \ll d$
\triangleleft In orthonormal basis: $f=B x$ where $\|x\|_{0} \leq s \ll d$

In practice, we encounter compressible signals.
$\checkmark \quad f_{s}$ is the best s-sparse approximation to f

Many applications...

« Radar, Error Correction
\diamond Computational Biology, Geophysical Data Analysis
\triangleleft Data Mining, classification
\diamond Neuroscience
\diamond Imaging
\diamond Sparse channel estimation, sparse initial state estimation
$\widehat{\psi}$ Topology identification of interconnected systems
ヶ ...

Sparsity...

Sparsity in coordinate basis: $f=x$

Reconstructing the signal f from measurements y

$\checkmark \ell_{1}$-minimization [Candès-Romberg-Tao]
Let A satisfy the Restricted Isometry Property and set:

$$
\hat{f}=\underset{g}{\operatorname{argmin}}\|g\|_{1} \quad \text { such that } \quad\|\mathscr{A} f-y\|_{2} \leq \varepsilon
$$

where $\|\xi\|_{2} \leq \varepsilon$. Then we can stably recover the signal f :

$$
\|f-\hat{f}\|_{2} \lesssim \varepsilon+\frac{\left\|x-x_{s}\right\|_{1}}{\sqrt{s}}
$$

This error bound is optimal.

Restricted Isometry Property

$\diamond \mathscr{A}$ satisfies the Restricted Isometry Property (RIP) when there is $\delta<c$ such that

$$
(1-\delta)\|f\|_{2} \leq\|\mathscr{A} f\|_{2} \leq(1+\delta)\|f\|_{2} \quad \text { whenever }\|f\|_{0} \leq s
$$

$\diamond m \times d$ Gaussian or Bernoulli measurement matrices satisfy the RIP with high probability when

$$
m \gtrsim s \log d
$$

\diamond Random Fourier and others with fast multiply have similar property: $m \gtrsim s \log ^{4} d$.

Other recovery methods

Greedy Algorithms
\diamond If A satisfies the RIP, then $A^{*} A$ is "close" to the identity on sparse vectors
$\stackrel{\rightharpoonup}{ }$ Use proxy $p=A^{*} y=A^{*} A x \approx x$
\triangleleft Threshold to maintain sparsity: $\hat{x}=H_{s}(p)$
\diamond Repeat
« (Iterative Hard Thresholding)

The One-Bit Compressive Sensing Problem

The One-Bit Compressive Sensing Problem

- Standard CS: vectors $\mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{x}\|_{0} \leq s$ acquired via nonadaptive linear measurements $\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle, i=1, \ldots, m$.

The One-Bit Compressive Sensing Problem

- Standard CS: vectors $\mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{x}\|_{0} \leq s$ acquired via nonadaptive linear measurements $\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle, i=1, \ldots, m$.
- In practice, measurements need to be quantized.

The One-Bit Compressive Sensing Problem

- Standard CS: vectors $\mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{x}\|_{0} \leq s$ acquired via nonadaptive linear measurements $\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle, i=1, \ldots, m$.
- In practice, measurements need to be quantized.
- One-Bit CS: extreme quantization as $\mathbf{y}=\operatorname{sign}(\mathbf{A x})$, i.e.,

$$
y_{i}=\operatorname{sign}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle, \quad i=1, \ldots, m .
$$

The One-Bit Compressive Sensing Problem

- Standard CS: vectors $\mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{x}\|_{0} \leq s$ acquired via nonadaptive linear measurements $\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle, i=1, \ldots, m$.
- In practice, measurements need to be quantized.
- One-Bit CS: extreme quantization as $\mathbf{y}=\operatorname{sign}(\mathbf{A} \mathbf{x})$, i.e.,

$$
y_{i}=\operatorname{sign}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle, \quad i=1, \ldots, m
$$

- Goal: find reconstruction maps $\Delta:\{ \pm 1\}^{m} \rightarrow \mathbb{R}^{n}$ such that,

The One-Bit Compressive Sensing Problem

- Standard CS: vectors $\mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{x}\|_{0} \leq s$ acquired via nonadaptive linear measurements $\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle, i=1, \ldots, m$.
- In practice, measurements need to be quantized.
- One-Bit CS: extreme quantization as $\mathbf{y}=\operatorname{sign}(\mathbf{A x})$, i.e.,

$$
y_{i}=\operatorname{sign}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle, \quad i=1, \ldots, m
$$

- Goal: find reconstruction maps $\Delta:\{ \pm 1\}^{m} \rightarrow \mathbb{R}^{n}$ such that, assuming the ℓ_{2}-normalization of \mathbf{x} (why?),

The One-Bit Compressive Sensing Problem

- Standard CS: vectors $\mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{x}\|_{0} \leq s$ acquired via nonadaptive linear measurements $\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle, i=1, \ldots, m$.
- In practice, measurements need to be quantized.
- One-Bit CS: extreme quantization as $\mathbf{y}=\operatorname{sign}(\mathbf{A} \mathbf{x})$, i.e.,

$$
y_{i}=\operatorname{sign}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle, \quad i=1, \ldots, m
$$

- Goal: find reconstruction maps $\Delta:\{ \pm 1\}^{m} \rightarrow \mathbb{R}^{n}$ such that, assuming the ℓ_{2}-normalization of \mathbf{x} (why?),

$$
\|\mathbf{x}-\Delta(\mathbf{y})\| \leq \gamma
$$

provided the oversampling factor satisfies

$$
\lambda:=\frac{m}{s \ln (n / s)} \geq f(\gamma)
$$

for f slowly increasing when γ decreases to zero

The One-Bit Compressive Sensing Problem

- Standard CS: vectors $\mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{x}\|_{0} \leq s$ acquired via nonadaptive linear measurements $\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle, i=1, \ldots, m$.
- In practice, measurements need to be quantized.
- One-Bit CS: extreme quantization as $\mathbf{y}=\operatorname{sign}(\mathbf{A} \mathbf{x})$, i.e.,

$$
y_{i}=\operatorname{sign}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle, \quad i=1, \ldots, m
$$

- Goal: find reconstruction maps $\Delta:\{ \pm 1\}^{m} \rightarrow \mathbb{R}^{n}$ such that, assuming the ℓ_{2}-normalization of \mathbf{x} (why?),

$$
\|\mathbf{x}-\Delta(\mathbf{y})\| \leq \gamma
$$

provided the oversampling factor satisfies

$$
\lambda:=\frac{m}{s \ln (n / s)} \geq f(\gamma)
$$

for f slowly increasing when γ decreases to zero, equivalently

$$
\|\mathbf{x}-\Delta(\mathbf{y})\| \leq g(\lambda)
$$

for g rapidly decreasing to zero when λ increases.

A visual

A visual

Existing Theoretical Results

Existing Theoretical Results

- Convex optimization algorithms [Plan-Vershynin 13a, 13b].

Existing Theoretical Results

- Convex optimization algorithms [Plan-Vershynin 13a, 13b].
- Uniform, nonadaptive, no quantization error: If $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a Gaussian matrix, then w/hp

$$
\left\|\mathbf{x}-\frac{\Delta_{\mathrm{LP}}(\mathbf{y})}{\left\|\Delta_{\mathrm{LP}}(\mathbf{y})\right\|_{2}}\right\|_{2} \lesssim \lambda^{-1 / 5} \quad \text { whenever }\|\mathbf{x}\|_{0} \leq \boldsymbol{s},\|\mathbf{x}\|_{2}=1
$$

Existing Theoretical Results

- Convex optimization algorithms [Plan-Vershynin 13a, 13b].
- Uniform, nonadaptive, no quantization error: If $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a Gaussian matrix, then w / hp

$$
\left\|\mathbf{x}-\frac{\Delta_{\mathrm{LP}}(\mathbf{y})}{\left\|\Delta_{\mathrm{LP}}(\mathbf{y})\right\|_{2}}\right\|_{2} \lesssim \lambda^{-1 / 5} \quad \text { whenever }\|\mathbf{x}\|_{0} \leq s,\|\mathbf{x}\|_{2}=1
$$

- Nonuniform, nonadaptive, random quantization error: Fix $\mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{x}\|_{0} \leq s,\|\mathbf{x}\|_{2}=1$. If $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a Gaussian matrix, then w/hp

$$
\left\|\mathbf{x}-\Delta_{\mathrm{SOCP}}(\mathbf{y})\right\|_{2} \lesssim \lambda^{-1 / 4}
$$

Existing Theoretical Results

- Convex optimization algorithms [Plan-Vershynin 13a, 13b].
- Uniform, nonadaptive, no quantization error: If $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a Gaussian matrix, then w/hp

$$
\left\|\mathbf{x}-\frac{\Delta_{\mathrm{LP}}(\mathbf{y})}{\left\|\Delta_{\mathrm{LP}}(\mathbf{y})\right\|_{2}}\right\|_{2} \lesssim \lambda^{-1 / 5} \quad \text { whenever }\|\mathbf{x}\|_{0} \leq \boldsymbol{s},\|\mathbf{x}\|_{2}=1
$$

- Nonuniform, nonadaptive, random quantization error: Fix $\mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{x}\|_{0} \leq s,\|\mathbf{x}\|_{2}=1$. If $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a Gaussian matrix, then w/hp

$$
\left\|\mathbf{x}-\Delta_{\mathrm{SOCP}}(\mathbf{y})\right\|_{2} \lesssim \lambda^{-1 / 4}
$$

- Uniform, nonadaptive, adversarial quantization error: If $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a Gaussian matrix, then w/hp

$$
\left\|\mathbf{x}-\Delta_{\mathrm{SOCP}}(\mathbf{y})\right\|_{2} \lesssim \lambda^{-1 / 12} \quad \text { whenever }\|\mathbf{x}\|_{0} \leq \boldsymbol{s},\|\mathbf{x}\|_{2}=1
$$

Limitations of the Framework

Limitations of the Framework

- Power decay is optimal since

$$
\left\|\mathbf{x}-\Delta_{\mathrm{opt}}(\mathbf{y})\right\|_{2} \gtrsim \lambda^{-1}
$$

even if $\operatorname{supp}(\mathbf{x})$ known in advance [Goyal-Vetterli-Thao 98].

Limitations of the Framework

- Power decay is optimal since

$$
\left\|\mathbf{x}-\Delta_{\mathrm{opt}}(\mathbf{y})\right\|_{2} \gtrsim \lambda^{-1}
$$

even if $\operatorname{supp}(\mathbf{x})$ known in advance [Goyal-Vetterli-Thao 98].

- Geometric intuition

http://dsp.rice.edu/1bitCS/choppyanimated.gif

Limitations of the Framework

- Power decay is optimal since

$$
\left\|\mathbf{x}-\Delta_{\mathrm{opt}}(\mathbf{y})\right\|_{2} \gtrsim \lambda^{-1}
$$

even if $\operatorname{supp}(\mathbf{x})$ known in advance [Goyal-Vetterli-Thao 98].

- Geometric intuition

http://dsp.rice.edu/1bitCS/choppyanimated.gif
- Remedy: adaptive choice of dithers $\tau_{1}, \ldots, \tau_{m}$ in

$$
y_{i}=\operatorname{sign}\left(\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle-\tau_{i}\right), \quad i=1, \ldots, m
$$

Exponential Decay: General Strategy

Exponential Decay: General Strategy

- Rely on an order-one quantization/recovery scheme: for any $\mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{x}\|_{0} \leq s,\|\mathbf{x}\|_{2} \leq R$, take $q \asymp s \ln (n / s)$ one-bit measurements and estimate both the direction and the magnitude of \mathbf{x} by producing $\widehat{\mathbf{x}}$ such that

$$
\|\mathbf{x}-\widehat{\mathbf{x}}\|_{2} \leq R / 4
$$

Exponential Decay: General Strategy

- Rely on an order-one quantization/recovery scheme: for any $\mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{x}\|_{0} \leq s,\|\mathbf{x}\|_{2} \leq R$, take $q \asymp s \ln (n / s)$ one-bit measurements and estimate both the direction and the magnitude of \mathbf{x} by producing $\widehat{\mathbf{x}}$ such that

$$
\|\mathbf{x}-\widehat{\mathbf{x}}\|_{2} \leq R / 4
$$

- Let $\mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{x}\|_{0} \leq s,\|\mathbf{x}\|_{2} \leq R$. Start with $\mathbf{x}^{0}=\mathbf{0}$.

Exponential Decay: General Strategy

- Rely on an order-one quantization/recovery scheme: for any $\mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{x}\|_{0} \leq s,\|\mathbf{x}\|_{2} \leq R$, take $q \asymp s \ln (n / s)$ one-bit measurements and estimate both the direction and the magnitude of \mathbf{x} by producing $\widehat{\mathbf{x}}$ such that

$$
\|\mathbf{x}-\widehat{\mathbf{x}}\|_{2} \leq R / 4
$$

- Let $\mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{x}\|_{0} \leq s,\|\mathbf{x}\|_{2} \leq R$. Start with $\mathbf{x}^{0}=\mathbf{0}$.
- For $t=0,1, \ldots$, estimate $\mathbf{x}-\mathbf{x}^{t}$ by $\widehat{\mathbf{x}-\mathbf{x}^{t}}$, then set

$$
\mathbf{x}^{t+1}=\quad \mathbf{x}^{t}+\widehat{\mathbf{x}-\mathbf{x}^{t}}, \quad \text { so that } \quad\left\|\mathbf{x}-\mathbf{x}^{t+1}\right\|_{2} \leq R / 4^{t+1}
$$

Exponential Decay: General Strategy

- Rely on an order-one quantization/recovery scheme: for any $\mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{x}\|_{0} \leq s,\|\mathbf{x}\|_{2} \leq R$, take $q \asymp s \ln (n / s)$ one-bit measurements and estimate both the direction and the magnitude of \mathbf{x} by producing $\widehat{\mathbf{x}}$ such that

$$
\|\mathbf{x}-\widehat{\mathbf{x}}\|_{2} \leq R / 4
$$

- Let $\mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{x}\|_{0} \leq s,\|\mathbf{x}\|_{2} \leq R$. Start with $\mathbf{x}^{0}=\mathbf{0}$.
- For $t=0,1, \ldots$, estimate $\mathbf{x}-\mathbf{x}^{t}$ by $\widehat{\mathbf{x}-\mathbf{x}^{t}}$, then set

$$
\mathbf{x}^{t+1}=H_{s}\left(\mathbf{x}^{t}+\widehat{\mathbf{x}-\mathbf{x}^{t}}\right), \quad \text { so that } \quad\left\|\mathbf{x}-\mathbf{x}^{t+1}\right\|_{2} \leq R / 2^{t+1}
$$

Exponential Decay: General Strategy

- Rely on an order-one quantization/recovery scheme: for any $\mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{x}\|_{0} \leq s,\|\mathbf{x}\|_{2} \leq R$, take $q \asymp s \ln (n / s)$ one-bit measurements and estimate both the direction and the magnitude of \mathbf{x} by producing $\widehat{\mathbf{x}}$ such that

$$
\|\mathbf{x}-\widehat{\mathbf{x}}\|_{2} \leq R / 4
$$

- Let $\mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{x}\|_{0} \leq s,\|\mathbf{x}\|_{2} \leq R$. Start with $\mathbf{x}^{0}=\mathbf{0}$.
- For $t=0,1, \ldots$, estimate $\mathbf{x}-\mathbf{x}^{t}$ by $\widehat{\mathbf{x}-\mathbf{x}^{t}}$, then set

$$
\mathbf{x}^{t+1}=H_{s}\left(\mathbf{x}^{t}+\widehat{\mathbf{x}-\mathbf{x}^{t}}\right), \quad \text { so that } \quad\left\|\mathbf{x}-\mathbf{x}^{t+1}\right\|_{2} \leq R / 2^{t+1}
$$

- After T iterations, number of measurements is $m=q T$, and

$$
\left\|\mathbf{x}-\mathbf{x}^{T}\right\|_{2} \leq R 2^{-T}=R 2^{-\frac{m}{q}}=R \exp (-c \lambda)
$$

Exponential Decay: General Strategy

- Rely on an order-one quantization/recovery scheme: for any $\mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{x}\|_{0} \leq s,\|\mathbf{x}\|_{2} \leq R$, take $q \asymp s \ln (n / s)$ one-bit measurements and estimate both the direction and the magnitude of \mathbf{x} by producing $\widehat{\mathbf{x}}$ such that

$$
\|\mathbf{x}-\widehat{\mathbf{x}}\|_{2} \leq R / 4
$$

- Let $\mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{x}\|_{0} \leq s,\|\mathbf{x}\|_{2} \leq R$. Start with $\mathbf{x}^{0}=\mathbf{0}$.
- For $t=0,1, \ldots$, estimate $\mathbf{x}-\mathbf{x}^{t}$ by $\widehat{\mathbf{x}-\mathbf{x}^{t}}$, then set

$$
\mathbf{x}^{t+1}=H_{s}\left(\mathbf{x}^{t}+\widehat{\mathbf{x}-\mathbf{x}^{t}}\right), \quad \text { so that } \quad\left\|\mathbf{x}-\mathbf{x}^{t+1}\right\|_{2} \leq R / 2^{t+1}
$$

- After T iterations, number of measurements is $m=q T$, and

$$
\left\|\mathbf{x}-\mathbf{x}^{T}\right\|_{2} \leq R 2^{-T}=R 2^{-\frac{m}{q}}=R \exp (-c \lambda)
$$

- Software step needed to compute the thresholds $\tau_{i}=\left\langle\mathbf{a}_{i}, \mathbf{x}^{t}\right\rangle$.

Order-One Scheme Based on Convex Optimization

Order-One Scheme Based on Convex Optimization

- Measurement vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{q}$: independent $\mathcal{N}\left(0, \mathrm{I}_{q}\right)$.

Order-One Scheme Based on Convex Optimization

- Measurement vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{q}$: independent $\mathcal{N}\left(0, \mathrm{I}_{q}\right)$.
- Dithers $\tau_{1}, \ldots, \tau_{q}$: independent $\mathcal{N}\left(0, R^{2}\right)$.

Order-One Scheme Based on Convex Optimization

- Measurement vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{q}$: independent $\mathcal{N}\left(0, \mathrm{I}_{q}\right)$.
- Dithers $\tau_{1}, \ldots, \tau_{q}$: independent $\mathcal{N}\left(0, R^{2}\right)$.
- $\widehat{\mathbf{x}}=\operatorname{argmin}\|\mathbf{z}\|_{1}$ subject to $\|\mathbf{z}\|_{2} \leq R, y_{i}\left(\left\langle\mathbf{a}_{i}, \mathbf{z}\right\rangle-\tau_{i}\right) \geq 0$.

Order-One Scheme Based on Convex Optimization

- Measurement vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{q}$: independent $\mathcal{N}\left(0, \mathrm{I}_{q}\right)$.
- Dithers $\tau_{1}, \ldots, \tau_{q}$: independent $\mathcal{N}\left(0, R^{2}\right)$.
- $\widehat{\mathbf{x}}=\operatorname{argmin}\|\mathbf{z}\|_{1}$ subject to $\|\mathbf{z}\|_{2} \leq R, y_{i}\left(\left\langle\mathbf{a}_{i}, \mathbf{z}\right\rangle-\tau_{i}\right) \geq 0$.
- If $q \geq c \delta^{-4} s \ln (n / s)$, then $w / h p$

$$
\|\mathbf{x}-\widehat{\mathbf{x}}\| \leq \delta R \quad \text { whenever }\|\mathbf{x}\|_{0} \leq s,\|\mathbf{x}\|_{2} \leq R
$$

Order-One Scheme Based on Convex Optimization

- Measurement vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{q}$: independent $\mathcal{N}\left(0, \mathrm{I}_{q}\right)$.
- Dithers $\tau_{1}, \ldots, \tau_{q}$: independent $\mathcal{N}\left(0, R^{2}\right)$.
- $\widehat{\mathbf{x}}=\operatorname{argmin}\|\mathbf{z}\|_{1}$ subject to $\|\mathbf{z}\|_{2} \leq R, y_{i}\left(\left\langle\mathbf{a}_{i}, \mathbf{z}\right\rangle-\tau_{i}\right) \geq 0$.
- If $q \geq c \delta^{-4} s \ln (n / s)$, then $w / h p$

$$
\|\mathbf{x}-\widehat{\mathbf{x}}\| \leq \delta R \quad \text { whenever }\|\mathbf{x}\|_{0} \leq s,\|\mathbf{x}\|_{2} \leq R
$$

- Pros: dithers are nonadaptive.

Order-One Scheme Based on Convex Optimization

- Measurement vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{q}$: independent $\mathcal{N}\left(0, \mathrm{I}_{q}\right)$.
- Dithers $\tau_{1}, \ldots, \tau_{q}$: independent $\mathcal{N}\left(0, R^{2}\right)$.
- $\widehat{\mathbf{x}}=\operatorname{argmin}\|\mathbf{z}\|_{1}$ subject to $\|\mathbf{z}\|_{2} \leq R, y_{i}\left(\left\langle\mathbf{a}_{i}, \mathbf{z}\right\rangle-\tau_{i}\right) \geq 0$.
- If $q \geq c \delta^{-4} s \ln (n / s)$, then $w / h p$

$$
\|\mathbf{x}-\widehat{\mathbf{x}}\| \leq \delta R \quad \text { whenever }\|\mathbf{x}\|_{0} \leq s,\|\mathbf{x}\|_{2} \leq R
$$

- Pros: dithers are nonadaptive.
- Cons: slow, post-quantization error not handled.

Order-One Scheme Based on Hard Thresholding

Order-One Scheme Based on Hard Thresholding

- Measurement vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{q}$: independent $\mathcal{N}\left(0, \mathrm{I}_{q}\right)$.

Order-One Scheme Based on Hard Thresholding

- Measurement vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{q}$: independent $\mathcal{N}\left(0, \mathrm{I}_{q}\right)$.
- Use half of them to estimate the direction of \mathbf{x} as

$$
\mathbf{u}=H_{s}^{\prime}\left(\mathbf{A}^{*} \operatorname{sign}(\mathbf{A} \mathbf{x})\right) .
$$

Order-One Scheme Based on Hard Thresholding

- Measurement vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{q}$: independent $\mathcal{N}\left(0, \mathrm{I}_{q}\right)$.
- Use half of them to estimate the direction of \mathbf{x} as

$$
\mathbf{u}=H_{s}^{\prime}\left(\mathbf{A}^{*} \operatorname{sign}(\mathbf{A} \mathbf{x})\right) .
$$

- Construct sparse vectors v,w(supp(v) $\subset \operatorname{supp}(\mathbf{u}))$ according to

Order-One Scheme Based on Hard Thresholding

- Measurement vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{q}$: independent $\mathcal{N}\left(0, \mathrm{I}_{q}\right)$.
- Use half of them to estimate the direction of \mathbf{x} as

$$
\mathbf{u}=H_{s}^{\prime}\left(\mathbf{A}^{*} \operatorname{sign}(\mathbf{A} \mathbf{x})\right)
$$

- Construct sparse vectors v,w (supp(v) $\subset \operatorname{supp}(\mathbf{u}))$ according to

- Use other half to estimate the direction of $\mathbf{x}-\mathbf{w}$ applying hard thresholding again.

Order-One Scheme Based on Hard Thresholding

- Measurement vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{q}$: independent $\mathcal{N}\left(0, \mathrm{I}_{q}\right)$.
- Use half of them to estimate the direction of \mathbf{x} as

$$
\mathbf{u}=H_{s}^{\prime}\left(\mathbf{A}^{*} \operatorname{sign}(\mathbf{A} \mathbf{x})\right)
$$

- Construct sparse vectors v,w (supp(v) $\subset \operatorname{supp}(\mathbf{u}))$ according to

- Use other half to estimate the direction of $\mathbf{x}-\mathbf{w}$ applying hard thresholding again.
- Plane geometry to estimate direction and magnitude of \mathbf{x}.

Order-One Scheme Based on Hard Thresholding

- Measurement vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{q}$: independent $\mathcal{N}\left(0, \mathrm{I}_{q}\right)$.
- Use half of them to estimate the direction of \mathbf{x} as

$$
\mathbf{u}=H_{s}^{\prime}\left(\mathbf{A}^{*} \operatorname{sign}(\mathbf{A} \mathbf{x})\right)
$$

- Construct sparse vectors v,w(supp(v) $\subset \operatorname{supp}(\mathbf{u}))$ according to

- Use other half to estimate the direction of $\mathbf{x}-\mathbf{w}$ applying hard thresholding again.
- Plane geometry to estimate direction and magnitude of \mathbf{x}.
- Cons: dithers $\left\langle\mathbf{a}_{i}, \mathbf{w}\right\rangle$ are adaptive.

Order-One Scheme Based on Hard Thresholding

- Measurement vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{q}$: independent $\mathcal{N}\left(0, \mathrm{I}_{q}\right)$.
- Use half of them to estimate the direction of \mathbf{x} as

$$
\mathbf{u}=H_{s}^{\prime}\left(\mathbf{A}^{*} \operatorname{sign}(\mathbf{A} \mathbf{x})\right)
$$

- Construct sparse vectors v,w (supp(v) $\subset \operatorname{supp}(\mathbf{u}))$ according to

- Use other half to estimate the direction of $\mathbf{x}-\mathbf{w}$ applying hard thresholding again.
- Plane geometry to estimate direction and magnitude of \mathbf{x}.
- Cons: dithers $\left\langle\mathbf{a}_{i}, \mathbf{w}\right\rangle$ are adaptive.
- Pros: deterministic, fast, handles pre/post-quantization errors.

Measurement Errors

Measurement Errors

- Pre-quantization error $\mathbf{e} \in \mathbb{R}^{m}$ in

$$
y_{i}=\operatorname{sign}\left(\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle-\tau_{i}+e_{i}\right) .
$$

Measurement Errors

- Pre-quantization error $\mathbf{e} \in \mathbb{R}^{m}$ in

$$
y_{i}=\operatorname{sign}\left(\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle-\tau_{i}+e_{i}\right) .
$$

- If $\|\mathbf{e}\|_{\infty} \leq \varepsilon R 2^{-T}$ (or $\left\|\mathbf{e}^{t}\right\|_{2} \leq \varepsilon \sqrt{q}\left\|\mathbf{x}-\mathbf{x}^{t}\right\|_{2}$ throughout), then

$$
\left\|\mathbf{x}-\mathbf{x}^{T}\right\|_{2} \leq R 2^{-T}=R \exp (-c \lambda)
$$

for the convex-optimization and hard-thresholding schemes.

Measurement Errors

- Pre-quantization error $\mathbf{e} \in \mathbb{R}^{m}$ in

$$
y_{i}=\operatorname{sign}\left(\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle-\tau_{i}+e_{i}\right) .
$$

- If $\|\mathbf{e}\|_{\infty} \leq \varepsilon R 2^{-T}$ (or $\left\|\mathbf{e}^{t}\right\|_{2} \leq \varepsilon \sqrt{q}\left\|\mathbf{x}-\mathbf{x}^{t}\right\|_{2}$ throughout), then

$$
\left\|\mathbf{x}-\mathbf{x}^{T}\right\|_{2} \leq R 2^{-T}=R \exp (-c \lambda)
$$

for the convex-optimization and hard-thresholding schemes.

- Post-quantization error $\mathbf{f} \in\{ \pm 1\}^{m}$ in

$$
y_{i}=f_{i} \operatorname{sign}\left(\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle-\tau_{i}\right)
$$

Measurement Errors

- Pre-quantization error $\mathbf{e} \in \mathbb{R}^{m}$ in

$$
y_{i}=\operatorname{sign}\left(\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle-\tau_{i}+e_{i}\right) .
$$

- If $\|\mathbf{e}\|_{\infty} \leq \varepsilon R 2^{-T}$ (or $\left\|\mathbf{e}^{t}\right\|_{2} \leq \varepsilon \sqrt{q}\left\|\mathbf{x}-\mathbf{x}^{t}\right\|_{2}$ throughout), then

$$
\left\|\mathbf{x}-\mathbf{x}^{T}\right\|_{2} \leq R 2^{-T}=R \exp (-c \lambda)
$$

for the convex-optimization and hard-thresholding schemes.

- Post-quantization error $\mathbf{f} \in\{ \pm 1\}^{m}$ in

$$
y_{i}=f_{i} \operatorname{sign}\left(\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle-\tau_{i}\right) .
$$

- If $\operatorname{card}\left(\left\{i: f_{i}^{t}=-1\right\}\right) \leq \eta q$ throughout, then

$$
\left\|\mathbf{x}-\mathbf{x}^{T}\right\|_{2} \leq R 2^{-T}=R \exp (-c \lambda)
$$

for the hard-thresholding scheme.

Numerical Illustration

Numerical Illustration, ctd

500 hard-thresholding-based tests

100 second-order-cone-programming-based tests $\mathrm{n}=100, \mathrm{~m} / \mathrm{s}=20: 20: 200, \mathrm{~T}=5$ (11 hours)

Ingredients for the Proofs

Ingredients for the Proofs

- Let $\mathbf{A} \in \mathbb{R}^{q \times n}$ with independent $\mathcal{N}(0,1)$ entries.

Ingredients for the Proofs

- Let $\mathbf{A} \in \mathbb{R}^{q \times n}$ with independent $\mathcal{N}(0,1)$ entries.
- Sign Product Embedding Property: if $q \geq C \delta^{-6} s \ln (n / s)$, then with w/hp

$$
\left|\frac{\sqrt{\pi / 2}}{q}\langle\mathbf{A} \mathbf{w}, \operatorname{sign}(\mathbf{A} \mathbf{x})\rangle-\langle\mathbf{w}, \mathbf{x}\rangle\right| \leq \delta
$$

for all $\mathbf{w}, \mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{w}\|_{0},\|\mathbf{x}\|_{0} \leq s$ and $\|\mathbf{w}\|_{2}=\|\mathbf{x}\|_{2}=1$.

Ingredients for the Proofs

- Let $\mathbf{A} \in \mathbb{R}^{q \times n}$ with independent $\mathcal{N}(0,1)$ entries.
- Sign Product Embedding Property: if $q \geq C \delta^{-6} s \ln (n / s)$, then with w / hp

$$
\left|\frac{\sqrt{\pi / 2}}{q}\langle\mathbf{A} \mathbf{w}, \operatorname{sign}(\mathbf{A} \mathbf{x})\rangle-\langle\mathbf{w}, \mathbf{x}\rangle\right| \leq \delta
$$

for all $\mathbf{w}, \mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{w}\|_{0},\|\mathbf{x}\|_{0} \leq s$ and $\|\mathbf{w}\|_{2}=\|\mathbf{x}\|_{2}=1$.

- Simultaneous (ℓ_{2}, ℓ_{1})-Quotient Property: $w / h p$, every $\mathbf{e} \in \mathbb{R}^{q}$ can be written as

$$
\mathbf{e}=\mathbf{A u} \quad \text { with } \quad \begin{cases}\|\mathbf{u}\|_{2} & \leq d\|\mathbf{e}\|_{2} / \sqrt{q} \\ \|\mathbf{u}\|_{1} & \leq d^{\prime} \sqrt{s_{*}}\|\mathbf{e}\|_{2} / \sqrt{q}\end{cases}
$$

where $s_{*}=q / \ln (n / q)$.

Ingredients for the Proofs

- Let $\mathbf{A} \in \mathbb{R}^{q \times n}$ with independent $\mathcal{N}(0,1)$ entries.
- Sign Product Embedding Property: if $q \geq C \delta^{-6} s \ln (n / s)$, then with w / hp

$$
\left|\frac{\sqrt{\pi / 2}}{q}\langle\mathbf{A} \mathbf{w}, \operatorname{sign}(\mathbf{A} \mathbf{x})\rangle-\langle\mathbf{w}, \mathbf{x}\rangle\right| \leq \delta
$$

for all $\mathbf{w}, \mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{w}\|_{0},\|\mathbf{x}\|_{0} \leq s$ and $\|\mathbf{w}\|_{2}=\|\mathbf{x}\|_{2}=1$.

- Simultaneous (ℓ_{2}, ℓ_{1})-Quotient Property: $w / h p$, every $\mathbf{e} \in \mathbb{R}^{q}$ can be written as

$$
\mathbf{e}=\mathbf{A} \mathbf{u} \quad \text { with } \quad \begin{cases}\|\mathbf{u}\|_{2} & \leq d\|\mathbf{e}\|_{2} / \sqrt{q} \\ \|\mathbf{u}\|_{1} & \leq d^{\prime} \sqrt{s_{*}}\|\mathbf{e}\|_{2} / \sqrt{ } \bar{q}\end{cases}
$$

where $s_{*}=q / \ln (n / q)$.

- Restricted Isometry Property: if $q \geq C \delta^{-2} s \ln (n / s)$, then with w/hp

$$
\left|\frac{1}{q}\|\mathbf{A} \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \leq \delta\|\mathbf{x}\|_{2}^{2}
$$

for all $\mathbf{x} \in \mathbb{R}^{n}$ with $\|\mathbf{x}\|_{0} \leq s$.

Ingredients for the Proofs, ctd

Ingredients for the Proofs, ctd

- Random hyperplane tessellations of $\sqrt{s} B_{1}^{n} \cap S^{n-1}$:

Ingredients for the Proofs, ctd

- Random hyperplane tessellations of $\sqrt{s} B_{1}^{n} \cap S^{n-1}$:
- $\mathbf{a}_{1}, \ldots, \mathbf{a}_{q} \in \mathbb{R}^{n}$ independent $\mathcal{N}\left(0, \mathrm{I}_{q}\right)$.

Ingredients for the Proofs, ctd

- Random hyperplane tessellations of $\sqrt{s} B_{1}^{n} \cap S^{n-1}$:
- $\mathbf{a}_{1}, \ldots, \mathbf{a}_{q} \in \mathbb{R}^{n}$ independent $\mathcal{N}\left(0, \mathrm{I}_{q}\right)$.
- If $q \geq C \delta^{-4} s \ln (n / s)$, then w / hp all $\mathbf{x}, \mathbf{x}^{\prime} \in \sqrt{s} B_{1}^{n} \cap S^{n-1}$ with $\operatorname{sign}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle=\operatorname{sign}\left\langle\mathbf{a}_{i}, \mathbf{x}^{\prime}\right\rangle, i=1, \ldots, \boldsymbol{q}$, satisfy

$$
\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2} \leq \delta .
$$

Ingredients for the Proofs, ctd

- Random hyperplane tessellations of $\sqrt{s} B_{1}^{n} \cap S^{n-1}$:
- $\mathbf{a}_{1}, \ldots, \mathbf{a}_{q} \in \mathbb{R}^{n}$ independent $\mathcal{N}\left(0, \mathrm{I}_{q}\right)$.
- If $q \geq C \delta^{-4} s \ln (n / s)$, then w / hp all $\mathbf{x}, \mathbf{x}^{\prime} \in \sqrt{s} B_{1}^{n} \cap S^{n-1}$ with $\operatorname{sign}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle=\operatorname{sign}\left\langle\mathbf{a}_{i}, \mathbf{x}^{\prime}\right\rangle, i=1, \ldots, \boldsymbol{q}$, satisfy

$$
\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2} \leq \delta .
$$

- Random hyperplane tessellations of $\sqrt{s} B_{1}^{n} \cap B_{2}^{n}$:

Ingredients for the Proofs, ctd

- Random hyperplane tessellations of $\sqrt{s} B_{1}^{n} \cap S^{n-1}$:
- $\mathbf{a}_{1}, \ldots, \mathbf{a}_{q} \in \mathbb{R}^{n}$ independent $\mathcal{N}\left(0, \mathrm{I}_{q}\right)$.
- If $q \geq C \delta^{-4} s \ln (n / s)$, then w / hp all $\mathbf{x}, \mathbf{x}^{\prime} \in \sqrt{s} B_{1}^{n} \cap S^{n-1}$ with $\operatorname{sign}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle=\operatorname{sign}\left\langle\mathbf{a}_{i}, \mathbf{x}^{\prime}\right\rangle, i=1, \ldots, \boldsymbol{q}$, satisfy

$$
\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2} \leq \delta .
$$

- Random hyperplane tessellations of $\sqrt{s} B_{1}^{n} \cap B_{2}^{n}$:
- $\mathbf{a}_{1}, \ldots, \mathbf{a}_{q} \in \mathbb{R}^{n}$ independent $\mathcal{N}\left(0, \mathrm{I}_{q}\right)$,

Ingredients for the Proofs, ctd

- Random hyperplane tessellations of $\sqrt{s} B_{1}^{n} \cap S^{n-1}$:
- $\mathbf{a}_{1}, \ldots, \mathbf{a}_{q} \in \mathbb{R}^{n}$ independent $\mathcal{N}\left(0, \mathrm{I}_{q}\right)$.
- If $q \geq C \delta^{-4} s \ln (n / s)$, then w / hp all $\mathbf{x}, \mathbf{x}^{\prime} \in \sqrt{s} B_{1}^{n} \cap S^{n-1}$ with $\operatorname{sign}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle=\operatorname{sign}\left\langle\mathbf{a}_{i}, \mathbf{x}^{\prime}\right\rangle, i=1, \ldots, \boldsymbol{q}$, satisfy

$$
\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2} \leq \delta .
$$

- Random hyperplane tessellations of $\sqrt{s} B_{1}^{n} \cap B_{2}^{n}$:
- $\mathbf{a}_{1}, \ldots, \mathbf{a}_{q} \in \mathbb{R}^{n}$ independent $\mathcal{N}\left(0, \mathrm{I}_{q}\right)$,
- $\tau_{1}, \ldots, \tau_{q} \in \mathbb{R}$ independent $\mathcal{N}(0,1)$,

Ingredients for the Proofs, ctd

- Random hyperplane tessellations of $\sqrt{s} B_{1}^{n} \cap S^{n-1}$:
- $\mathbf{a}_{1}, \ldots, \mathbf{a}_{q} \in \mathbb{R}^{n}$ independent $\mathcal{N}\left(0, \mathrm{I}_{q}\right)$.
- If $q \geq C \delta^{-4} s \ln (n / s)$, then w / hp all $\mathbf{x}, \mathbf{x}^{\prime} \in \sqrt{s} B_{1}^{n} \cap S^{n-1}$ with $\operatorname{sign}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle=\operatorname{sign}\left\langle\mathbf{a}_{i}, \mathbf{x}^{\prime}\right\rangle, i=1, \ldots, \boldsymbol{q}$, satisfy

$$
\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2} \leq \delta .
$$

- Random hyperplane tessellations of $\sqrt{s} B_{1}^{n} \cap B_{2}^{n}$:
- $\mathbf{a}_{1}, \ldots, \mathbf{a}_{q} \in \mathbb{R}^{n}$ independent $\mathcal{N}\left(0, I_{q}\right)$,
- $\tau_{1}, \ldots, \tau_{q} \in \mathbb{R}$ independent $\mathcal{N}(0,1)$,
- apply the previous results to $\left[\mathbf{a}_{i},-\tau_{i}\right],[\mathbf{x}, 1],\left[\mathbf{x}^{\prime}, 1\right]$.

Ingredients for the Proofs, ctd

- Random hyperplane tessellations of $\sqrt{s} B_{1}^{n} \cap S^{n-1}$:
- $\mathbf{a}_{1}, \ldots, \mathbf{a}_{q} \in \mathbb{R}^{n}$ independent $\mathcal{N}\left(0, \mathrm{I}_{q}\right)$.
- If $q \geq C \delta^{-4} s \ln (n / s)$, then w / hp all $\mathbf{x}, \mathbf{x}^{\prime} \in \sqrt{s} B_{1}^{n} \cap S^{n-1}$ with $\operatorname{sign}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle=\operatorname{sign}\left\langle\mathbf{a}_{i}, \mathbf{x}^{\prime}\right\rangle, i=1, \ldots, q$, satisfy

$$
\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2} \leq \delta .
$$

- Random hyperplane tessellations of $\sqrt{s} B_{1}^{n} \cap B_{2}^{n}$:
- $\mathbf{a}_{1}, \ldots, \mathbf{a}_{q} \in \mathbb{R}^{n}$ independent $\mathcal{N}\left(0, I_{q}\right)$,
- $\tau_{1}, \ldots, \tau_{q} \in \mathbb{R}$ independent $\mathcal{N}(0,1)$,
- apply the previous results to $\left[\mathbf{a}_{i},-\tau_{i}\right],[\mathbf{x}, 1],\left[\mathbf{x}^{\prime}, 1\right]$.
- If $q \geq C \delta^{-4} s \ln (n / s)$, then w / hp all $\mathbf{x}, \mathbf{x}^{\prime} \in \sqrt{s} B_{1}^{n} \cap B_{2}^{n}$ with $\operatorname{sign}\left(\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle-\tau_{i}\right)=\operatorname{sign}\left(\left\langle\mathbf{a}_{i}, \mathbf{x}^{\prime}\right\rangle-\tau_{i}\right), i=1, \ldots, q$, satisfy

$$
\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2} \leq \delta
$$

Thank you!

E-mail:

\diamond dneedell@cmc.edu

Web:

\triangleleft www.cmc.edu/pages/faculty/DNeedell

References:

४ R. Baraniuk, S. Foucart, D. Needell, Y. Plan, M. Wootters. Exponential decay of reconstruction error from binary measurements of sparse signal, submitted.
\diamond E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 59(8):1207Ű1223, 2006.
\diamond E. J. Candès, Y. C. Eldar, D. Needell and P. Randall. Compressed sensing with coherent and redundant dictionaries. Applied and Computational Harmonic Analysis, 31(1):59-73, 2010.
\diamond M. A. Davenport, D. Needell and M. B. Wakin. Signal Space CoSaMP for Sparse Recovery with Redundant Dictionaries, submitted.
\diamond D. Needell and R. Ward. Stable image reconstruction using total variation minimization. J. Fourier Analysis and Applications, to appear.
\diamond Y. Plan and R. Vershynin. One-bit compressed sensing by linear programming, Comm. Pure Appl. Math., to appear.

