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Abstract

This paper reports level set simulations of the Ostwald ripening of two-dimensional homoepitaxial islands. The

simulation accurately accounts for both adatom diffusion between the islands and adatom attachment/detachment

processes at the island edges. We compute the time evolution of the average island size and the full island size dis-

tribution function. The results provide support for a previously proposed self-consistent mean field theory.

� 2003 Elsevier Science B.V. All rights reserved.
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In 1900, Wilhelm Ostwald published a famous

paper on the approach to equilibrium for a solu-

tion where a dense phase and a dilute phase coexist

[1]. When the dense phase is present in the form of

a distribution of compact clusters with different
sizes, he argued that the Gibbs–Thomson effect [2]

provides a thermodynamic driving force for large

clusters to grow at the expense of small clusters.

This phenomenon is called ripening or coarsening.

The basic physics is the desire of the system to

minimize the free energy associated with the in-

terfaces between the two phases. Sixty years later,

Lifshitz and Sylozov and also Wagner (LSW) de-
veloped a theory of Ostwald ripening [3] which

predicts that the cluster size distribution asymp-

totically evolves to a unique scaling form in the

limit when the dense phase volume fraction goes to

zero. Contemporary theory takes account of

transient effects and a finite volume fraction of the

minority phase. Ref. [4] demonstrates that this

theory can provide a very satisfactory account of
experiment for three-dimensional (3D) bulk sys-

tems.

The study of Ostwald ripening in two dimen-

sions (2D) became possible with the advent of ul-

tra-high vacuum techniques in the 1960s. Using

Auger and mass spectrometry, and field ion and

transmission electron microscopy, a large effort

was devoted to understanding the kinetics of thin
film nucleation, growth, and coarsening. Solid

clusters nucleate when deposited atoms diffuse

across a flat, clean surface and collide with other

diffusing atoms. During growth, subsequently de-

posited diffusing atoms either nucleate new clusters

or collide with and adhere to existing clusters.

Cluster ripening occurs when the deposition flux is

turned off and the sample is held at fixed temper-
ature. The early experiments gained much useful
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information. However, the limited spatial resolu-

tion of the observations focused experimentation

on systems where the deposited clusters took the

form of easily visible three-dimensional crystallites

[5,6]. This restriction introduces complications

into the theory, particularly for heteroepitaxial
systems where the three-dimensionality of the

clusters is a consequence of lattice misfit elastic

strain [7,8].

Most recently, scanning tunnelling microscopy

(STM) and low-energy electron microscopy have

made it possible to study Ostwald ripening for

homoepitaxial systems where the clusters consist

of one atom high islands. Examples include
Si(0 0 1) [9], Ag(1 1 1) [10], Ni(1 0 0) [11], and

TiN(1 0 0) and TiN(1 1 1) [12]. In principle, these

experiments provide a quantitative test of theories

of Ostwald ripening in 2D [13–17]. These theories

are non-trivial because diffusion in 2D differs sig-

nificantly from diffusion in 3D [18]. There are good

experimental data for the time evolution of the

average island size. The data for the asymptotic
island size distribution function are less good. In

practice, the experiments typically try to distin-

guish between two extreme limits of existing

theory: ripening limited by surface diffusion

and ripening limited by attachment/detachment of

atoms to island edges. Of course, there is no

guarantee that a given system conforms to either

limit.
Based on its success for modelling epitaxial

crystal growth [19], one might imagine that kinetic

Monte Carlo (KMC) simulation would be a

powerful tool to study 2D Ostwald ripening. In

fact, we are aware of only a single paper devoted

to this subject [20]. The reason is, for realistic

values of the physical parameters, island detach-

ment processes are so slow that good statistics
require an inordinate amount of computer time.

Consequently, simulationists tend to focus on

coarsening by island diffusion and coalescence

[21,22], a scenario that is known to occur for

Ag(1 0 0) [23]. For reasons that are not entirely

clear to us, the authors of Ref. [20] compared their

simulation data to an analytic theory of coarsen-

ing by island diffusion [24], a process specifically
disallowed in the simulations. Another approach

that has been used to study Ostwald ripening is

based on the boundary integral method [31]. This

method is extremely efficient for solving the diffu-

sion equation (and hence island growth velocities)

for a surface morphology in the absence of nu-

cleation and merger.

In this paper, we study the Ostwald ripening
of 2D homoepitaxial islands using the level set

(LVST) approach to epitaxial phenomena [25–27].

This numerical method quantitatively reproduces

the results of KMC growth simulations, including

the detailed shape of the island size distribution

in the submonolayer regime [28]. Moreover, LVST

simulations are much more efficient than KMC

simulations when island detachment processes are
important [29]. The LVST method allows us to

simulate nucleation and growth and subsequent

coarsening within one unified approach, which is

in contrast to the boundary integral method,

where only the coarsening of islands can be sim-

ulated efficiently. In fact, in Ref. [31] the initial

distribution of islands had to be specified by a

separate simulation.
To our knowledge, the LVST method has been

used once before to study 2D island coarsening

[30]. In that work, Chopp digitized an STM image

(to provide an initial condition) and reported

LVST simulations which nicely reproduced STM

images obtained during subsequent annealing.

Quantitative agreement was obtained for the time

evolution of the area of a single island in the field
of view. In this paper, we are concerned with the

statistical properties of 2D Ostwald ripening.

Thus, we compute the time evolution of the entire

island size distribution in addition to the time

evolution of the (ensemble) average island size. We

compare our size distribution with the analytic

results of a self-consistent mean field theory of the

ripening process in 2D [16].
In our implementation of the LVST method,

islands are resolved as atomistic in height but

continuous in the lateral dimensions. The bound-

aries of islands of height k þ 1 are represented by

the set of points x where a level set function

uðx; tÞ ¼ k. The level set function evolves deter-

ministically according to

ou
ot

þ vnjruj ¼ 0: ð1Þ
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The normal velocity vn is computed from an at-

tachment flux and a detachment flux as

vn ¼ vatt � vdet: ð2Þ
Adatoms are represented by an adatom density

which is updated by solving a diffusion equation.

The attachment flux is [27]

vatt ¼ a2D
oq
on

���
terrace

� oq
on top of island

���
� �

: ð3Þ

Here a is the lattice constant, D is the diffusion

constant, and n the island boundary normal. The
detachment flux is [29]

vdet ¼ a2Ddetpesck; ð4Þ
where Ddet is an effective detachment rate, pesc is
the probability that a detached particle escapes

from the island, and k is the density of particles

that can detach from the island boundary. Explicit

stochastic components of the calculation take

proper account of the processes of island nucle-

ation [28] and the dissociation of very small islands

[29].

The main advantage of our approach is that it
allows for rather large time steps during the sim-

ulation. The maximum allowable time step dtmax in

a level set simulation is given by the condition

vn dtmax < dx; ð5Þ

which says that a boundary cannot propagate

more than one grid spacing during each time step.
Since the growth rate of the ensemble averaged

island size decreases monotonically with time

during coarsening (cf. Fig. 1), the average of vn
also decreases monotonically. Thus, Eq. (5) im-

plies that progressively larger time steps can be

taken as the simulation advances.

Atoms were deposited onto the surface at

constant deposition flux of 1 ML/s for all the re-
sults reported below. We chose D=F ¼ 106 and

Ddet=D ¼ 0:001 for, respectively, the ratio of the

surface diffusion rate to the deposition flux and

the ratio of the island edge detachment rate to the

surface diffusion rate. Different choices for the

physical parameters gave similar results. After

exposing the substrate to an initial coverage H the

deposition flux was turned off. Two coverages were
considered, H ¼ 0:085 and H ¼ 0:16. In both cases

the simulations were carried out for a system of

size 400� 400 lattice constants represented on a

numerical grid of 1132� 1132 equidistant points.

We report results for island radii Ri rather than

island areas Ai to allow an easy comparison with

the literature. For simplicity, we set Ri ¼
ffiffiffiffiffiffiffiffiffiffi
Ai=p

p
.

This is almost exact in our approach, particu-

larly at coverages where island merger can be

neglected.

For Ostwald ripening limited by adatom diffu-

sion, a self-consistent mean field theory (MFT)

described by Yao et al. [16] predicts that the av-

erage island radius R increases as

RðtÞ ¼ ½Rðt0Þ3 þ KðHÞðt � t0Þ
1=3: ð6Þ

The predicted ripening exponent 1/3 depends on

neither the coverage nor the dimensionality of the
system. The function KðHÞ depends on both. In

2D, KðHÞ is predicted to diverge as 1= lnH�1=2

when H ! 0.

The KMC simulation of 2D Ostwald ripening

reported by Lam et al. [20] took account of exactly

the same physical processes (adatom diffusion,

edge atom detachment) used by us. However, their

reported ripening exponents (0:246 b6 0:28) fall
somewhat below the MFT value. They suspected

that their simulations may never have exited the

transient regime.

Fig. 1 shows our LVST simulation results for

the average island radius R as a function of time

for the two values of H noted above. After an

initial transient phase, the data clearly approach

the expected power law exponent at late times (see
inset). Nevertheless, the effective exponents we

extract from our late time data fall in the interval

0:286b6 0:30. Thus, even with the increased ef-

ficiency of the level set method, our data do not

quite reach asymptotic limit, at least as far as the

mean island size is concerned. The scaling expo-

nent has also been confirmed with the boundary

integral method [31].
We note in passing that Eq. (6) is valid only for

the case of adatom diffusion limited ripening. A

KMC study by Mattsson et al. [21] showed that a

significantly lower value for b (0.20–0.25) is ob-

tained if ripening is primarily driven by island

diffusion. We have not included this effect in the
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present work, but it is straightforward to do so

without additional computational cost.

We now turn to our main result: the shape and
time evolution of the scaled and normalized island

size distribution function gðzÞ, where z ¼ R=R. In
our LVST simulations we measure nR, the number

of islands with radius R. The MFT of Yao et al.

predicts that gðzÞ ¼ nRR
3
p=H is independent of

time, and that the shape of gðzÞ depends only on

the coverage H [16]. Specifically, gðzÞ broadens as
H increases.

Fig. 2 shows our LVST results for gðzÞ for

H ¼ 0:16 and H ¼ 0:085. It is evident that gðzÞ
scales very well; the data at different times collapse

to a single curve for each coverage. Moreover, the

width of gðzÞ is indeed larger for H ¼ 0:16 (lower

panel of Fig. 2) than for H ¼ 0:085 (upper panel of
Fig. 2). Since both distributions are normalized to

the same area (the total number of islands), this is
obvious from the fact that the peak value of the

H ¼ 0:16 distribution is smaller than the peak value

of the H ¼ 0:085 distribution. A broadening of the

size distribution with increasing H has also been

observed with the boundary integral method [31].

Significantly, we believe, the solid line in the

upper panel shows that our H ¼ 0:085 data agree

very well with the mean field result for gðzÞ derived
by Yao et al. [16] for this coverage. The latter

authors did not report a mean field prediction for

gðzÞ with H ¼ 0:16 although it could be obtained

(in principle) by a non-trivial numerical procedure
outlined by them.

The scaled size distribution functions shown in

Fig. 2 are independent of t for asymptotically large

t. However, they may have a significantly differ-

ent shape at earlier times. For example, during

growth, the scaled island size distribution function

sharpens and narrows as the microscopic detach-

ment rate Ddet increases [29]. It is therefore in-
structive to study the time evolution of the size

distribution in the pre-asymptotic regime. We

present these data for H ¼ 0:16 in Fig. 3. The

distribution function quickly broadens and reaches

its asymptotic shape at approximately t ’ 4 s. We

have checked (data not shown here) that the shape

of gðzÞ is independent of Ddet at larger times (where

the shape is converged), but that the time evolu-
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Fig. 2. Scaled island size distribution function gðzÞ for

H ¼ 0:085 and H ¼ 0:16. In each case, the distribution is shown

at four different times. The MFT result is from Ref. [16].

Fig. 1. Time dependence of the average island radius for two

different coverages H. The straight lines are guides to the eye

with the theoretically predicted slope of 1/3. Time is in seconds,

and the radius is given in units of the lattice constant. The inset

is a blow up of the asymptotic regime.
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tion to the asymptotic shape of the distribution

function is different. A larger value of Ddet leads to

a sharper and narrower distribution function at

the end of the growth phase, so it takes longer in

the ripening phase for the distribution function to

broaden.
In conclusion, we have used the numerically

stable and efficient level set method to study nu-

cleation and growth and subsequent Ostwald rip-

ening in two dimensions within one computational

framework. The computed time evolution of the

average island size and the shape of the asymptotic

scaled island size distribution agree quantitatively

with the predictions of a previously published
mean field theory of this process, as well as the

results obtained from the boundary integral

method. In retrospect, this confirmation is not

unexpected because nucleation––the stochastic

process which renders mean field theory unreliable

for growth distributions, and makes the use of the

boundary integral method numerically unfeasi-

ble––is absent during the ripening process.
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