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Mean-field spin glasses: Static

Configuration space Σn = {−1,+1}n.

(Random) Hamiltonian Hn = {Hn(x) : x ∈ Σn}.

p spin SK model
Hn = centered Gaussians with covariance structure

EHn(x)Hn(x ′) = nRn(x , x ′)p , where p ≥ 2 and

Rn(x , x ′) = 1
n

∑n
i=1 xix

′
i .

SK Model = 2 spin SK model.

Gibbs measure at inverse temperature β:

µβ,n(x) =
τn(x)

Zn(β)
, Zn(β) partition function ,

τn(x) = exp(βHn(x)) Gibbs weight.
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Add Dynamics

Intuitively:

Define continuous time Markov chain Xn on Σn with

Xn is reversible w.r.t Gibbs measure.

Only local jumps are possible.

Explicit construction...
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Random Walk in Random Environment

Random environment: Gibbs weights τ = {τn(x) : x ∈ Σn}.
Jumps: Jn = {Jn(k) : k ∈ N} simple random walk on Σn.
Initial distribution: uniform on Σn.

Transition probabilities: pn(x , y) = 1/n if dist(x , y) = 1.

Clock process

S̃n (m) =
∑m−1

k=0 τn (Jn (k)) ek ,

where {ek : k ∈ N} iid∼ exp(1).

Process of interest Xn is time change of Jn:

Xn (t) = Jn
(
S̃←n (t)

)
, t > 0,

where S̃←n is right-inverse.
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Aim

We want to study aging.

Intuitively

Prepare system at initial time t0.

Leave system to itself.

Wait time tw . Perform measurement.

Is it dependent on t0?

If yes, then the system ages.

Formally
Let Cn(t, s) be a time-correlation function of Xn. Cn(t, s) ages if
for some diverging sequence tn

lim
n→∞

Cn(tn, (1 + θ)tn) = h(θ), ∀θ > 0 .
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Determine limiting distribution of clock process, i.e.
find jump scales (an)n∈N and time scales (cn)n∈N s.t.

Sn (t) =
1

cn

bantc∑
k=1

τn (Jn (k)) ek ⇒ non-degenerate limit
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Exponential time scales

Ben Arous, Bovier, Černý, 2008

p ≥ 3: There exists ξ(p) s.t. for all α ∈ (0,min(1, ξ(p)β−1)) and

an =
√
n exp

(
1
2α

2n
)
, cn = exp

(
αβ2n

)
,

it holds
Sn⇒Vα ,

where Vα is stable subordinator with index α.

Convergence holds P-almost surely wrt Jn, in P-law wrt τ

Bovier, Gayrard, 2010

Same result, but convergence holds

p > 4: P-a.s.

p ≥ 3: in P-probability.
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Subexponential time scales

Ben Arous, Gun, 2011

Let αn = n−c , c ∈
(
0, 12
)

and Kp = β2p. For

an =
√

2πnα−1n β exp
(
1
2α

2
nnβ

2
)

, cn = exp
(
αnnβ

2
)
.

it holds
Sαn
n ⇒ M ,

where M is extremal process with d.f. F (x) = e−Kp/x .

Convergence holds P-a.s., in P-law for p ≥ 4 and p = 2
or p = 3 if c < 1

4 .

Bovier, Gayrard, S., 2011

Same result, but convergence holds

P-a.s. for p ≥ 4, p = 3 if c > 1
4

in P-probability for p = 2 and p = 3 if c ≤ 1
4 .
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Subordinators and Extremal Processes

Let ξ =
∑

k∈N δsk ,xk Poisson point process with intensity measure
dt × dν , ν(u,∞) ∝ u−α, u > 0, α ∈ (0, 1].

We can construct two different objects.

Stable subordinator

Vα(t) =

∫ t

0

∫ ∞
0

x dξ(s, x).
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Subordinators and Extremal Processes

Extremal process

Mα(t) = sup{xk : sk ≤ t}
= sup{∆Vα(s) : s ≤ t}.
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One-dimensional marginal

P(Mα(t) ≤ u) = exp(−tu−α).

What happens to Vα if α→ 0?
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Extremal Processes

Kasahara, 86:

Every non-linear transformation of Vα converges to a degenerate
limit as α→ 0, i.e.

small α:
Vα(t) ≈ max

s≤t
∆Vα(s).

Jumps are too big!

P (Vα(t) > u) ≈ 1− exp(−tu−α).

Solution:

(Vα(t))α ≈ max
s≤t

(∆Vα(s))α ≈ max
s≤t

∆V1(s) = M1(t) ,

with one dimensional marginal

P(M1(t) ≤ u) = exp(−tu−1).
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Sketch of proof

(i) Define for Zn,k = c−1n

∑n2k
i=n2(k−1)+1 τn (Jn (i)) ei

ξn =
∑

k∈N δ
{

k
an
,(Zn,k)

αn
}.

Show P− a.s. / in P probability that ξn =⇒ ξ,
where ξ PPP (dt × dν), ν (u,∞) = Kpu

−1.

(ii) Apply mappings

Tn : m =
∑

k∈N δtk ,jk 7→
(∑

k∈N j
1/αn

k

)αn

,

T : m 7→ sup {jk : k ∈ N} .

and show Tnξn =⇒ T ξ, P-a.s./ in P probability.
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Extremal Aging

Theorem 2 [Bovier, Gayrard, S., 11]
Define for ε ∈ (0, 1) and θ > 0, the time correlation function by

Cεn(θ) ≡ P
({

Rn

(
Xn(cn),Xn((1 + θ)1/αncn)

)
≥ 1− ε

})
.

Under the assumptions of Theorem 1,

lim
n→∞

Cεn(θ) =
1

1 + θ
, ∀ε ∈ (0, 1), θ > 0.

P-a.s. for p ≥ 4, p = 3 if c > 1
4

in P-probability for p = 2, p = 3 if c ≤ 1
4 .
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Summary and Outlook

Summary

Extended results from [Ben Arous, Gun, 11]

in law with respect to the environment,
to results that hold almost surely, respectively in probability.

To this end we use similar methods as [Bovier, Gayrard, 10].

Outlook

Infinite state space, eg. models on Zd .

More complicated dynamics.
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Thank you for your attention!
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