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Metastability in stochastic dynamics

Metastability: A common phenomenon

The paradigm. Related to the dynamics of first order phase transitions

Change parameters quickly across the line of first order phase transition, the system
reveals the existence of multiple time scales:

Short time scales.
⊲ Existence of disjoint subsets Mi, viewed as metastable sets/states
⊲ The system appears to be in a quasi-equilibrium within Mi

Larger time scales.
⊲ Rapid transitions between metastable sets occur induced by random fluctuations

The goal. Understanding of quantitative aspects of dynamical phase transitions:

⊲ expected time of a transition from a metastable to a stable state
⊲ distribution of the exit time from a metastable state
⊲ small eigenvalues and corresponding eigenvectors of the generator
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Metastability in stochastic dynamics

Stochastic spin models

We are interested in studying the stochastic dynamics of (disordered) spin systems, i.e.
Markov process with

⊲ State space SΛ = SΛ, where S finite set and e.g. Λ ⊂ Z
d

⊲ Hamiltonian HΛ : SΛ → R

⊲ Gibbs measure µΛ,β(σ) = Z−1
Λ,β exp

`

− βHΛ(σ)
´

⊲ Transition rates pΛ,β(σ, η) reversible with respect to µΛ,β and ”local”, i.e.
essentially single site flips only.
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Metastability in stochastic dynamics

Well understood situations

Low temperature limit. β → ∞

⊲ metastable states correspond to local minima of HN

⊲ exit from metastable states occur through minimal saddle points of HN connecting
one minimum to deeper ones, only a few path are relevant

⊲ the mean exit time of a metastable state is proportional to
exp

`

β(HN(saddle) − HN(min))
´

⊲ normalized metastable exit times are Exp(1) distributed

Mean-field models. HN(σ) = E(̺N (σ)) for some mesoscopic variable ̺N

⊲ an exact reduction to a low-dimensional model is possible; nearest-neighbor
random walk in the free energy landscape, FN

⊲ metastable states correspond to local minima of FN

⊲ the mean exit time of a metastable state is proportional to
exp

`

βN(FN (saddle) − FN(min))
´

⊲ normalized metastable exit times are Exp(1) distributed
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Properties of the random field CWP model

The random field Curie–Weiss–Potts Model and the dynamics

Random Hamiltonian.

HN(σ) = −
1

N

N
X

i,j=1

δ(σi, σj) −
N
X

i=1

q
X

r=1

hi
r δ(σi, r), σ ∈ SN ≡ {1, . . . , q}N

{hi}i∈N are i.i.d. random variables taking values in R
q .

Gibbs measure. µN (σ) = Z−1
N exp

`

−βHN (σ)
´

q−N

Equilibrium properties.
⊲ J.M. Amaro de Matos, A.E. Patrick, V.A. Zagrebnov (JSP, 1992), C. Külske (JSP, 1997, 1998)

⊲ G. Iacobelli, C. Külske (JSP, 2010)

Glauber dynamics. Discrete-time Markov chain {σ(t)}t∈N0 on SN reversible w.r.t. µN

with Metropolis transition probabilities

pN(σ, η) =
1

qN
exp

`

−β
ˆ

HN(η) − HN(σ)
˜

+

´ 1dH(σ,η) = 1

and pN(σ, σ) =
P

η pN(σ, η).
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Properties of the random field CWP model

Coarse graining and mesoscopic approximation

The entropic problem can be solved by passing on to

Mesoscopic variables.

̺
n : SN → Γn ⊂ R

n·q, ̺
n(σ) =

Xn

k=1
ek ⊗

1

N

X

i∈Λk

δσi

⊲ {Hk}
n
k=1 is a partition of support of the distribution of the random field, diamHk < ε(n)

⊲ Λk =
˘

i ∈ {1, . . . , N} |hi ∈ Hk

¯

is a random partition of {1, . . . , N}

Induced measure. Qn = µN ◦ (̺n)−1 on the set Γn

△! In general,
˘

̺n
`

σ(t)
´¯

t∈N0
is not Markovian

Strategy. Approximate the original dynamics by Markovian dynamics on Γn which are
reversible w.r.t. Qn with

rn(x, y) =
1

Qn(x)

X

σ∈(̺n)−1(x)

µN (σ)
X

η∈(̺n)−1(y)

pN(σ, η).

Prag summer school 6 (16)



Properties of the random field CWP model

Coarse graining and mesoscopic approximation

The entropic problem can be solved by passing on to

Mesoscopic variables.

̺
n : SN → Γn ⊂ R

n·q, ̺
n(σ) =

Xn

k=1
ek ⊗

1

N

X

i∈Λk

δσi

⊲ {Hk}
n
k=1 is a partition of support of the distribution of the random field, diamHk < ε(n)

⊲ Λk =
˘

i ∈ {1, . . . , N} |hi ∈ Hk

¯

is a random partition of {1, . . . , N}

Induced measure. Qn = µN ◦ (̺n)−1 on the set Γn

△! In general,
˘

̺n
`

σ(t)
´¯

t∈N0
is not Markovian

Strategy. Approximate the original dynamics by Markovian dynamics on Γn which are
reversible w.r.t. Qn with

rn(x, y) =
1

Qn(x)

X

σ∈(̺n)−1(x)

µN (σ)
X

η∈(̺n)−1(y)

pN(σ, η).

Prag summer school 6 (16)



Properties of the random field CWP model

Mesoscopic free energy landscape

Sharp large deviation estimates

ZN Qn(x) =
exp

`

−Nβ F n(x)
´ `

1 + ON(1)
´

Qn

k=1(2πN)
q−1

2

q

˛

˛ det
ˆ

πk ∇2U|Λk|

`

t∗(xk/πk)
´˜˛

˛

,

where πk = |Λk|/N and F n(x) := E(x) + 1
β

Pn

k=1 πk I|Λk|(x
k)

Critical points.
⊲ Deterministic in the limit

N → ∞

⊲ explicit expression for F n(x) at
critical points
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Properties of the random field CWP model

Main result

Let m be a local minimum of F n and M the set of deeper local minima of F n.

Theorem 1. Suppose z be a unique critical point of index 1 separating m from M and
denote by A = (̺n)−1(m) and B = (̺n)−1(M ). Then, Ph-a.s.,

Eν

ˆ

τB

˜

=
2πN

β|γ1|

s

˛

˛ det
`

I − 2β ∇2UN (2βz)
´˛

˛

det
`

I − 2β ∇2UN (2βm)
´ eβN(FN (z)−FN (m))

`

1 + ON (1)
´

where ν is a probability measure on A and

FN(x) = ‖x‖2 −
1

βN

XN

i=1
ln
“

Pq

r=1
1
q

exp
`

2βzr + βhi
r

´

”

Previous and related work
⊲ F. den Hollander and P. dai Pra (JSP, 1996) large deviations, logarithmic asymptotics
⊲ P. Mathieu and P. Picco (JSP, 1998) Bernoulli distribution, up to polynomial errors
⊲ A. Bovier, M. Eckhoff, V. Gayrard and M. Klein (PTRL, 2001) discrete distribution, up to a

multiplicative constant
⊲ A. Bianchi, A. Bovier and D. Ioffe (EJP, 2008) bounded continuous distribution, precise

prefactor
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Potential theoretic approach

Boundary value problems

Discrete generator.
`

LNf
´

(σ) =
P

η∈SN
pN(σ, η)

`

f(η) − f(σ)
´

Given D ⊂ SN and functions g, k : Dc → R and u : D → R

( `

LNf
´

(σ) − k(σ) f(σ) = −g(σ), σ ∈ Dc

f(σ) = u(σ), σ ∈ D,

Suppose minη∈Dc k(η) ≡ κ > −1 and Eσ

ˆ

τD (1 + κ)−τD
˜

< ∞. Then

f(σ) = Eσ

"

u
`

σ(τD)
´

τD−1
Y

s=0

1

1 + k
`

σ(s)
´ +

τD−1
X

s=0

g
`

σ(s)
´

s
Y

r=0

1

1 + k
`

σ(r)
´

#

Mean hitting times. wD(σ) = Eσ[τD] solves
( `

LNwD

´

(σ) = −1, σ ∈ Dc

wD(σ) = 0, σ ∈ D
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Potential theoretic approach

Equilibrium potential and capacities

Given A, B ⊂ SN disjoint.

Equilibrium potential. hA,B(σ) = Pσ

ˆ

τA < τB

˜

solves
( `

LNhA,B

´

(σ) = 0, σ ∈ (A ∪ B)c

hA,B(σ) = 1A(σ), σ ∈ A ∪ B

Equilibrium measure. eA,B(σ) = −
`

LNhA,B

´

(σ)

Capacity.

cap(A, B) =
X

σ∈B

µN (σ) eA,B(σ) =
1

2

X

σ,η∈SN

µN (σ) pN (σ, η)
`

hA,B(σ) − hA,B(η)
´2

Dirichlet form. E(h, h) = 1
2

P

σ,η∈SN
µN (σ) pN (σ, η)

`

h(σ) − h(η)
´2
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Potential theoretic approach

Connection between capacities and mean hitting times

Last exit biased distribution. νA,B measure on A

νA,B(σ) =
µN (σ) eA,B(σ)

cap(A, B)
=

µN (σ) Pσ

ˆ

τB < τA

˜

P

η∈A µN (σ) Pη

ˆ

τB < τA

˜ , σ ∈ A

Mean hitting time.

EνA,B

ˆ

τB

˜

=
1

cap(A, B)

X

σ∈SN

µN (σ) hA,B(σ)

The full beauty. To obtain sharp estimates for the mean hitting time, we need:
⊲ precise control on capacities.
⊲ some rough bounds on the equilibrium potential.

Averaged renewal equation. A, B, X ⊂ SN mutually disjoint

X

σ∈X

νX,A∪B(σ)hA,B(σ) ≤ min



cap(X, A)

cap X, B
, 1

ff
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Potential theoretic approach

Computation of capacities

Variational principles for capacities offers two convenient options for upper and lower
bounds:

Dirichlet principle.

cap(A,B) = inf
h∈HA,B

1

2

X

σ,η

µ(σ) p(σ, η)
`

h(σ) − h(η)
´2

HA,B is the space of functions with boundary constraints; minimizer harmonic function

Berman-Konsowa principle.

cap(A, B) = sup
f∈UA,B

E
f

" 

X

(σ,η)∈X

f(σ, η)

µ(σ) p(σ, η)

!−1#

UA,B is the space of unit flows; maximizer harmonic flow. E
f denotes the law of a

directed Markov chain with transition probabilities proportional to the flow.
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Potential theoretic approach

The program

The key step in the proof of the upper and lower bound on capacities is to

1. find a function which is almost harmonic in a small neighborhood of the relevant
saddle point z.

Two parameter family of test functions.

g(x) = f(〈v, x − z, )〉

where v ∈ Γn and |γ1| ∈ R+

f(s) =

r

βN |γ1|

2π

s
Z

−∞

exp
`

− 1
2
βN |γ1|u

2´ du
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Potential theoretic approach

The program

The key step in the proof of the upper and lower bound on capacities is to

1. find a function which is almost harmonic in a small neighborhood of the relevant
saddle point z.

Two scale construction:

2. Construct a mesoscopic unit flow on variables x from the approximate harmonic
function. This yields a good lower bound in the mesoscopic Dirichlet form.

3. Construct a subordinate microscopic unit flow for each mesoscopic path.

4. Use that the magnetic field is almost constant in any block Λk to show strong
concentration properties along microscopic paths.

This yields a lower bound that differs from the upper bound only by a factor 1+O
`

ε(n)
´

.
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From average to pointwise estimates

From average to pointwise estimates

Questions.
⊲ Does the metastable time really depend on the last exit biased distribution ν?
⊲ Under which conditions can we deduce pointwise estimates?

Heuristic.

The time spent in the starting well before reaching B is much larger then the mixing
time of the dynamics conditioned to stay in the well:

Eσ

ˆ

τB

˜

∼ Eη

ˆ

τB

˜

∀σ, η ∈ A.

After the system is mixed, the return times to A are i.i.d. random variables, and the
number of returns to A is geometric. Provided that the mixing time is small enough
respect to Eν [τB ] , the metastable time is expected to be exponential distributed.
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From average to pointwise estimates

Main results

Let m and M be local minima in F n and A = (̺n)−1(m) and B = (̺n)−1(M ).

Theorem 2. For n large enough,

Eσ

ˆ

τB

˜

= Eη

ˆ

τB

˜ `

1 + ON (1)
´

for all σ, η ∈ A.

Theorem 3. For n large enough and all t > 0

Pσ

ˆ

τB/ Eσ

ˆ

τB

˜

> t
˜

→ e−t, as N → ∞

for all σ, η ∈ A.

Previous and related work
⊲ D.A. Levin, M. Luczak, Y. Peres (PTRF, 2010) without random field, coupling construction

⊲ A. Bianchi, A. Bovier and D. Ioffe (accepted Ann. Prob.) continuous distribution, coupling
construction for Ising spins
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Summary and outlook

Conclusions

What has been done so far.

⊲ Sharp estimates on metastable exit times in a model without symmetry when
entropy is relevant.

⊲ Description of distribution of metastable exit times.
⊲ Averaged version of renewal equations for harmonic functions.
⊲ Construction of a coupling when the underlying single spin space is finite.

Future challenges.

⊲ Control of the small eigenvalues of the generator!
⊲ Hopfield model with infinitely many patterns.
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