Unitary Matrix Models: universality conjecture in the bulk and on the edge of the spectrum.

M. Poplavskyi
Department of Statistical Methods in Mathematical Physics
B.Verkin Institute for Low Temperature Physics and Engineering of the NASU
VI School on Mathematical Physics, September 6, 2011

Some types of Random Matrix Ensembles

■ Matrix Ensembles with independent entries
■ Wigner matrices

$$
P_{n}(d M)=\prod_{1 \leq i<j \leq n} F\left(n^{1 / 2} d M_{i, j}\right) \prod_{i=1}^{n} F_{0}\left(n^{1 / 2} d M_{i, i}\right)
$$

■ Marchenko-Pastur ensemble

$$
P_{n}(d A)=\prod_{1 \leq n, j \leq m} F\left(n^{1 / 2} d A_{i, j}\right), \quad M_{n}=n^{-1} A A^{*}
$$

- Hermitian and Unitary Matrix Ensembles

■ Hermitian and Real Symmetric Matrix Models

$$
P_{n, \beta}\left(d_{\beta} M\right)=Z_{n, \beta}^{-1} \exp \left\{-\frac{\beta n}{2} \operatorname{Tr} V(M)\right\} d_{\beta} M
$$

- Unitary Matrix Models

$$
p_{n}(U) d \mu_{n}(U)=Z_{n}^{-1} \exp \left\{-n \operatorname{Tr} V\left(\frac{U+U^{*}}{2}\right)\right\} d \mu_{n}(U)
$$

Joint Eigenvalue Distribution

Let Let $\left\{e^{i \lambda_{j}^{(n)}}\right\}_{j=1}^{n}$ be an eigenvalues of matrix U.

$$
\begin{gathered}
p_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\frac{1}{Z_{n}} \prod_{1 \leq j<k \leq n}\left|e^{i \lambda_{j}}-e^{i \lambda_{k}}\right|^{2} e^{-n \sum_{j=1}^{n} v\left(\cos \lambda_{j}\right)} . \\
p_{l}^{(n)}\left(\lambda_{1}, \ldots, \lambda_{l}\right)=\int p_{n}\left(\lambda_{1}, \ldots, \lambda_{l}, \lambda_{l+1}, \ldots, \lambda_{n}\right) d \lambda_{l+1} \ldots d \lambda_{n} .
\end{gathered}
$$

OPUC with a varying weight and determinant formulas

$$
\begin{gathered}
\left\{e^{i k \lambda}\right\}_{k=0}^{n} \rightarrow P_{k}^{(n)}\left(e^{i \lambda}\right): \int P_{k}^{(n)}\left(e^{i \lambda}\right) \overline{P_{l}^{(n)}\left(e^{i \lambda}\right)} e^{-n V(\cos \lambda)} d \lambda=\delta_{k, l} \\
K_{n}\left(e^{i \lambda}, e^{i \mu}\right)=\sum_{j=0}^{n-1} P_{j}^{(n)}\left(e^{i \lambda}\right) \overline{P_{j}^{(n)}\left(e^{i \mu}\right)} e^{-n V(\cos \lambda) / 2} e^{-n V(\cos \mu) / 2} \\
p_{l}^{(n)}\left(\lambda_{1}, \ldots, \lambda_{l}\right)=\frac{(n-l)!}{n!} d e t\left\|K_{n}\left(e^{i \lambda_{j}}, e^{i \lambda_{k}}\right)\right\|_{j, k=1}^{l}
\end{gathered}
$$

Global and local regimes

Unitary
Matrix
Models

- Global regime: $N_{n}(\Delta)=n^{-1} \sharp\left\{\lambda_{j}^{(n)} \in \Delta, I=1, \ldots, n\right\}, \Delta \in[-\pi, \pi)$

$$
N_{n}(\Delta)=\int_{\Delta} p_{1}^{(n)}(\lambda) d \lambda \xrightarrow{?} N(\Delta)=\int_{\Delta} \rho(\lambda) d \lambda, n \rightarrow \infty .
$$

- Local regime:

δ_{n} is a typical distance between eigenvalues $\Rightarrow \int_{\left|\lambda-\lambda_{0}\right| \leq \delta_{n}} \rho(\lambda) d \lambda \sim \frac{1}{n}$
- Bulk universality: $\rho\left(\lambda_{0}\right) \neq 0 \Rightarrow \delta_{n}=n^{-1}$
- Edge universality: $\rho(\lambda) \sim\left|\lambda-\lambda_{0}\right|^{1 / 2} \Rightarrow \delta_{n}=n^{-2 / 3}$

Global and local regimes

\square Global regime: $N_{n}(\Delta)=n^{-1} \sharp\left\{\lambda_{j}^{(n)} \in \Delta, I=1, \ldots, n\right\}, \Delta \in[-\pi, \pi)$

$$
N_{n}(\Delta)=\int_{\Delta} p_{1}^{(n)}(\lambda) d \lambda \xrightarrow{?} N(\Delta)=\int_{\Delta} \rho(\lambda) d \lambda, n \rightarrow \infty .
$$

■ Local regime:

$$
\left[c_{V} \delta_{n}\right]^{-1} p_{l}^{(n)}\left(\overrightarrow{\Lambda_{0}}+\frac{\vec{\xi}}{c_{V} \delta_{n}}\right) \xrightarrow{?} \operatorname{det}\left\{K\left(\xi_{j}, \xi_{k}\right)\right\}_{j, k=1}^{\prime}
$$

δ_{n} is a typical distance between eigenvalues $\Rightarrow \int_{\left|\lambda-\lambda_{0}\right| \leq \delta_{n}} \rho(\lambda) d \lambda \sim \frac{1}{n}$.
■ Bulk universality: $\rho\left(\lambda_{0}\right) \neq 0 \Rightarrow \delta_{n}=n^{-1}$.
■ Edge universality: $\rho(\lambda) \sim\left|\lambda-\lambda_{0}\right|^{1 / 2} \Rightarrow \delta_{n}=n^{-2 / 3}$.

References

■ L. Pastur, M. Shcherbina '97, '07 - proved bulk and edge universality for HMM.
■ A. Kolyandr '97-studied the global regime for UMM.

- K. Johansson '98-studied the question about length of longest increasing subsequence.
■ P. Deift and colaborators '99,'99- proved uniform assymptotics for OPRL with a varying weight.
■ M.J. Cantero, L. Moral, L. Velasquez '03 - obtained the five term recurrence relation for OPUC.
- K. T.-R. McLaughlin '06- proved assymptotics for OPUC $(\rho(\lambda)>0)$.

Global regime

The joint eigenvalue distribution can be rewritten in terms of Hamiltonian $p_{n}(\Lambda)=\frac{1}{Z_{n}} e^{-n H(\Lambda)}$ with

$$
H(\Lambda)=\sum_{j=1}^{n} V\left(\cos \lambda_{j}\right)-\frac{2}{n} \sum_{1 \leq j<k \leq n} \log \left|e^{i \lambda_{j}}-e^{i \lambda_{k}}\right| .
$$

Consider the linear functional

$$
\mathcal{E}[m]=\int_{-\pi}^{\pi} V(\cos \lambda) m(d \lambda)-\int_{-\pi}^{\pi} \log \left|e^{i \lambda}-e^{i \mu}\right| m(d \lambda) m(d \mu),
$$

in the class of unit measures on the interval $[-\pi, \pi]$.

Theorem

Let potential $V(\cos \lambda)$ be a $C^{2}[-\pi, \pi]$, then there exists a unique minimizer of the functional,called an equilibrium measure. This measure has a density $\rho(\lambda)$ and NCM measure of eigenvalues converges in probability to the equilibrium measure.

Bulk universality

Theorem

Let potential $V(\cos \lambda)$ be a $C^{2}[-\pi, \pi]$ function and there exists some subinterval $(a, b) \subset \operatorname{supp} \rho(\lambda)$ such that
sup $V^{\prime \prime \prime}(\lambda) \leq C_{1}, \rho(\lambda) \geq C_{2}, \lambda \in(a, b)$. Then the universality conjecture $\lambda \in(a, b)$
is true for every $\lambda_{0} \in(a, b)$ with kernel $K(x, y)=\frac{\sin \pi(x-y)}{\pi(x-y)}$ and $c_{V}=\rho\left(\lambda_{0}\right)$. The limit is uniform for any $\vec{\xi}$ in a compact subset of \mathbb{R}^{\prime}.

Basic ideas of the proof

- Prove the uniform convergence of $\rho_{n}(\lambda)$ to $\rho(\lambda)$.
- Derive the integro-differential equation for the K_{n}.
- Find the class of functions in which this equation has a unique solution.

Bulk universality

Theorem

Let potential $V(\cos \lambda)$ be a $C^{2}[-\pi, \pi]$ function and there exists some subinterval $(a, b) \subset \operatorname{supp} \rho(\lambda)$ such that
sup $V^{\prime \prime \prime}(\lambda) \leq C_{1}, \rho(\lambda) \geq C_{2}, \lambda \in(a, b)$. Then the universality conjecture $\lambda \in(a, b)$
is true for every $\lambda_{0} \in(a, b)$ with kernel $K(x, y)=\frac{\sin \pi(x-y)}{\pi(x-y)}$ and $c_{V}=\rho\left(\lambda_{0}\right)$. The limit is uniform for any $\vec{\xi}$ in a compact subset of \mathbb{R}^{\prime}.

Basic ideas of the proof
■ Prove the uniform convergence of $\rho_{n}(\lambda)$ to $\rho(\lambda)$.

- Derive the integro-differential equation for the K_{n}.
- Find the class of functions in which this equation has a unique solution.

Bulk universality

Theorem

Let potential $V(\cos \lambda)$ be a $C^{2}[-\pi, \pi]$ function and there exists some subinterval $(a, b) \subset \operatorname{supp} \rho(\lambda)$ such that
sup $V^{\prime \prime \prime}(\lambda) \leq C_{1}, \rho(\lambda) \geq C_{2}, \lambda \in(a, b)$. Then the universality conjecture $\lambda \in(a, b)$
is true for every $\lambda_{0} \in(a, b)$ with kernel $K(x, y)=\frac{\sin \pi(x-y)}{\pi(x-y)}$ and $c_{V}=\rho\left(\lambda_{0}\right)$. The limit is uniform for any $\vec{\xi}$ in a compact subset of \mathbb{R}^{\prime}.

Basic ideas of the proof
■ Prove the uniform convergence of $\rho_{n}(\lambda)$ to $\rho(\lambda)$.

- Derive the integro-differential equation for the K_{n}.
- Find the class of functions in which this equation has a unique solution.

Bulk universality

Theorem

Let potential $V(\cos \lambda)$ be a $C^{2}[-\pi, \pi]$ function and there exists some subinterval $(a, b) \subset \operatorname{supp} \rho(\lambda)$ such that
sup $V^{\prime \prime \prime}(\lambda) \leq C_{1}, \rho(\lambda) \geq C_{2}, \lambda \in(a, b)$. Then the universality conjecture $\lambda \in(a, b)$
is true for every $\lambda_{0} \in(a, b)$ with kernel $K(x, y)=\frac{\sin \pi(x-y)}{\pi(x-y)}$ and $c_{V}=\rho\left(\lambda_{0}\right)$. The limit is uniform for any $\vec{\xi}$ in a compact subset of \mathbb{R}^{\prime}.

Basic ideas of the proof
■ Prove the uniform convergence of $\rho_{n}(\lambda)$ to $\rho(\lambda)$.

- Derive the integro-differential equation for the K_{n}.
- Find the class of functions in which this equation has a unique solution.

Basic assumptions

Condition C1. The support σ of the equilibrium measure is a single subinterval of the interval $[-\pi, \pi]$, i.e.

$$
\begin{equation*}
\sigma=[-\theta, \theta], \text { with } \quad \theta<\pi \tag{1}
\end{equation*}
$$

Condition C2. The equilibrium density ρ has no zeros in $(-\theta, \theta)$ and

$$
\begin{equation*}
\rho(\lambda) \sim C|\lambda \mp \theta|^{1 / 2}, \text { for } \lambda \rightarrow \pm \theta \tag{2}
\end{equation*}
$$

and the function $u(\lambda)=V(\cos \lambda)-2 \int_{\sigma} \log \left|e^{i \lambda}-e^{i \mu}\right| \rho(\mu) d \mu$ attains its minimum if and only if λ belongs to σ.
Condition C3. $V(\cos \lambda)$ possesses 4 bounded derivatives on $\sigma_{\varepsilon}=[-\theta-\varepsilon, \theta+\varepsilon]$.

Propposition

Under conditions C1-C3

$$
\begin{gathered}
\rho(\lambda)=\frac{1}{4 \pi^{2}} \chi(\lambda) P(\lambda) 1_{\sigma}, \quad \text { with } \\
\chi(\lambda)=\sqrt{|\cos \lambda-\cos \theta|}, \quad P(\lambda)=\int_{-\theta}^{\theta} \frac{(V(\cos \mu))^{\prime}-(V(\cos \lambda))^{\prime}}{\sin (\mu-\lambda) / 2} \frac{d \mu}{\chi(\mu)} .
\end{gathered}
$$

It follows from Szegö's condition that the system $\left\{P_{k}^{(n)}\left(e^{i \lambda}\right)\right\}_{k=0}^{\infty}$ is not complete. Following Cantero-Moral-Velasquez we define reversed polynomials $Q_{k}^{(n)}(\lambda)=e^{i k \lambda} P_{k}^{(n)}\left(e^{-i \lambda}\right)$ and Laurent polynomials

$$
\begin{gathered}
\chi_{2 k}^{(n)}(\lambda)=e^{-i k \lambda} Q_{2 k}^{(n)}\left(e^{i \lambda}\right), \\
\chi_{2 k+1}^{(n)}(\lambda)=e^{-i k \lambda} P_{2 k+1}^{(n)}\left(e^{i \lambda}\right) \\
e^{i \lambda} \chi_{2 k-1}^{(n)}(\lambda)=\quad-\alpha_{2 k}^{(n)} \rho_{2 k-1}^{(n)} \chi_{2 k-2}^{(n)}(\lambda)-\alpha_{2 k}^{(n)} \alpha_{2 k-1}^{(n)} \chi_{2 k-1}^{(n)}(\lambda) \\
\quad-\alpha_{2 k+1}^{(n)} \rho_{2 k}^{(n)} \chi_{2 k}^{(n)}(\lambda)+\rho_{2 k}^{(n)} \rho_{2 k+1}^{(n)} \chi_{2 k+1}^{(n)}(\lambda), \\
e^{i \lambda} \chi_{2 k}^{(n)}(\lambda)=\quad \rho_{2 k}^{(n)} \rho_{2 k-1}^{(n)} \chi_{2 k-2}^{(n)}(\lambda)+\alpha_{2 k-1}^{(n)} \rho_{2 k}^{(n)} \chi_{2 k-1}^{(n)}(\lambda) \\
\quad-\alpha_{2 k+1}^{(n)} \alpha_{2 k}^{(n)} \chi_{2 k}^{(n)}(\lambda)+\alpha_{2 k}^{(n)} \rho_{2 k+1}^{(n)} \chi_{2 k+1}^{(n)}(\lambda),
\end{gathered}
$$

where $\alpha_{k}^{(n)}=c_{k, 0}^{(n)} / c_{k, k}^{(n)}$ and $\rho_{k}^{(n)}=c_{k-1, k-1}^{(n)} / c_{k, k}^{(n)}$ are called the Verblunsky coefficients and $\left(\rho_{k}^{(n)}\right)^{2}+\left(\alpha_{k}^{(n)}\right)^{2}=1$.

Assymptotics of Verblunsky coefficients

Theorem

Consider the system of orthogonal polynomials and the Verblunsky coefficients defined above. Let potential V satisfy conditions C1-C3 above. Then for any $|m|=\bar{o}(n)$

$$
\alpha_{n+m}^{(n)}=(-1)^{m} s \cos \left(\frac{\theta}{2}+x_{m}^{(n)}\right)
$$

where $s=1$ or $s=-1$ and

$$
x_{m}=\frac{2 \pi \sqrt{2}}{P(\theta) \sin \theta} \frac{m}{n}+\underline{O}\left(\log ^{11} n\left(n^{-4 / 3}+\frac{m^{2}}{n^{2}}\right)\right)
$$

with P defined above.

Proof of assymptotics of Verblunsky coefficients

Basic ideas of the proof

- Derive an equation with a functional parameter ϕ for functions $\psi_{k}^{(n)}=P_{k}^{(n)} e^{-n V / 2}$ from the determinant formulas. Then, choosing appropriate parameter ϕ, obtain the equation for the Verblunsky coefficients. In this way we obtain a first approximation for Verblunsky coefficients.
- Using "string" €quation $\int_{-\pi}^{\pi}(\sin \lambda) V^{\prime}(\cos \lambda) \chi_{k}^{(n)}(\lambda) \overline{\chi_{k-1}^{(n)}(\lambda)} e^{-n V(\cos \lambda)} d \lambda=i(-1)^{k-1} \frac{k}{n} \frac{\alpha_{k}^{(n)}}{\rho_{k}^{(n)}}$ and methods of the perturbation theory obtain assymptotics described above.

Proof of assymptotics of Verblunsky coefficients

Basic ideas of the proof

- Derive an equation with a functional parameter ϕ for functions $\psi_{k}^{(n)}=P_{k}^{(n)} e^{-n V / 2}$ from the determinant formulas. Then, choosing appropriate parameter ϕ, obtain the equation for the Verblunsky coefficients. In this way we obtain a first approximation for Verblunsky coefficients.
- Using "string" equation $\int_{-\pi}^{\pi}(\sin \lambda) V^{\prime}(\cos \lambda) \chi_{k}^{(n)}(\lambda) \overline{\chi_{k-1}^{(n)}(\lambda)} e^{-n V(\cos \lambda)} d \lambda=i(-1)^{k-1} \frac{k}{n} \frac{\alpha_{k}^{(n)}}{\rho_{k}^{(n)}}$ and methods of the perturbation theory obtain assymptotics described above.

Proof of assymptotics of Verblunsky coefficients

Basic ideas of the proof
■ Derive an equation with a functional parameter ϕ for functions $\psi_{k}^{(n)}=P_{k}^{(n)} e^{-n V / 2}$ from the determinant formulas. Then, choosing appropriate parameter ϕ, obtain the equation for the Verblunsky coefficients. In this way we obtain a first approximation for Verblunsky coefficients.
■ Using "string" equation

$$
\int_{-\pi}^{\pi}(\sin \lambda) V^{\prime}(\cos \lambda) \chi_{k}^{(n)}(\lambda) \overline{\chi_{k-1}^{(n)}(\lambda)} e^{-n V(\cos \lambda)} d \lambda=i(-1)^{k-1} \frac{k}{n} \frac{\alpha_{k}^{(n)}}{\rho_{k}^{(n)}}
$$

and methods of the perturbation theory obtain assymptotics described above.

CMV matrices and their expansion

CMV matrices

$$
\begin{gathered}
\overrightarrow{\chi^{(n)}}= \begin{cases}\left.\chi_{k}^{(n)}\right\}_{k=0}^{\infty}, & \overrightarrow{\chi^{(n)}}=\left\{\widehat{\chi}_{k}^{(n)}\right\}_{k=0}^{\infty} . \\
\Theta_{j}^{(n)}=\left(\begin{array}{cc}
-\alpha_{j}^{(n)} & \rho_{j}^{(n)} \\
\rho_{j}^{(n)} & \alpha_{j}^{(n)}
\end{array}\right), \\
M^{(n)}=\operatorname{diag}\left(E_{1}, \Theta_{2}^{(n)}, \Theta_{4}^{(n)} . .\right), \quad L^{(n)}=\operatorname{diag}\left(\Theta_{1}^{(n)}, \Theta_{3}^{(n)}, \Theta_{5}^{(n)} . . .\right), \\
\overrightarrow{C^{(n)}}=M^{(n)} \chi^{(n)}, \quad e^{i \lambda} \vec{\chi}^{(n)}=L^{(n)} L^{(n)} \\
\chi^{(n)}, \quad e^{i \lambda} \overrightarrow{\chi^{(n)}}=C^{(n)} \overrightarrow{\chi^{(n)}} .\end{cases}
\end{gathered}
$$

Our main idea is to study the kernel K_{n} near the edge. For this aim we consider the integral operator

$$
F_{n}^{(n)}(z, w)=\int w_{n}(\lambda) d \lambda \int w_{n}(\mu) d \mu G_{\lambda, z} G_{\mu, w}\left|\left(e^{i \lambda}-e^{i \mu}\right) K_{n}^{(n)}(\lambda, \mu)\right|^{2}
$$

where

$$
G_{\lambda, z}=\frac{1-e^{i(z-\bar{z})}}{\left|e^{i \lambda}-e^{i z}\right|^{2}}=e^{i z} \frac{1}{e^{i \lambda}-e^{i z}}-e^{i \bar{z}} \frac{1}{e^{i \lambda}-e^{i \bar{z}}}
$$

Edge universality

Theorem

Under assumptions C1-C3 the universality conjecture is true for $\lambda_{0}= \pm \theta$ with kernel $K(x, y)=\frac{A i(x) A i^{\prime}(y)-A i^{\prime}(x) A i(y)}{x-y}$. The limit is uniform for any $\vec{\xi}$ in a compact subset of \mathbb{R}^{\prime}.

Basic ideas of the proof

- Christoffel-Darboux formula + spectral theory give us a representation of F_{n} in terms of resolvent of matrix $C^{(n)}$ (five-diagonal).
- Relation between matrices $C^{(n)}, M^{(n)}$, and $L^{(n)}$ reduces this representation to the question about resolvent of the three diagonal matrix.
- Assymntotics of Verblunsky coefficients help us to "guess" resolvent for $z= \pm \theta+n^{-2 / 3} \zeta$. It can be represented in terms of resolvent $(A-\zeta)^{-1}$
of operator $A=\frac{d^{2}}{d x^{2}}-2 c x$

Edge universality

Theorem

Under assumptions C1-C3 the universality conjecture is true for $\lambda_{0}= \pm \theta$ with kernel $K(x, y)=\frac{A i(x) A i^{\prime}(y)-A i^{\prime}(x) A i(y)}{x-y}$. The limit is uniform for any $\vec{\xi}$ in a compact subset of \mathbb{R}^{\prime}.

Basic ideas of the proof
■ Christoffel-Darboux formula + spectral theory give us a representation of F_{n} in terms of resolvent of matrix $C^{(n)}$ (five-diagonal).

- Relation between matrices $C^{(n)}, M^{(n)}$, and $L^{(n)}$ reduces this representation to the question about resolvent of the three diagonal matrix.
- Assymptotics of Verblunsky coefficients help us to "guess" resolvent for $z= \pm \theta+n^{-2 / 3} \zeta$. It can be represented in terms of resolvent $(A-\zeta)^{-1}$ of operator $A=\frac{d}{d x^{2}}-2 c x$

Edge universality

Theorem

Under assumptions C1-C3 the universality conjecture is true for $\lambda_{0}= \pm \theta$ with kernel $K(x, y)=\frac{A i(x) A i^{\prime}(y)-A i^{\prime}(x) A i(y)}{x-y}$. The limit is uniform for any $\vec{\xi}$ in a compact subset of \mathbb{R}^{\prime}.

Basic ideas of the proof
■ Christoffel-Darboux formula + spectral theory give us a representation of F_{n} in terms of resolvent of matrix $C^{(n)}$ (five-diagonal).
■ Relation between matrices $C^{(n)}, M^{(n)}$, and $L^{(n)}$ reduces this representation to the question about resolvent of the three diagonal matrix.

- Assymptotics of Verblunsky coefficients help us to "guess" resolvent for $z= \pm \theta+n^{-2 / 3} \zeta$. It can be represented in terms of resolvent $(A-\zeta)^{-1}$ of operator $A=\frac{d}{d x^{2}}-2 c x$

Edge universality

Theorem

Under assumptions C1-C3 the universality conjecture is true for $\lambda_{0}= \pm \theta$ with kernel $K(x, y)=\frac{A i(x) A i^{\prime}(y)-A i^{\prime}(x) A i(y)}{x-y}$. The limit is uniform for any $\vec{\xi}$ in a compact subset of \mathbb{R}^{\prime}.

Basic ideas of the proof
■ Christoffel-Darboux formula + spectral theory give us a representation of F_{n} in terms of resolvent of matrix $C^{(n)}$ (five-diagonal).
■ Relation between matrices $C^{(n)}, M^{(n)}$, and $L^{(n)}$ reduces this representation to the question about resolvent of the three diagonal matrix.
■ Assymptotics of Verblunsky coefficients help us to "guess" resolvent for $z= \pm \theta+n^{-2 / 3} \zeta$. It can be represented in terms of resolvent $(A-\zeta)^{-1}$ of operator $A=\frac{d^{2}}{d x^{2}}-2 c x$.

