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Some types of Random Matrix Ensembles

Matrix Ensembles with independent entries
Wigner matrices

Pn(dM) =
∏

1≤i<j≤n

F (n1/2dMi,j )
n∏

i=1

F0(n1/2dMi,i )

Marchenko-Pastur ensemble

Pn(dA) =
∏

1≤n,j≤m

F (n1/2dAi,j ), Mn = n−1AA∗

Hermitian and Unitary Matrix Ensembles
Hermitian and Real Symmetric Matrix Models

Pn,β(dβM) = Z−1
n,βexp

{
−
βn
2

Tr V (M)

}
dβM.

Unitary Matrix Models

pn (U) dµn (U) = Z−1
n exp

{
−nTrV

(
U + U∗

2

)}
dµn (U) .
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Joint Eigenvalue Distribution

Let Let
{

eiλ(n)
j

}n

j=1
be an eigenvalues of matrix U.

pn (λ1, . . . , λn) =
1
Zn

∏
1≤j<k≤n

∣∣∣eiλj − eiλk
∣∣∣2 e
−n

n∑
j=1

V(cosλj )
.

p(n)
l (λ1, . . . , λl ) =

∫
pn (λ1, . . . , λl , λl+1, . . . , λn) dλl+1 . . . dλn.

OPUC with a varying weight and determinant formulas{
eikλ

}n

k=0
→ P(n)

k

(
eiλ
)

:

∫
P(n)

k

(
eiλ
)

P(n)
l (eiλ)e−nV (cosλ)dλ = δk,l

Kn

(
eiλ, eiµ

)
=

n−1∑
j=0

P(n)
j

(
eiλ
)

P(n)
j (eiµ)e−nV (cosλ)/2e−nV (cosµ)/2

p(n)
l (λ1, . . . , λl ) =

(n − l)!

n!
det

∥∥∥Kn

(
eiλj , eiλk

)∥∥∥l

j,k=1
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Global and local regimes

Global regime: Nn (∆) = n−1]
{
λ

(n)
j ∈ ∆, l = 1, . . . , n

}
, ∆ ∈ [−π, π)

Nn (∆) =

∫
∆

p(n)
1 (λ) dλ ?→ N (∆) =

∫
∆

ρ (λ) dλ, n→∞.

Local regime:

[cV δn]−l p(n)
l

(
−→
Λ0 +

−→
ξ

cV δn

)
?→ det {K (ξj , ξk )}l

j,k=1 .

δn is a typical distance between eigenvalues⇒
∫
|λ−λ0|≤δn

ρ(λ)dλ ∼ 1
n

.

Bulk universality: ρ (λ0) 6= 0⇒ δn = n−1.
Edge universality: ρ (λ) ∼ |λ− λ0|1/2 ⇒ δn = n−2/3.
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Global regime

The joint eigenvalue distribution can be rewritten in terms of Hamiltonian

pn (Λ) =
1
Zn

e−nH(Λ) with

H (Λ) =
n∑

j=1

V (cosλj )−
2
n

∑
1≤j<k≤n

log
∣∣∣eiλj − eiλk

∣∣∣ .
Consider the linear functional

E[m] =

∫ π

−π
V (cosλ)m(dλ)−

∫ π

−π
log
∣∣∣eiλ − eiµ

∣∣∣m(dλ)m(dµ),

in the class of unit measures on the interval [−π, π].

Theorem

Let potential V (cosλ) be a C2 [−π, π], then there exists a unique minimizer
of the functional,called an equilibrium measure. This measure has a density
ρ (λ) and NCM measure of eigenvalues converges in probability to the
equilibrium measure.
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Bulk universality

Theorem

Let potential V (cosλ) be a C2 [−π, π] function and there exists some
subinterval (a, b) ⊂ supp ρ (λ) such that
sup
λ∈(a,b)

V ′′′ (λ) ≤ C1, ρ (λ) ≥ C2, λ ∈ (a, b). Then the universality conjecture

is true for every λ0 ∈ (a, b) with kernel K (x , y) =
sinπ (x − y)

π (x − y)
and

cV = ρ (λ0).The limit is uniform for any
−→
ξ in a compact subset of Rl .

Basic ideas of the proof

Prove the uniform convergence of ρn (λ) to ρ (λ).

Derive the integro-differential equation for the Kn.

Find the class of functions in which this equation has a unique solution.
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Basic assumptions

Condition C1. The support σ of the equilibrium measure is a single
subinterval of the interval [−π, π], i.e.

σ = [−θ, θ] , with θ < π. (1)

Condition C2. The equilibrium density ρ has no zeros in (−θ, θ) and

ρ (λ) ∼ C |λ∓ θ|1/2 , for λ→ ±θ, (2)

and the function u (λ) = V (cosλ)− 2
∫
σ

log
∣∣∣eiλ − eiµ

∣∣∣ ρ (µ) dµ attains its

minimum if and only if λ belongs to σ.
Condition C3. V (cosλ) possesses 4 bounded derivatives on
σε = [−θ − ε, θ + ε].

Propposition

Under conditions C1-C3

ρ (λ) =
1

4π2χ (λ) P (λ) 1σ, with

χ (λ) =
√
|cosλ− cos θ|, P (λ) =

∫ θ

−θ

(V (cosµ))′ − (V (cosλ))′

sin (µ− λ) /2
dµ
χ (µ)

.



Unitary
Matrix
Models

Poplavskyi
M.

Random
matrices
and
orthogonal
polynomials

Overview of
previous
results

Global
regime

Bulk
universality

Edge
universality

Laurent polynomials and CMV matrices

It follows from Szegö’s condition that the system
{

P(n)
k

(
eiλ)}∞

k=0
is not

complete. Following Cantero-Moral-Velasquez we define reversed
polynomials Q(n)

k (λ) = eikλP(n)
k

(
e−iλ) and Laurent polynomials

χ
(n)
2k (λ) = e−ikλQ(n)

2k

(
eiλ) ,

χ
(n)
2k+1 (λ) = e−ikλP(n)

2k+1

(
eiλ) .

eiλχ
(n)
2k−1 (λ) = −α(n)

2k ρ
(n)
2k−1χ

(n)
2k−2 (λ)− α(n)

2k α
(n)
2k−1χ

(n)
2k−1 (λ)

−α(n)
2k+1ρ

(n)
2k χ

(n)
2k (λ) + ρ

(n)
2k ρ

(n)
2k+1χ

(n)
2k+1 (λ) ,

eiλχ
(n)
2k (λ) = ρ

(n)
2k ρ

(n)
2k−1χ

(n)
2k−2 (λ) + α

(n)
2k−1ρ

(n)
2k χ

(n)
2k−1 (λ)

−α(n)
2k+1α

(n)
2k χ

(n)
2k (λ) + α

(n)
2k ρ

(n)
2k+1χ

(n)
2k+1 (λ) ,

where α(n)
k = c(n)

k,0/c
(n)
k,k and ρ(n)

k = c(n)
k−1,k−1/c

(n)
k,k are called the Verblunsky

coefficients and
(
ρ

(n)
k

)2
+
(
α

(n)
k

)2
= 1.
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Assymptotics of Verblunsky coefficients

Theorem

Consider the system of orthogonal polynomials and the Verblunsky
coefficients defined above. Let potential V satisfy conditions C1 - C3 above.
Then for any |m| = o (n)

α
(n)
n+m = (−1)m s cos

(
θ

2
+ x (n)

m

)
,

where s = 1 or s = −1 and

xm =
2π
√

2
P (θ) sin θ

m
n

+ O
(

log11 n
(

n−4/3 +
m2

n2

))
,

with P defined above.
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Proof of assymptotics of Verblunsky coefficients

Basic ideas of the proof

Derive an equation with a functional parameter φ for functions
ψ

(n)
k = P(n)

k e−nV/2 from the determinant formulas. Then, choosing
appropriate parameter φ, obtain the equation for the Verblunsky
coefficients. In this way we obtain a first approximation for Verblunsky
coefficients.

Using "string" equation∫ π

−π
(sinλ) V ′ (cosλ)χ

(n)
k (λ)χ

(n)
k−1 (λ)e−nV (cosλ)dλ = i (−1)k−1 k

n
α

(n)
k

ρ
(n)
k

.

and methods of the perturbation theory obtain assymptotics described
above.
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CMV matrices and their expansion

CMV matrices
−−→
χ(n) =

{
χ

(n)
k

}∞
k=0

,
−−→
χ̂(n) =

{
χ̂

(n)
k

}∞
k=0

.

Θ
(n)
j =

(
−α(n)

j ρ
(n)
j

ρ
(n)
j α

(n)
j

)
,

M(n) = diag
(

E1,Θ
(n)
2 ,Θ

(n)
4 ..
)
, L(n) = diag

(
Θ

(n)
1 ,Θ

(n)
3 ,Θ

(n)
5 ..
)
,

C(n) = M(n)L(n)

−−→
χ̂(n) = M(n)

−−→
χ(n), eiλ

−−→
χ̂(n) = L(n)

−−→
χ(n), eiλ

−−→
χ(n) = C(n)

−−→
χ(n).

Our main idea is to study the kernel Kn near the edge. For this aim we
consider the integral operator

F (n)
n (z,w) =

∫
wn (λ) dλ

∫
wn (µ) dµGλ,zGµ,w

∣∣∣(eiλ − eiµ
)

K (n)
n (λ, µ)

∣∣∣2 ,
where

Gλ,z =
1− ei(z−z)

|eiλ − eiz |2
= eiz 1

eiλ − eiz − eiz 1
eiλ − eiz

.



Unitary
Matrix
Models

Poplavskyi
M.

Random
matrices
and
orthogonal
polynomials

Overview of
previous
results

Global
regime

Bulk
universality

Edge
universality

Edge universality

Theorem

Under assumptions C1-C3 the universality conjecture is true for λ0 = ±θ

with kernel K (x , y) =
Ai (x) Ai ′ (y)− Ai ′ (x) Ai (y)

x − y
.The limit is uniform for

any
−→
ξ in a compact subset of Rl .

Basic ideas of the proof

Christoffel-Darboux formula + spectral theory give us a representation
of Fn in terms of resolvent of matrix C(n) (five-diagonal).

Relation between matrices C(n), M(n), and L(n) reduces this
representation to the question about resolvent of the three diagonal
matrix.

Assymptotics of Verblunsky coefficients help us to "guess" resolvent for
z = ±θ + n−2/3ζ. It can be represented in terms of resolvent (A− ζ)−1

of operator A =
d2

dx2 − 2cx .
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