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Brownian intersection Brownian Intersection measure Main results: Large deviations Outlook

Brownian intersection
Brownian paths do intersect

W1, . . . ,Wp independent Brownian motions in Rd running
until times t1, . . . , tp. Typically, here d ≥ 2.

Look at their path intersections:

St =

p⋂
i=1

Wi [0, ti ) t = (t1, . . . , tp) ∈ (0,∞)p

Dvoretzky, Erdös, Kakutani and Taylor showed St is
non-empty with positive probability iff

d = 2, p ∈ N
d = 3, p = 2

d ≥ 4, p = 1.
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Intersection measure
Intensity of the intersections

A measure is naturally defined on St :

`t(A) =

∫
A

dy

p∏
i=1

∫ ti

0
ds δy (Wi (s)) A ⊂ Rd

For p = 1, `t is the single path occupation measure:

`
(i)
t (A) =

∫ t

0
ds 1A(Ws) i = 1, . . . , p

Note: If `
(i)
t would have a Lebesgue density `

(i)
t (y), so would

`t and

`t(y) =

p∏
i=1

`
(i)
t (y) makes sense only in d = 1!

Goal: Make precise the above as t ↑ ∞ (in particular, d ≥ 2).
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Wiener Sausages
Construction of intersection measure

Le Gall (1986) looked at Wiener sausages:

S
(i)
ε,t = {x ∈ Rd : |x −Wi (ri )| < ε} i = 1, . . . , p

Normalise Lebesgue measure on the intersection of the
sausages

d`ε,t(y) = sd(ε) 1∩pi=1S
(i)
ε ,t

(y) dy

where

sd(ε) =


π−p logp(1ε ) if d = 2

(2πε)−2 if d = 3 and p = 2
2

ωd (d−2) ε
2−d if d ≥ 3 and p = 1.
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Wiener Sausages
Intersection measure: scaling limit of Lebesgue measure on sausages

Le Gall shows limit ε ↓ 0 gives the Brownian intersection
measure:

lim
ε→0

`ε,t(A) = `t(A) in Lq for q ∈ [1,∞)
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Large t-asymptotics
Single path measure

Look at one path. Fix i ∈ {1, . . . , p}.

Wi running in a compact set B in Rd until its first exit time
τi from B.

Make sure the path does not leave B by time t:
Pt(·) = P(· ∩ {t < τi}).

Normalise the occupation measure: 1
t `

(i)
t ∈M1(B)

Want to study: Behavior of 1
t `

(i)
t , as t ↑ ∞.
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Large t-asymptotics for single path measure
Path densities show up

[Donsker-Varadhan (1975-83)], [Gärtner (1977)]:

1
t `

(i)
t large deviation principle (LDP) in M1(B) under Pt as t ↑ ∞:

µ ∈M1(B).

Pt

(
1

t
`
(i)
t ≈ µ

)
= exp [−t (I (µ) + o(1))] t ↑ ∞

where

I (µ) =

{
1
2

∥∥∇√ dµ
dx

∥∥2
2

if dµ
dx ∈ H1

0 (B)

∞ else

Upshot: 1
t `

(i)
t possess densities ψ2 = dµ

dx , for large t.
Our Goal: Similar statement for intersection measure `t , for large
t?
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1
t `

(i)
t large deviation principle (LDP) in M1(B) under Pt as t ↑ ∞:

µ ∈M1(B).

Pt

(
1

t
`
(i)
t ≈ µ

)
= exp [−t (I (µ) + o(1))] t ↑ ∞

where

I (µ) =

{
1
2

∥∥∇√ dµ
dx

∥∥2
2

if dµ
dx ∈ H1

0 (B)

∞ else

Upshot: 1
t `

(i)
t possess densities ψ2 = dµ

dx , for large t.
Our Goal: Similar statement for intersection measure `t , for large
t?



Brownian intersection Brownian Intersection measure Main results: Large deviations Outlook

Large t-asymptotics for single path measure
Path densities show up

[Donsker-Varadhan (1975-83)], [Gärtner (1977)]:
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Large deviations: diverging time
occupation measure and intersection measure

`
(1)
t , . . . , `

(p)
t occupation measures of p paths running until

time t in a bounded domain B until first exit times τ1, . . . , τp.

`t the intersection measure of p paths.

Make sure no path exits B before time t:
Pt(·) = P

(
·
⋂{

t < τ1 ∧ · · · ∧ τp
})
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Large deviations: diverging time
Intersection densities as product of occupation densities

Pt

(
`t
tp
≈ µ;

`
(1)
t

t
≈ µ1, . . . ,

`
(p)
t

t
≈ µp

)

= exp
[
− t
(
I (µ;µ1, . . . , µp)

+ o(1)
)]

I (µ;µ1, . . . , µp) = 1
2

∑p
i=1 ‖∇ψi‖22 , if

dµi
dx = ψ2

i , ψi ∈ H1
0 (B), ‖ψi‖2 = 1 occupation densities for large t

dµ
dx = ψ2p intersection density for large t

ψ2p =
∏p

i=1 ψ
2
i intersection density as product of occupation densities

else,
I =∞ identically
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Large deviations: diverging time
Extension of classical theory

Theorem (König/M (2011))

The family of tuples
(
`t
tp ; `

(1)
t
t , . . . ,

`
(p)
t
t

)
satisfies a LDP under Pt , as

t ↑ ∞, with rate function

I (µ;µ1, . . . , µp) =
1

2

p∑
i=1

‖∇ψi‖22

if µ and µ1, . . . , µp have densities ψ2p and ψ2
1, . . . , ψ

2
p respectively,

ψi ∈ H1
0 (B), ‖ψi‖2 = 1 and ψ2p =

∏p
i=1 ψ

2
i , else I =∞.
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Intersection measure LDP
Large deviations: diverging time

Specialising onto the first entry of tuples, (µ, µ1, . . . , µp) 7→ µ and
use the contraction principle to get

Corollary

The family of measures
(
`t
tp

)
satisfies a large deviation principle,

under Pt , as t ↑ ∞, with rate function

J(µ) = inf

{
1

2

p∑
i=1

||∇ψi ||22 : ψi ∈ H1
0 (B), ||ψi ||2 = 1,

p∏
i=1

ψ2
i =

dµ

dx

}

p = 1: We recover classical Donsker-Varadhan theory for one path.
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A related problem: Upper tail asymptotics
large intersections in a set

U ⊂ B

Study: P(`(U) > a) as a ↑ ∞?

[König and Mörters (2001)]:

lim
a→∞

a−
1
p logP [`(U) > a] = −Θ(U)

for

Θ(U) = inf

{
p

2
||∇ψ||22 : ψ ∈ H1

0 (B), ||1Uψ||22p = 1

}
.
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Minimisers and path behavior
Euler-Lagrange equations

Minimiser(s) to Θ(U) exist(s).

Every minimising ψ solves

4ψ(x) = −2

p
Θ(U)ψ2p−1(x) 1U(x) for x ∈ B\∂U

Open: For p > 1, is the minimizer or the solution ψ unique?
(unique if U = B(0; 1) and B = R3, rotational symmetry)

p = 1:

the solution is unique (Rayleigh-Ritz)
ψ2 appears as large-a density of the occupation measure on U.

Upshot: ψ2p should be the large-a density of the intersection
measure on U.
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Minimisers and path behavior
Law of large masses

Let L = `
`(U) be the normalised probability on U.

M = {µ ∈M1(U) : µ( dx) = ψ2p(x) dx , ψ minimises Θ(U)}

[König and Mörters (2005)]

lim
a↑∞

P[d(L,M) > ε| `(U) > a] = 0

where d weakly metrises M1(U)

Upshot: Law of large numbers:

L→ ψ2p under P(·| `(U) > a), a ↑ ∞

Large deviations: What is the exponential decay rate?
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Intersection measure until exit times
Large deviations: diverging mass

Theorem (König/M (2011))

The normalized probability measures L = `
`(U) satisfy a large

deviation principle under P(·|`(U) > a), as a ↑ ∞, with rate
function

Λ(µ) = inf

{
1

2

p∑
i=1

||∇ψi ||22 : ψi ∈ H1
0 (B),

p∏
i=1

ψ2
i =

dµ

dx

}
−Θ(U).
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Outlook
Questions we can chew on

Study the variational formula for the rate function:

J(µ) = inf

{
1

2

p∑
i=1

||∇ψi ||22 : ψi ∈ H1
0 (B), ||ψi ||2 = 1,

p∏
i=1

ψ2
i =

dµ

dx

}

Open question: Can the minimisers be taken at

ψ1 = · · · = ψp? same optimal strategy?

If so, rate function is much simpler!

J(µ) =
p

2

∥∥∥∥∇( dµ

dx

) 1
2p
∥∥∥∥2
2

Extend it to unbounded domains.: For p = 2, B = R3
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