Large deviations for Brownian intersection measures

Chiranjib Mukherjee

Prague, September, 2011

Brownian intersection

Brownian paths do intersect

- W_{1}, \ldots, W_{p} independent Brownian motions in \mathbb{R}^{d} running until times t_{1}, \ldots, t_{p}. Typically, here $d \geq 2$.

Brownian intersection

Brownian paths do intersect

- W_{1}, \ldots, W_{p} independent Brownian motions in \mathbb{R}^{d} running until times t_{1}, \ldots, t_{p}. Typically, here $d \geq 2$.
- Look at their path intersections:

$$
S_{t}=\bigcap_{i=1}^{p} W_{i}\left[0, t_{i}\right) \quad t=\left(t_{1}, \ldots, t_{p}\right) \in(0, \infty)^{p}
$$

Brownian intersection

Brownian paths do intersect

- W_{1}, \ldots, W_{p} independent Brownian motions in \mathbb{R}^{d} running until times t_{1}, \ldots, t_{p}. Typically, here $d \geq 2$.
- Look at their path intersections:

$$
S_{t}=\bigcap_{i=1}^{p} W_{i}\left[0, t_{i}\right) \quad t=\left(t_{1}, \ldots, t_{p}\right) \in(0, \infty)^{p}
$$

- Dvoretzky, Erdös, Kakutani and Taylor showed S_{t} is non-empty with positive probability iff

$$
\left\{\begin{array}{l}
d=2, p \in \mathbb{N} \\
d=3, p=2 \\
d \geq 4, p=1
\end{array}\right.
$$

Intersection measure

Intensity of the intersections

Intersection measure

Intensity of the intersections

- A measure is naturally defined on S_{t} :

$$
\ell_{t}(A)=\int_{A} d y \prod_{i=1}^{p} \int_{0}^{t_{i}} d s \delta_{y}\left(W_{i}(s)\right) \quad A \subset \mathbb{R}^{d}
$$

Intersection measure

Intensity of the intersections

- A measure is naturally defined on S_{t} :

$$
\ell_{t}(A)=\int_{A} d y \prod_{i=1}^{p} \int_{0}^{t_{i}} d s \delta_{y}\left(W_{i}(s)\right) \quad A \subset \mathbb{R}^{d}
$$

- For $p=1, \ell_{t}$ is the single path occupation measure:

$$
\ell_{t}^{(i)}(A)=\int_{0}^{t} d s 1_{A}\left(W_{s}\right) \quad i=1, \ldots, p
$$

Intersection measure

Intensity of the intersections

- A measure is naturally defined on S_{t} :

$$
\ell_{t}(A)=\int_{A} d y \prod_{i=1}^{p} \int_{0}^{t_{i}} d s \delta_{y}\left(W_{i}(s)\right) \quad A \subset \mathbb{R}^{d}
$$

- For $p=1, \ell_{t}$ is the single path occupation measure:

$$
\ell_{t}^{(i)}(A)=\int_{0}^{t} d s 1_{A}\left(W_{s}\right) \quad i=1, \ldots, p
$$

- Note: If $\ell_{t}^{(i)}$ would have a Lebesgue density $\ell_{t}^{(i)}(y)$, so would ℓ_{t} and

$$
\ell_{t}(y)=\prod_{i=1}^{p} \ell_{t}^{(i)}(y)
$$

Intersection measure

Intensity of the intersections

- A measure is naturally defined on S_{t} :

$$
\ell_{t}(A)=\int_{A} d y \prod_{i=1}^{p} \int_{0}^{t_{i}} d s \delta_{y}\left(W_{i}(s)\right) \quad A \subset \mathbb{R}^{d}
$$

- For $p=1, \ell_{t}$ is the single path occupation measure:

$$
\ell_{t}^{(i)}(A)=\int_{0}^{t} d s 1_{A}\left(W_{s}\right) \quad i=1, \ldots, p
$$

- Note: If $\ell_{t}^{(i)}$ would have a Lebesgue density $\ell_{t}^{(i)}(y)$, so would ℓ_{t} and

$$
\ell_{t}(y)=\prod_{i=1}^{p} \ell_{t}^{(i)}(y) \quad \text { makes sense only in } d=1 \text { ! }
$$

Intersection measure

- A measure is naturally defined on S_{t} :

$$
\ell_{t}(A)=\int_{A} d y \prod_{i=1}^{p} \int_{0}^{t_{i}} d s \delta_{y}\left(W_{i}(s)\right) \quad A \subset \mathbb{R}^{d}
$$

- For $p=1, \ell_{t}$ is the single path occupation measure:

$$
\ell_{t}^{(i)}(A)=\int_{0}^{t} d s 1_{A}\left(W_{s}\right) \quad i=1, \ldots, p
$$

- Note: If $\ell_{t}^{(i)}$ would have a Lebesgue density $\ell_{t}^{(i)}(y)$, so would ℓ_{t} and

$$
\ell_{t}(y)=\prod_{i=1}^{p} \ell_{t}^{(i)}(y) \quad \text { makes sense only in } d=1 \text { ! }
$$

- Goal: Make precise the above as $t \uparrow \infty$ (in particular, $d_{\equiv} \geq 2$).

Wiener Sausages

Wiener Sausages

Construction of intersection measure

- Le Gall (1986) looked at Wiener sausages:

$$
S_{\epsilon, t}^{(i)}=\left\{x \in \mathbb{R}^{d}:\left|x-W_{i}\left(r_{i}\right)\right|<\epsilon\right\} \quad i=1, \ldots, p
$$

Wiener Sausages

- Le Gall (1986) looked at Wiener sausages:

$$
S_{\epsilon, t}^{(i)}=\left\{x \in \mathbb{R}^{d}:\left|x-W_{i}\left(r_{i}\right)\right|<\epsilon\right\} \quad i=1, \ldots, p
$$

- Normalise Lebesgue measure on the intersection of the sausages

$$
d \ell_{\epsilon, t}(y)=s_{d}(\epsilon) 1_{\cap_{i=1}^{p} S_{\epsilon}^{(i)}, t}(y) d y
$$

where

Wiener Sausages

- Le Gall (1986) looked at Wiener sausages:

$$
S_{\epsilon, t}^{(i)}=\left\{x \in \mathbb{R}^{d}:\left|x-W_{i}\left(r_{i}\right)\right|<\epsilon\right\} \quad i=1, \ldots, p
$$

- Normalise Lebesgue measure on the intersection of the sausages

$$
d \ell_{\epsilon, t}(y)=s_{d}(\epsilon) 1_{\cap_{i=1}^{p} s_{\epsilon}^{(i)}, t}(y) d y
$$

where

$$
s_{d}(\epsilon)= \begin{cases}\pi^{-p} \log ^{p}\left(\frac{1}{\epsilon}\right) & \text { if } d=2 \\ (2 \pi \epsilon)^{-2} & \text { if } d=3 \text { and } p=2 \\ \frac{2}{\omega_{d}(d-2)} \epsilon^{2-d} & \text { if } d \geq 3 \text { and } p=1\end{cases}
$$

Wiener Sausages

Intersection measure: scaling limit of Lebesgue measure on sausages

- Le Gall shows limit $\epsilon \downarrow 0$ gives the Brownian intersection measure:

$$
\lim _{\epsilon \rightarrow 0} \ell_{\epsilon, t}(A)=\ell_{t}(A) \text { in } L^{q} \text { for } q \in[1, \infty)
$$

Large t-asymptotics
 Single path measure

- Look at one path. Fix $i \in\{1, \ldots, p\}$.

Large t-asymptotics
 Single path measure

- Look at one path. Fix $i \in\{1, \ldots, p\}$.
- W_{i} running in a compact set B in \mathbb{R}^{d} until its first exit time τ_{i} from B.

Large t-asymptotics
 Single path measure

- Look at one path. Fix $i \in\{1, \ldots, p\}$.
- W_{i} running in a compact set B in \mathbb{R}^{d} until its first exit time τ_{i} from B.
- Make sure the path does not leave B by time t : $\mathbb{P}_{t}(\cdot)=\mathbb{P}\left(\cdot \cap\left\{t<\tau_{i}\right\}\right)$.

Large t-asymptotics
 Single path measure

- Look at one path. Fix $i \in\{1, \ldots, p\}$.
- W_{i} running in a compact set B in \mathbb{R}^{d} until its first exit time τ_{i} from B.
- Make sure the path does not leave B by time t : $\mathbb{P}_{t}(\cdot)=\mathbb{P}\left(\cdot \cap\left\{t<\tau_{i}\right\}\right)$.
- Normalise the occupation measure: $\frac{1}{t} \ell_{t}^{(i)} \in \mathcal{M}_{1}(B)$

Large t-asymptotics
 Single path measure

- Look at one path. Fix $i \in\{1, \ldots, p\}$.
- W_{i} running in a compact set B in \mathbb{R}^{d} until its first exit time τ_{i} from B.
- Make sure the path does not leave B by time t : $\mathbb{P}_{t}(\cdot)=\mathbb{P}\left(\cdot \cap\left\{t<\tau_{i}\right\}\right)$.
- Normalise the occupation measure: $\frac{1}{t} \ell_{t}^{(i)} \in \mathcal{M}_{1}(B)$
- Want to study: Behavior of $\frac{1}{t} \ell_{t}^{(i)}$, as $t \uparrow \infty$.

Large t-asymptotics for single path measure

 Path densities show up[Donsker-Varadhan (1975-83)], [Gärtner (1977)]:

Large t-asymptotics for single path measure

 Path densities show up[Donsker-Varadhan (1975-83)], [Gärtner (1977)]:
$\frac{1}{t} \ell_{t}^{(i)}$ large deviation principle (LDP) in $\mathcal{M}_{1}(B)$ under \mathbb{P}_{t} as $t \uparrow \infty$:

Large t-asymptotics for single path measure

 Path densities show up[Donsker-Varadhan (1975-83)], [Gärtner (1977)]:
$\frac{1}{t} \ell_{t}^{(i)}$ large deviation principle (LDP) in $\mathcal{M}_{1}(B)$ under \mathbb{P}_{t} as $t \uparrow \infty$:
$\mu \in \mathcal{M}_{1}(B)$.

$$
\mathbb{P}_{t}\left(\frac{1}{t} \ell_{t}^{(i)} \approx \mu\right)=
$$

Large t-asymptotics for single path measure

 Path densities show up[Donsker-Varadhan (1975-83)], [Gärtner (1977)]:
$\frac{1}{t} \ell_{t}^{(i)}$ large deviation principle (LDP) in $\mathcal{M}_{1}(B)$ under \mathbb{P}_{t} as $t \uparrow \infty$:
$\mu \in \mathcal{M}_{1}(B)$.

$$
\mathbb{P}_{t}\left(\frac{1}{t} \ell_{t}^{(i)} \approx \mu\right)=\exp [-t(/(\mu)+o(1))] \quad t \uparrow \infty
$$

where

Large t-asymptotics for single path measure

 Path densities show up[Donsker-Varadhan (1975-83)], [Gärtner (1977)]:
$\frac{1}{t} \ell_{t}^{(i)}$ large deviation principle (LDP) in $\mathcal{M}_{1}(B)$ under \mathbb{P}_{t} as $t \uparrow \infty$: $\mu \in \mathcal{M}_{1}(B)$.

$$
\mathbb{P}_{t}\left(\frac{1}{t} \ell_{t}^{(i)} \approx \mu\right)=\exp [-t(/(\mu)+o(1))] \quad t \uparrow \infty
$$

where

$$
I(\mu)=\left\{\begin{array}{l}
\frac{1}{2}\left\|\nabla \sqrt{\frac{d \mu}{d x}}\right\|_{2}^{2} \quad \text { if } \frac{d \mu}{d x} \in H_{0}^{1}(B)
\end{array}\right.
$$

Large t-asymptotics for single path measure

 Path densities show up[Donsker-Varadhan (1975-83)], [Gärtner (1977)]:
$\frac{1}{t} \ell_{t}^{(i)}$ large deviation principle (LDP) in $\mathcal{M}_{1}(B)$ under \mathbb{P}_{t} as $t \uparrow \infty$: $\mu \in \mathcal{M}_{1}(B)$.

$$
\mathbb{P}_{t}\left(\frac{1}{t} \ell_{t}^{(i)} \approx \mu\right)=\exp [-t(/(\mu)+o(1))] \quad t \uparrow \infty
$$

where

$$
I(\mu)= \begin{cases}\frac{1}{2}\left\|\nabla \sqrt{\frac{d \mu}{d x}}\right\|_{2}^{2} & \text { if } \frac{d \mu}{d x} \in H_{0}^{1}(B) \\ \infty & \text { else }\end{cases}
$$

Large t-asymptotics for single path measure

Path densities show up

[Donsker-Varadhan (1975-83)], [Gärtner (1977)]:
$\frac{1}{t} \ell_{t}^{(i)}$ large deviation principle (LDP) in $\mathcal{M}_{1}(B)$ under \mathbb{P}_{t} as $t \uparrow \infty$: $\mu \in \mathcal{M}_{1}(B)$.

$$
\mathbb{P}_{t}\left(\frac{1}{t} \ell_{t}^{(i)} \approx \mu\right)=\exp [-t(I(\mu)+o(1))] \quad t \uparrow \infty
$$

where

$$
I(\mu)= \begin{cases}\frac{1}{2} \| \nabla \sqrt{\frac{d \mu}{d x} \|_{2}^{2}} & \text { if } \frac{d \mu}{d x} \in H_{0}^{1}(B) \\ \infty & \text { else }\end{cases}
$$

Upshot: $\frac{1}{t} \ell_{t}^{(i)}$ possess densities $\psi^{2}=\frac{d \mu}{d x}$, for large t.

Large t-asymptotics for single path measure

Path densities show up

[Donsker-Varadhan (1975-83)], [Gärtner (1977)]:
$\frac{1}{t} \ell_{t}^{(i)}$ large deviation principle (LDP) in $\mathcal{M}_{1}(B)$ under \mathbb{P}_{t} as $t \uparrow \infty$: $\mu \in \mathcal{M}_{1}(B)$.

$$
\mathbb{P}_{t}\left(\frac{1}{t} \ell_{t}^{(i)} \approx \mu\right)=\exp [-t(/(\mu)+o(1))] \quad t \uparrow \infty
$$

where

$$
I(\mu)= \begin{cases}\frac{1}{2} \| \nabla \sqrt{\frac{d \mu}{d x} \|_{2}^{2}} & \text { if } \frac{d \mu}{d x} \in H_{0}^{1}(B) \\ \infty & \text { else }\end{cases}
$$

Upshot: $\frac{1}{t} \ell_{t}^{(i)}$ possess densities $\psi^{2}=\frac{d \mu}{d x}$, for large t.
Our Goal: Similar statement for intersection measure ℓ_{t}, for large t ?

Large deviations: diverging time occupation measure and intersection measure

- $\ell_{t}^{(1)}, \ldots, \ell_{t}^{(p)}$ occupation measures of p paths running until time t in a bounded domain B until first exit times $\tau_{1}, \ldots, \tau_{p}$.

Large deviations: diverging time
 occupation measure and intersection measure

- $\ell_{t}^{(1)}, \ldots, \ell_{t}^{(p)}$ occupation measures of p paths running until time t in a bounded domain B until first exit times $\tau_{1}, \ldots, \tau_{p}$.
- ℓ_{t} the intersection measure of p paths.

Large deviations: diverging time occupation measure and intersection measure

- $\ell_{t}^{(1)}, \ldots, \ell_{t}^{(p)}$ occupation measures of p paths running until time t in a bounded domain B until first exit times $\tau_{1}, \ldots, \tau_{p}$.
- ℓ_{t} the intersection measure of p paths.
- Make sure no path exits B before time t :

$$
\mathbb{P}_{t}(\cdot)=\mathbb{P}\left(\cdot \bigcap\left\{t<\tau_{1} \wedge \cdots \wedge \tau_{p}\right\}\right)
$$

Large deviations: diverging time

Intersection densities as product of occupation densities

$$
\mathbb{P}_{t}\left(\frac{\ell_{t}}{t^{p}} \approx \mu ; \frac{\ell_{t}^{(1)}}{t} \approx \mu_{1}, \ldots, \frac{\ell_{t}^{(p)}}{t} \approx \mu_{p}\right)
$$

Large deviations: diverging time

Intersection densities as product of occupation densities

$$
\begin{array}{r}
\mathbb{P}_{t}\left(\frac{\ell_{t}}{t^{p}} \approx \mu ; \frac{\ell_{t}^{(1)}}{t} \approx \mu_{1}, \ldots, \frac{\ell_{t}^{(p)}}{t} \approx \mu_{p}\right)=\exp \left[-t\left(I\left(\mu ; \mu_{1}, \ldots, \mu_{p}\right)\right.\right. \\
+o(1))]
\end{array}
$$

Large deviations: diverging time

Intersection densities as product of occupation densities

$$
\begin{array}{r}
\mathbb{P}_{t}\left(\frac{\ell_{t}}{t^{p}} \approx \mu ; \frac{\ell_{t}^{(1)}}{t} \approx \mu_{1}, \ldots, \frac{\ell_{t}^{(p)}}{t} \approx \mu_{p}\right)=\exp \left[-t\left(I\left(\mu ; \mu_{1}, \ldots, \mu_{p}\right)\right.\right. \\
+o(1))]
\end{array}
$$

$$
I\left(\mu ; \mu_{1}, \ldots, \mu_{p}\right)=\frac{1}{2} \sum_{i=1}^{p}\left\|\nabla \psi_{i}\right\|_{2}^{2} \text {, if }
$$

Large deviations: diverging time

Intersection densities as product of occupation densities

$$
\begin{array}{r}
\mathbb{P}_{t}\left(\frac{\ell_{t}}{t^{p}} \approx \mu ; \frac{\ell_{t}^{(1)}}{t} \approx \mu_{1}, \ldots, \frac{\ell_{t}^{(p)}}{t} \approx \mu_{p}\right)=\exp \left[-t\left(I\left(\mu ; \mu_{1}, \ldots, \mu_{p}\right)\right.\right. \\
+o(1))]
\end{array}
$$

$$
I\left(\mu ; \mu_{1}, \ldots, \mu_{p}\right)=\frac{1}{2} \sum_{i=1}^{p}\left\|\nabla \psi_{i}\right\|_{2}^{2} \text {, if }
$$

$\left\{\begin{array}{l}\frac{d \mu_{i}}{d x}=\psi_{i}^{2}, \psi_{i} \in H_{0}^{1}(B),\left\|\psi_{i}\right\|_{2}=1 \quad \text { occupation densities for large } t\end{array}\right.$

Large deviations: diverging time

$$
\begin{array}{r}
\mathbb{P}_{t}\left(\frac{\ell_{t}}{t^{p}} \approx \mu ; \frac{\ell_{t}^{(1)}}{t} \approx \mu_{1}, \ldots, \frac{\ell_{t}^{(p)}}{t} \approx \mu_{p}\right)=\exp \left[-t\left(I\left(\mu ; \mu_{1}, \ldots, \mu_{p}\right)\right.\right. \\
+o(1))]
\end{array}
$$

$$
I\left(\mu ; \mu_{1}, \ldots, \mu_{p}\right)=\frac{1}{2} \sum_{i=1}^{p}\left\|\nabla \psi_{i}\right\|_{2}^{2}, \text { if }
$$

$$
\begin{cases}\frac{d \mu_{i}}{d x}=\psi_{i}^{2}, \psi_{i} \in H_{0}^{1}(B), & \left\|\psi_{i}\right\|_{2}=1 \quad \text { occupation densities for large } t \\ \frac{d \mu}{d x}=\psi^{2 p} \quad & \text { intersection density for large } t\end{cases}
$$

Large deviations: diverging time

Intersection densities as product of occupation densities

$$
\begin{array}{r}
\mathbb{P}_{t}\left(\frac{\ell_{t}}{t^{p}} \approx \mu ; \frac{\ell_{t}^{(1)}}{t} \approx \mu_{1}, \ldots, \frac{\ell_{t}^{(p)}}{t} \approx \mu_{p}\right)=\exp \left[-t\left(I\left(\mu ; \mu_{1}, \ldots, \mu_{p}\right)\right.\right. \\
+o(1))]
\end{array}
$$

$$
I\left(\mu ; \mu_{1}, \ldots, \mu_{p}\right)=\frac{1}{2} \sum_{i=1}^{p}\left\|\nabla \psi_{i}\right\|_{2}^{2} \text {, if }
$$

$$
\left\{\begin{array}{lc}
\frac{d \mu_{i}}{d x}=\psi_{i}^{2}, \psi_{i} \in H_{0}^{1}(B), & \left\|\psi_{i}\right\|_{2}=1 \quad \text { occupation densities for large } t \\
\frac{d \mu}{d x}=\psi^{2 p} & \text { intersection density for large } t \\
\psi^{2 p}=\prod_{i=1}^{p} \psi_{i}^{2} & \text { intersection density as product of occupation densities }
\end{array}\right.
$$

Large deviations: diverging time

Intersection densities as product of occupation densities

$$
\begin{array}{r}
\mathbb{P}_{t}\left(\frac{\ell_{t}}{t^{p}} \approx \mu ; \frac{\ell_{t}^{(1)}}{t} \approx \mu_{1}, \ldots, \frac{\ell_{t}^{(p)}}{t} \approx \mu_{p}\right)=\exp \left[-t\left(I\left(\mu ; \mu_{1}, \ldots, \mu_{p}\right)\right.\right. \\
+o(1))]
\end{array}
$$

$$
I\left(\mu ; \mu_{1}, \ldots, \mu_{p}\right)=\frac{1}{2} \sum_{i=1}^{p}\left\|\nabla \psi_{i}\right\|_{2}^{2}, \text { if }
$$

$$
\left\{\begin{array}{l}
\frac{d \mu_{i}}{d x}=\psi_{i}^{2}, \psi_{i} \in H_{0}^{1}(B),\left\|\psi_{i}\right\|_{2}=1 \quad \text { occupation densities for large } t \\
\frac{d \mu}{d x}=\psi^{2 p} \\
\psi^{2 p}=\prod_{i=1}^{p} \psi_{i}^{2} \\
\text { intersectection density for large } t
\end{array}\right.
$$

else,

$$
I=\infty \quad \text { identically }
$$

Large deviations: diverging time

Theorem (König/M (2011))

The family of tuples $\left(\frac{\ell_{t}}{t^{p}} ; \frac{\ell_{t}^{(1)}}{t}, \ldots, \frac{\ell_{t}^{(p)}}{t}\right)$ satisfies a $L D P$ under \mathbb{P}_{t}, as $t \uparrow \infty$, with rate function

$$
I\left(\mu ; \mu_{1}, \ldots, \mu_{p}\right)=\frac{1}{2} \sum_{i=1}^{p}\left\|\nabla \psi_{i}\right\|_{2}^{2}
$$

if μ and μ_{1}, \ldots, μ_{p} have densities $\psi^{2 p}$ and $\psi_{1}^{2}, \ldots, \psi_{p}^{2}$ respectively, $\psi_{i} \in H_{0}^{1}(B),\left\|\psi_{i}\right\|_{2}=1$ and $\psi^{2 p}=\prod_{i=1}^{p} \psi_{i}^{2}$, else $I=\infty$.

Intersection measure LDP

Large deviations: diverging time

Specialising onto the first entry of tuples, $\left(\mu, \mu_{1}, \ldots, \mu_{p}\right) \mapsto \mu$ and use the contraction principle to get

Intersection measure LDP

Large deviations: diverging time

Specialising onto the first entry of tuples, $\left(\mu, \mu_{1}, \ldots, \mu_{p}\right) \mapsto \mu$ and use the contraction principle to get

Corollary

The family of measures $\left(\frac{\ell_{t}}{t^{p}}\right)$ satisfies a large deviation principle, under \mathbb{P}_{t}, as $t \uparrow \infty$, with rate function

$$
J(\mu)=\inf \left\{\frac{1}{2} \sum_{i=1}^{p}\left\|\nabla \psi_{i}\right\|_{2}^{2}: \psi_{i} \in H_{0}^{1}(B),\left\|\psi_{i}\right\|_{2}=1, \prod_{i=1}^{p} \psi_{i}^{2}=\frac{d \mu}{d x}\right\}
$$

Intersection measure LDP

Large deviations: diverging time

Specialising onto the first entry of tuples, $\left(\mu, \mu_{1}, \ldots, \mu_{p}\right) \mapsto \mu$ and use the contraction principle to get

Corollary

The family of measures $\left(\frac{\ell_{t}}{t^{p}}\right)$ satisfies a large deviation principle, under \mathbb{P}_{t}, as $t \uparrow \infty$, with rate function

$$
J(\mu)=\inf \left\{\frac{1}{2} \sum_{i=1}^{p}\left\|\nabla \psi_{i}\right\|_{2}^{2}: \psi_{i} \in H_{0}^{1}(B),\left\|\psi_{i}\right\|_{2}=1, \prod_{i=1}^{p} \psi_{i}^{2}=\frac{d \mu}{d x}\right\}
$$

$p=1$: We recover classical Donsker-Varadhan theory for one path.

A related problem: Upper tail asymptotics

 large intersections in a set- $U \subset B$

A related problem: Upper tail asymptotics

 large intersections in a set- $U \subset B$
- Study: $\mathbb{P}(\ell(U)>a)$ as $a \uparrow \infty$?

A related problem: Upper tail asymptotics

- $U \subset B$
- Study: $\mathbb{P}(\ell(U)>a)$ as $a \uparrow \infty$?
[König and Mörters (2001)]:

$$
\lim _{a \rightarrow \infty} a^{-\frac{1}{p}} \log \mathbb{P}[\ell(U)>a]=-\Theta(U)
$$

for

$$
\Theta(U)=\inf \left\{\frac{p}{2}\|\nabla \psi\|_{2}^{2}: \psi \in H_{0}^{1}(B),\left\|1_{U} \psi\right\|_{2 p}^{2}=1\right\} .
$$

Minimisers and path behavior

Euler-Lagrange equations

- Minimiser(s) to $\Theta(U)$ exist(s).
- Every minimising ψ solves

$$
\Delta \psi(x)=-\frac{2}{p} \Theta(U) \psi^{2 p-1}(x) 1_{U}(x) \quad \text { for } x \in B \backslash \partial U
$$

Minimisers and path behavior

Euler-Lagrange equations

- Minimiser(s) to $\Theta(U)$ exist(s).
- Every minimising ψ solves

$$
\Delta \psi(x)=-\frac{2}{p} \Theta(U) \psi^{2 p-1}(x) 1_{U}(x) \quad \text { for } x \in B \backslash \partial U
$$

- Open: For $p>1$, is the minimizer or the solution ψ unique? (unique if $U=B(0 ; 1)$ and $B=\mathbb{R}^{3}$, rotational symmetry)

Minimisers and path behavior

Euler-Lagrange equations

- Minimiser(s) to $\Theta(U)$ exist(s).
- Every minimising ψ solves

$$
\Delta \psi(x)=-\frac{2}{p} \Theta(U) \psi^{2 p-1}(x) 1_{U}(x) \quad \text { for } x \in B \backslash \partial U
$$

- Open: For $p>1$, is the minimizer or the solution ψ unique? (unique if $U=B(0 ; 1)$ and $B=\mathbb{R}^{3}$, rotational symmetry)
- $p=1$:
- the solution is unique (Rayleigh-Ritz)

Minimisers and path behavior

Euler-Lagrange equations

- Minimiser(s) to $\Theta(U)$ exist(s).
- Every minimising ψ solves

$$
\triangle \psi(x)=-\frac{2}{p} \Theta(U) \psi^{2 p-1}(x) 1_{U}(x) \quad \text { for } x \in B \backslash \partial U
$$

- Open: For $p>1$, is the minimizer or the solution ψ unique? (unique if $U=B(0 ; 1)$ and $B=\mathbb{R}^{3}$, rotational symmetry)
- $p=1$:
- the solution is unique (Rayleigh-Ritz)
- ψ^{2} appears as large-a density of the occupation measure on U.

Minimisers and path behavior

Euler-Lagrange equations

- Minimiser(s) to $\Theta(U)$ exist(s).
- Every minimising ψ solves

$$
\Delta \psi(x)=-\frac{2}{p} \Theta(U) \psi^{2 p-1}(x) 1_{U}(x) \quad \text { for } x \in B \backslash \partial U
$$

- Open: For $p>1$, is the minimizer or the solution ψ unique? (unique if $U=B(0 ; 1)$ and $B=\mathbb{R}^{3}$, rotational symmetry)
- $p=1$:
- the solution is unique (Rayleigh-Ritz)
- ψ^{2} appears as large-a density of the occupation measure on U.

Upshot: $\psi^{2 p}$ should be the large-a density of the intersection measure on U.

Minimisers and path behavior

Law of large masses

- Let $L=\frac{\ell}{\ell(U)}$ be the normalised probability on U.

Minimisers and path behavior

- Let $L=\frac{\ell}{\ell(U)}$ be the normalised probability on U.
- $\mathcal{M}=\left\{\mu \in \mathcal{M}_{1}(U): \mu(d x)=\psi^{2 p}(x) d x, \psi\right.$ minimises $\left.\Theta(U)\right\}$

Minimisers and path behavior

- Let $L=\frac{\ell}{\ell(U)}$ be the normalised probability on U.
- $\mathcal{M}=\left\{\mu \in \mathcal{M}_{1}(U): \mu(d x)=\psi^{2 p}(x) d x, \psi\right.$ minimises $\left.\Theta(U)\right\}$
[König and Mörters (2005)]

$$
\lim _{a \uparrow \infty} \mathbb{P}[d(L, \mathcal{M})>\epsilon \mid \ell(U)>a]=0
$$

where d weakly metrises $\mathcal{M}_{1}(U)$

Minimisers and path behavior

- Let $L=\frac{\ell}{\ell(U)}$ be the normalised probability on U.
- $\mathcal{M}=\left\{\mu \in \mathcal{M}_{1}(U): \mu(d x)=\psi^{2 p}(x) d x, \psi\right.$ minimises $\left.\Theta(U)\right\}$
[König and Mörters (2005)]

$$
\lim _{a \uparrow \infty} \mathbb{P}[d(L, \mathcal{M})>\epsilon \mid \ell(U)>a]=0
$$

where d weakly metrises $\mathcal{M}_{1}(U)$

- Upshot: Law of large numbers:

$$
L \rightarrow \psi^{2 p} \quad \text { under } \mathbb{P}(\cdot \mid \ell(U)>a), a \uparrow \infty
$$

Minimisers and path behavior

- Let $L=\frac{\ell}{\ell(U)}$ be the normalised probability on U.
- $\mathcal{M}=\left\{\mu \in \mathcal{M}_{1}(U): \mu(d x)=\psi^{2 p}(x) d x, \psi\right.$ minimises $\left.\Theta(U)\right\}$
[König and Mörters (2005)]

$$
\lim _{a \uparrow \infty} \mathbb{P}[d(L, \mathcal{M})>\epsilon \mid \ell(U)>a]=0
$$

where d weakly metrises $\mathcal{M}_{1}(U)$

- Upshot: Law of large numbers:

$$
L \rightarrow \psi^{2 p} \quad \text { under } \mathbb{P}(\cdot \mid \ell(U)>a), a \uparrow \infty
$$

- Large deviations: What is the exponential decay rate?

Intersection measure until exit times

Theorem (König/M (2011))

The normalized probability measures $L=\frac{\ell}{\ell(U)}$ satisfy a large deviation principle under $\mathbb{P}(\cdot \mid \ell(U)>a)$, as $a \uparrow \infty$, with rate function

$$
\Lambda(\mu)=\inf \left\{\frac{1}{2} \sum_{i=1}^{p}\left\|\nabla \psi_{i}\right\|_{2}^{2}: \psi_{i} \in H_{0}^{1}(B), \prod_{i=1}^{p} \psi_{i}^{2}=\frac{d \mu}{d x}\right\}-\Theta(U) .
$$

Outlook

- Study the variational formula for the rate function:

$$
J(\mu)=\inf \left\{\frac{1}{2} \sum_{i=1}^{p}\left\|\nabla \psi_{i}\right\|_{2}^{2}: \psi_{i} \in H_{0}^{1}(B),\left\|\psi_{i}\right\|_{2}=1, \prod_{i=1}^{p} \psi_{i}^{2}=\frac{d \mu}{d x}\right\}
$$

Outlook

- Study the variational formula for the rate function:

$$
J(\mu)=\inf \left\{\frac{1}{2} \sum_{i=1}^{p}\left\|\nabla \psi_{i}\right\|_{2}^{2}: \psi_{i} \in H_{0}^{1}(B),\left\|\psi_{i}\right\|_{2}=1, \prod_{i=1}^{p} \psi_{i}^{2}=\frac{d \mu}{d x}\right\}
$$

Open question: Can the minimisers be taken at

$$
\psi_{1}=\cdots=\psi_{p} ? \quad \text { same optimal strategy? }
$$

Outlook

- Study the variational formula for the rate function:

$$
J(\mu)=\inf \left\{\frac{1}{2} \sum_{i=1}^{p}\left\|\nabla \psi_{i}\right\|_{2}^{2}: \psi_{i} \in H_{0}^{1}(B),\left\|\psi_{i}\right\|_{2}=1, \prod_{i=1}^{p} \psi_{i}^{2}=\frac{d \mu}{d x}\right\}
$$

Open question: Can the minimisers be taken at

$$
\psi_{1}=\cdots=\psi_{p} ? \quad \text { same optimal strategy? }
$$

If so, rate function is much simpler!

$$
J(\mu)=\frac{p}{2}\left\|\nabla\left(\frac{d \mu}{d x}\right)^{\frac{1}{2 p}}\right\|_{2}^{2}
$$

Outlook

- Study the variational formula for the rate function:

$$
J(\mu)=\inf \left\{\frac{1}{2} \sum_{i=1}^{p}\left\|\nabla \psi_{i}\right\|_{2}^{2}: \psi_{i} \in H_{0}^{1}(B),\left\|\psi_{i}\right\|_{2}=1, \prod_{i=1}^{p} \psi_{i}^{2}=\frac{d \mu}{d x}\right\}
$$

Open question: Can the minimisers be taken at

$$
\psi_{1}=\cdots=\psi_{p} ? \quad \text { same optimal strategy? }
$$

If so, rate function is much simpler!

$$
J(\mu)=\frac{p}{2}\left\|\nabla\left(\frac{d \mu}{d x}\right)^{\frac{1}{2 p}}\right\|_{2}^{2}
$$

- Extend it to unbounded domains.: For $p=2, B=\mathbb{R}^{3}$

