Universality and RSW for inhomogeneous bond percolation

Ioan Manolescu joint work with Geoffrey Grimmett

Statistical Laboratory Department of Pure Mathemetics and Mathematical Statistics University of Cambridge

22 August 2011

A (1) > A (2) > A

Results The star-triangle transformation Use of star-triangle transformation What's next

Percolation

An edge e is $\begin{cases} \text{open with probability } p_e \\ \text{closed with probability } 1 - p_e \end{cases}$

- * @ * * 注 * * 注 *

Results The star-triangle transformation Use of star-triangle transformation What's next

Percolation

Results The star-triangle transformation Use of star-triangle transformation What's next

Percolation

Results The star-triangle transformation Use of star-triangle transformation What's next

Percolation

Results The star-triangle transformation Use of star-triangle transformation What's next

Percolation

Homogeneous Bond Percolation

 $p < p_c$, a.s. no infinite component; $p > p_c$, a.s. existence of an infinite component. Criticality: $p_c(\mathbb{Z}^2) = \frac{1}{2}$ $p_c(\mathbb{T}) = 2 \sin \frac{\pi}{2}$

▲□ → ▲ □ → ▲ □ →

Homogeneous Bond Percolation

 $p < p_c$, a.s. no infinite component; $p > p_c$, a.s. existence of an infinite component.

Criticality: $p_c(\mathbb{Z}^2) = \frac{1}{2}$. $p_c(\mathbb{T}) = 2 \sin \frac{\pi}{18}$.

イロン 不同 とくほう イロン

Homogeneous Bond Percolation

 $p < p_c$, a.s. no infinite component; $p > p_c$, a.s. existence of an infinite component. Criticality: $p_c(\mathbb{Z}^2) = \frac{1}{2}$. $p_c(\mathbb{T}) = 2\sin\frac{\pi}{18}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Inhomogeneous bond percolation

Criticality for \mathbb{Z}^2 : $p_v + p_h = 1$. Criticality for \mathbb{T} : $\kappa_{\triangle}(\mathbf{p}) = p_0 + p_1 + p_2 - p_0 p_1 p_2 = 1$ $(\mathbf{p} = (p_0, p_1, p_2) \in [0, 1)^3).$

Call ${\mathcal M}$ the above class of critical (inhomogeneous) models.

(日) (同) (三) (三)

Inhomogeneous bond percolation

Criticality for \mathbb{Z}^2 : $p_v + p_h = 1$. Criticality for \mathbb{T} : $\kappa_{\triangle}(\mathbf{p}) = p_0 + p_1 + p_2 - p_0 p_1 p_2 = 1$, $(\mathbf{p} = (p_0, p_1, p_2) \in [0, 1)^3)$.

Call ${\mathcal M}$ the above class of critical (inhomogeneous) models.

・ロト ・同ト ・ヨト ・ヨト

Inhomogeneous bond percolation

Criticality for \mathbb{Z}^2 : $p_{\nu} + p_h = 1$. Criticality for \mathbb{T} : $\kappa_{\triangle}(\mathbf{p}) = p_0 + p_1 + p_2 - p_0 p_1 p_2 = 1$, $(\mathbf{p} = (p_0, p_1, p_2) \in [0, 1)^3)$.

Call \mathcal{M} the above class of critical (inhomogeneous) models.

- < 同 > < 三 > < 三 >

Criticality

For \mathbb{P} critical we expect:

$$\mathbb{P}\left[\overbrace{B^{\bullet}}^{A} \overbrace{C}^{\Omega} \overbrace{C}^{D}\right] \rightarrow D(\Omega, A, B, C, D), \text{ as } \delta \rightarrow 0$$

where $D(\Omega, A, B, C, D)$ is conformally invariant and does not depend on the underlying model.

Only known for **site** percolation on the triangular lattice (Cardy's formula, Smirnov 2001)

(日) (同) (三) (三)

Criticality

For \mathbb{P} critical we expect:

$$\mathbb{P}\left[\overbrace{B^{\bullet}}^{A} \overbrace{C}^{\Omega} \overbrace{C}^{D}\right] \rightarrow D(\Omega, A, B, C, D), \text{ as } \delta \rightarrow 0$$

where $D(\Omega, A, B, C, D)$ is conformally invariant and does not depend on the underlying model.

Only known for **site** percolation on the triangular lattice (Cardy's formula, Smirnov 2001)

(日) (同) (三) (三)

The box-crossing property

A model satisfies the box-crossing property if for all α there exists $c(\alpha) > 0$ s.t. for all N:

The box-crossing property

A model satisfies the box-crossing property if for all α there exists $c(\alpha) > 0$ s.t. for all N:

The homogeneous models in \mathcal{M} satisfy the box-crossing property.

Main result I

The box-crossing property Critical exponents

Theorem

All models in \mathcal{M} satisfy the box-crossing property.

Ioan Manolescu joint work with Geoffrey Grimmett Universality and RSW for inhomogeneous bond percolation

(日) (同) (三) (三)

The box-crossing property Critical exponents

Exponents at criticality

For a critical percolation measure $\mathbb{P}_{\mathbf{p}_c}$, as $n \to \infty$, we expect:

- volume exponent: $\mathbb{P}_{\mathbf{p}_{\mathrm{c}}}(|\mathcal{C}_{0}|=n) pprox n^{-1-1/\delta}$,
- connectivity exponent: $\mathbb{P}_{\mathbf{p}_{c}}(0\leftrightarrow x)pprox |x|^{-\eta}$,
- one-arm exponent: $\mathbb{P}_{\mathbf{p}_c}(\mathrm{rad}(\mathcal{C}_0)=n) pprox n^{-1-1/
 ho}$,
- 2*j*-alternating-arms exponents: $\mathbb{P}_{\mathbf{p}_{c}}[A_{2j}(N, n)] \approx n^{-\rho_{2j}}$,

・ 同 ト ・ ヨ ト ・ ヨ ト

The box-crossing property Critical exponents

Exponents near ciritcality

- Percolation probability: $\mathbb{P}_{\mathbf{p}_c+\epsilon}(|C_0|=\infty) \approx \epsilon^{\beta}$ as $\epsilon \downarrow 0$,
- Correlation length: $\xi(\mathbf{p}_{c} \epsilon) \approx \epsilon^{-\nu}$ as $\epsilon \downarrow 0$, where $-\frac{1}{n} \log \mathbb{P}_{\mathbf{p}_{c}-\epsilon}(\operatorname{rad}(C_{0}) \geq n) \rightarrow_{n \to \infty} \frac{1}{\xi(\mathbf{p}_{c}-\epsilon)}$.
- Mean cluster-size: $\mathbb{P}_{\mathbf{p}_c+\epsilon}(|\mathcal{C}_0|;|\mathcal{C}_0|<\infty) \approx |\epsilon|^{-\gamma}$ as $\epsilon \to 0$,
- Gap exponent: for $k \ge 1$, as $\epsilon \to 0$,

$$\frac{\mathbb{P}_{\mathbf{p}_{c}+\epsilon}(|\mathcal{C}_{0}|^{k+1};|\mathcal{C}_{0}|<\infty)}{\mathbb{P}_{\mathbf{p}_{c}+\epsilon}(|\mathcal{C}_{0}|^{k};|\mathcal{C}_{0}|<\infty)}\approx |\epsilon|^{-\Delta}$$

- 4 同 6 - 4 三 6 - 4 三 6

The box-crossing property Critical exponents

Scaling relations

• Kesten '87. For models with the box-crossing property if ρ or η exist, then

$$\eta \rho = 2$$
 and $2\rho = \delta + 1$.

• Kesten '87. For models with the box-crossing property rotation and translation invariance, β , ν , γ and δ may be expressed in terms of ρ and ρ_4 .

- < 同 > < 三 > < 三 >

The box-crossing property Critical exponents

Main result II

Theorem

If one of the arm exponents exists in one of the models in \mathcal{M} , then it exists and is the same in all models in \mathcal{M} .

The box-crossing property Critical exponents

Main result II

Theorem

If one of the arm exponents exists in one of the models in \mathcal{M} , then it exists and is the same in all models in \mathcal{M} .

Theorem

If ρ or η exist in one of the models in \mathcal{M} , then the exponents at criticality $(\delta, \eta \text{ and } \rho)$ exist and are the same in all models in \mathcal{M} .

- 4 同 6 - 4 三 6 - 4 三 6

The box-crossing property Critical exponents

Main result II

Theorem

If one of the arm exponents exists in one of the models in \mathcal{M} , then it exists and is the same in all models in \mathcal{M} .

Theorem

If ρ or η exist in one of the models in \mathcal{M} , then the exponents at criticality (δ , η and ρ) exist and are the same in all models in \mathcal{M} .

Theorem

If ρ and ρ_4 exist in one of the models in \mathcal{M} , then the exponents away form criticality exist and are the same in the critical homogeneous models on the square, triangular and hexagonal lattices.

Star-triangle transformation

Take ω , respectively ω' , according to the measure on the left, respectively right. The families of random variables

$$\left(x \stackrel{G,\omega}{\longleftrightarrow} y : x, y = A, B, C\right), \quad \left(x \stackrel{G',\omega'}{\longleftrightarrow} y : x, y = A, B, C\right),$$

have the same joint law whenever

$$\kappa_{\triangle}(\mathbf{p}) = p_0 + p_1 + p_2 - p_0 p_1 p_2 = 1.$$

Coupling

where
$$P = (1 - p_0)(1 - p_1)(1 - p_2).$$

Ioan Manolescu joint work with Geoffrey Grimmett

J· < □ > < □ > < ⊇ > < ⊇ > < ⊇ > Universality and RSW for inhomogeneous bond percolation

Lattice transformation

- 4 同 6 - 4 三 6 - 4 三 6

Lattice transformation

Ioan Manolescu joint work with Geoffrey Grimmett Universality and RSW for inhomogeneous bond percolation

(日) (同) (三) (三)

Lattice transformation

・ 同 ト ・ ヨ ト ・ ヨ ト

Lattice transformation

Ioan Manolescu joint work with Geoffrey Grimmett Universality and RSW for inhomogeneous bond percolation

A B > A B >

Lattice transformation

・ 同 ト ・ ヨ ト ・ ヨ ト

Lattice transformation

The measure is preserved.

🗇 🕨 🖌 🖃 🕨 🖌 🗐 🕨

э

Ioan Manolescu joint work with Geoffrey Grimmett Universality and RSW for inhomogeneous bond percolation

Transformation of paths

Ioan Manolescu joint work with Geoffrey Grimmett Universality and RSW for inhomogeneous bond percolation

イロン イロン イヨン イヨン

æ

Transformation of paths

Ioan Manolescu joint work with Geoffrey Grimmett Universality and RSW for inhomogeneous bond percolation

イロン イロン イヨン イヨン

Transformation of paths

Ioan Manolescu joint work with Geoffrey Grimmett Universality and RSW for inhomogeneous bond percolation

Transformation of paths

Ioan Manolescu joint work with Geoffrey Grimmett Universality and RSW for inhomogeneous bond percolation

Transformation of paths

Ioan Manolescu joint work with Geoffrey Grimmett Universality and RSW for inhomogeneous bond percolation

< ロ > < 回 > < 回 > < 回 > < 回 > .

Transformation of paths

Ioan Manolescu joint work with Geoffrey Grimmett Universality and RSW for inhomogeneous bond percolation

Transformation of paths

Ioan Manolescu joint work with Geoffrey Grimmett Universality and RSW for inhomogeneous bond percolation

<ロ> <同> <同> < 回> < 回>

Transformation of paths

Ioan Manolescu joint work with Geoffrey Grimmett Universality and RSW for inhomogeneous bond percolation

・ロン ・回と ・ヨン ・ ヨン

Transformation of paths

Ioan Manolescu joint work with Geoffrey Grimmett Universality and RSW for inhomogeneous bond percolation

《口》 《聞》 《臣》 《臣》

Transporting box crossings

Proposition

For $\mathbf{p} = (p_0, p_1, p_2) \in (0, 1)^3$ such that $\kappa_{\triangle}(\mathbf{p}) = 1$, $\mathbb{P}^{\square}_{(p_0, 1-p_0)}$ satisfies the box-crossing property iff $\mathbb{P}^{\triangle}_{\mathbf{p}}$ does.

Use of the proposition: $\mathbb{P}^{\square}_{\left(\frac{1}{2},\frac{1}{2}\right)}$ satisfies the box-crossing property, hence so does $\mathbb{P}^{\triangle}_{\left(\frac{1}{2},p_{0},p_{0}'\right)}$, when $\kappa_{\triangle}\left(\frac{1}{2},p_{0},p_{0}'\right)=1$, hence so does $\mathbb{P}^{\square}_{\left(p_{0},1-p_{0}\right)}$, for $p_{0} \in \left(0,\frac{1}{2}\right]$, hence so does $\mathbb{P}^{\triangle}_{\left(p_{0},p_{1},p_{2}\right)}$, for $\kappa_{\triangle}\left(p_{0},p_{1},p_{2}\right)=1$.

▲ □ ▶ ▲ 三 ▶ ▲

Transporting box crossings

Proposition

For
$$\mathbf{p} = (p_0, p_1, p_2) \in (0, 1)^3$$
 such that $\kappa_{\triangle}(\mathbf{p}) = 1$,
 $\mathbb{P}^{\square}_{(p_0, 1-p_0)}$ satisfies the box-crossing property iff $\mathbb{P}^{\triangle}_{\mathbf{p}}$ does.

Use of the proposition: $\mathbb{P}^{\Box}_{\left(\frac{1}{2},\frac{1}{2}\right)}$ satisfies the box-crossing property, hence so does $\mathbb{P}^{\bigtriangleup}_{\left(\frac{1}{2},p_{0},p_{0}'\right)}$, when $\kappa_{\bigtriangleup}\left(\frac{1}{2},p_{0},p_{0}'\right)=1$, hence so does $\mathbb{P}^{\Box}_{\left(p_{0},1-p_{0}\right)}$, for $p_{0} \in \left(0,\frac{1}{2}\right]$, hence so does $\mathbb{P}^{\bigtriangleup}_{\left(p_{0},p_{1},p_{2}\right)}$, for $\kappa_{\bigtriangleup}\left(p_{0},p_{1},p_{2}\right)=1$.

A (1) > A (1) > A

Transporting box crossings

Proposition

For
$$\mathbf{p} = (p_0, p_1, p_2) \in (0, 1)^3$$
 such that $\kappa_{\triangle}(\mathbf{p}) = 1$,
 $\mathbb{P}^{\square}_{(p_0, 1-p_0)}$ satisfies the box-crossing property iff $\mathbb{P}^{\triangle}_{\mathbf{p}}$ does.

Use of the proposition: $\mathbb{P}_{\left(\frac{1}{2},\frac{1}{2}\right)}^{\Box}$ satisfies the box-crossing property, hence so does $\mathbb{P}_{\left(\frac{1}{2},\rho_{0},\rho_{0}'\right)}^{\bigtriangleup}$, when $\kappa_{\bigtriangleup}\left(\frac{1}{2},\rho_{0},\rho_{0}'\right) = 1$, hence so does $\mathbb{P}_{\left(\rho_{0},1-\rho_{0}\right)}^{\Box}$, for $\rho_{0} \in \left(0,\frac{1}{2}\right]$, hence so does $\mathbb{P}_{\left(\rho_{0},\rho_{1},\rho_{2}\right)}^{\bigtriangleup}$, for $\kappa_{\bigtriangleup}\left(\rho_{0},\rho_{1},\rho_{2}\right) = 1$.

- 4 回 ト - 4 回 ト

Transporting box crossings

Proposition

For
$$\mathbf{p} = (p_0, p_1, p_2) \in (0, 1)^3$$
 such that $\kappa_{\triangle}(\mathbf{p}) = 1$,
 $\mathbb{P}^{\square}_{(p_0, 1-p_0)}$ satisfies the box-crossing property iff $\mathbb{P}^{\triangle}_{\mathbf{p}}$ does.

Use of the proposition: $\mathbb{P}_{\left(\frac{1}{2},\frac{1}{2}\right)}^{\Box}$ satisfies the box-crossing property, hence so does $\mathbb{P}_{\left(\frac{1}{2},p_{0},p_{0}'\right)}^{\bigtriangleup}$, when $\kappa_{\bigtriangleup}\left(\frac{1}{2},p_{0},p_{0}'\right)=1$, hence so does $\mathbb{P}_{\left(p_{0},1-p_{0}\right)}^{\Box}$, for $p_{0} \in \left(0,\frac{1}{2}\right]$, hence so does $\mathbb{P}_{\left(p_{0},p_{1},p_{2}\right)}^{\bigtriangleup}$, for $\kappa_{\bigtriangleup}\left(p_{0},p_{1},p_{2}\right)=1$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Transporting box crossings

Proposition

For
$$\mathbf{p} = (p_0, p_1, p_2) \in (0, 1)^3$$
 such that $\kappa_{\triangle}(\mathbf{p}) = 1$,
 $\mathbb{P}^{\square}_{(p_0, 1-p_0)}$ satisfies the box-crossing property iff $\mathbb{P}^{\triangle}_{\mathbf{p}}$ does.

Use of the proposition: $\mathbb{P}_{\left(\frac{1}{2},\frac{1}{2}\right)}^{\Box}$ satisfies the box-crossing property, hence so does $\mathbb{P}_{\left(\frac{1}{2},\rho_{0},\rho_{0}'\right)}^{\bigtriangleup}$, when $\kappa_{\bigtriangleup}\left(\frac{1}{2},\rho_{0},p_{0}'\right) = 1$, hence so does $\mathbb{P}_{\left(p_{0},1-\rho_{0}\right)}^{\Box}$, for $p_{0} \in \left(0,\frac{1}{2}\right]$, hence so does $\mathbb{P}_{\left(p_{0},\rho_{1},p_{2}\right)}^{\bigtriangleup}$, for $\kappa_{\bigtriangleup}\left(p_{0},\rho_{1},p_{2}\right) = 1$.

く 同 と く ヨ と く ヨ と …

Transporting arm exponents

Proposition

For any $k \in \{1, 2, 4, 6, ...\}$ and any self-dual triplet $\mathbf{p} \in [0, 1)^3$ with $p_0 > 0$, there exist $c_0, c_1, n_0 > 0$ such that, for all $n \ge n_0$,

$$c_0\mathbb{P}^{\bigtriangleup}_{\mathbf{p}}[A_k(n)] \leq \mathbb{P}^{\square}_{(p_0,1-p_0)}[A_k(n)] \leq c_1\mathbb{P}^{\bigtriangleup}_{\mathbf{p}}[A_k(n)].$$

Using the same procedure we transport arm exponents between models.

- 4 同 6 4 日 6 4 日 6

Isoradial graphs

Each face is inscribed in a circle of radius 1.

$$\frac{p_e}{1-p_e} = \frac{\sin(\frac{\pi-\theta(e)}{3})}{\sin(\frac{\theta(e)}{3})}.$$

Ioan Manolescu joint work with Geoffrey Grimmett Universality and RS

Universality and RSW for inhomogeneous bond percolation

Inhomogeneous models as isoradial graphs

▲□▶ ▲ □▶ ▲ □

Ioan Manolescu joint work with Geoffrey Grimmett Universality and RSW for inhomogeneous bond percolation

Inhomogeneous models as isoradial graphs

 $p_{v} + p_{h} = 1,$ $\kappa_{\triangle}(\mathbf{p}) = p_{0} + p_{1} + p_{2} - p_{0}p_{1}p_{2} = 1$

Ioan Manolescu joint work with Geoffrey Grimmett Universality and RSW for inhomogeneous bond percolation

- 4 同 2 4 回 2 4 U

Conjecture

The class \mathcal{M} may be extended to all isoradial graphs.

Ioan Manolescu joint work with Geoffrey Grimmett Universality and RSW for inhomogeneous bond percolation

- < 同 > < 三 > < 三 >

Conjecture

The class \mathcal{M} may be extended to all isoradial graphs.

Conjecture

The class \mathcal{M} may be extended to periodic isoradial graphs.

Thank you!

Ioan Manolescu joint work with Geoffrey Grimmett Universality and RSW for inhomogeneous bond percolation

<ロ> <同> <同> < 回> < 回>