Universality and RSW for inhomogeneous bond percolation

Ioan Manolescu joint work with Geoffrey Grimmett

Statistical Laboratory
Department of Pure Mathemetics and Mathematical Statistics
University of Cambridge

22 August 2011

Percolation

An edge e is $\left\{\begin{array}{l}\text { open with probability } p_{e} \\ \text { closed with probability } 1-p_{e}\end{array}\right.$

Percolation

An edge e is $\left\{\begin{array}{l}\text { open with probability } p_{e} \\ \text { closed with probability } 1-p_{e}\end{array}\right.$

Percolation

An edge e is $\left\{\begin{array}{l}\text { open with probability } p_{e} \\ \text { closed with probability } 1-p_{e}\end{array}\right.$

Percolation

An edge e is $\left\{\begin{array}{l}\text { open with probability } p_{e} \\ \text { closed with probability } 1-p_{e}\end{array}\right.$

Percolation

An edge e is $\left\{\begin{array}{l}\text { open with probability } p_{e} \\ \text { closed with probability } 1-p_{e}\end{array}\right.$

Homogeneous Bond Percolation

$p<p_{c}$, a.s. no infinite component;
$p>p_{c}$, a.s. existence of an infinite component.
Criticality: $p_{c}\left(\mathbb{Z}^{2}\right)=\frac{1}{2} . \quad p_{c}(\mathbb{T})=2 \sin \frac{\pi}{18}$.

Homogeneous Bond Percolation

$p<p_{c}$, a.s. no infinite component; $p>p_{c}$, a.s. existence of an infinite component.

Criticality: $p_{c}\left(\mathbb{Z}^{2}\right)=\frac{1}{2} . \quad p_{c}(\mathbb{T})=2 \sin \frac{\pi}{18}$.

Homogeneous Bond Percolation

$p<p_{c}$, a.s. no infinite component; $p>p_{c}$, a.s. existence of an infinite component.

Criticality: $p_{c}\left(\mathbb{Z}^{2}\right)=\frac{1}{2} . \quad p_{c}(\mathbb{T})=2 \sin \frac{\pi}{18}$.

Inhomogeneous bond percolation

Criticality for $\mathbb{Z}^{2}: p_{v}+p_{h}=1$.
Criticality for $\mathbb{T}: \kappa_{\triangle}(\mathbf{p})=p_{0}+p_{1}+p_{2}-p_{0} p_{1} p_{2}=1$, $\left(p=\left(p_{0}, p_{1}, p_{2}\right) \in[0,1)^{3}\right)$.

Call \mathcal{M} the above class of critical (inhomogeneous) models.

Inhomogeneous bond percolation

Criticality for $\mathbb{Z}^{2}: p_{v}+p_{h}=1$.
Criticality for $\mathbb{T}: \kappa \Delta(\mathbf{p})=p_{0}+p_{1}+p_{2}-p_{0} p_{1} p_{2}=1$,
$\left(\mathbf{p}=\left(p_{0}, p_{1}, p_{2}\right) \in[0,1)^{3}\right)$.
Call \mathcal{M} the above class of critical (inhomogeneous) models.

Inhomogeneous bond percolation

Criticality for $\mathbb{Z}^{2}: p_{v}+p_{h}=1$.
Criticality for $\mathbb{T}: \kappa \Delta(\mathbf{p})=p_{0}+p_{1}+p_{2}-p_{0} p_{1} p_{2}=1$,
$\left(\mathbf{p}=\left(p_{0}, p_{1}, p_{2}\right) \in[0,1)^{3}\right)$.
Call \mathcal{M} the above class of critical (inhomogeneous) models.

Criticality

For \mathbb{P} critical we expect:

where $D(\Omega, A, B, C, D)$ is conformally invariant and does not depend on the underlying model.

Only known for site percolation on the triangular lattice (Cardy's formula, Smirnov 2001)

Criticality

For \mathbb{P} critical we expect:

where $D(\Omega, A, B, C, D)$ is conformally invariant and does not depend on the underlying model.

Only known for site percolation on the triangular lattice (Cardy's formula, Smirnov 2001)

The box-crossing property

A model satisfies the box-crossing property if for all α there exists $c(\alpha)>0$ s.t. for all N :

The box-crossing property

A model satisfies the box-crossing property if for all α there exists $c(\alpha)>0$ s.t. for all N :

The homogeneous models in \mathcal{M} satisfy the box-crossing property.

Main result I

Theorem

All models in \mathcal{M} satisfy the box-crossing property.

Exponents at criticality

For a critical percolation
measure $\mathbb{P}_{\mathbf{p}_{c}}$, as $n \rightarrow \infty$, we expect:

- $2 j$-alternating-arms exponents:

$$
\mathbb{P}_{\mathbf{p}_{c}}\left[A_{2 j}(N, n)\right] \approx n^{-\rho_{2 j}},
$$

Exponents near ciritcality

- Percolation probability: $\mathbb{P}_{\mathbf{p}_{\mathrm{c}}+\epsilon}\left(\left|C_{0}\right|=\infty\right) \approx \epsilon^{\beta}$ as $\epsilon \downarrow 0$,
- Correlation length: $\xi\left(\mathbf{p}_{\mathrm{c}}-\epsilon\right) \approx \epsilon^{-\nu}$ as $\epsilon \downarrow 0$, where $-\frac{1}{n} \log \mathbb{P}_{\mathbf{p}_{\mathrm{c}}-\epsilon}\left(\operatorname{rad}\left(C_{0}\right) \geq n\right) \rightarrow_{n \rightarrow \infty} \frac{1}{\xi\left(\mathbf{p}_{\mathrm{c}}-\epsilon\right)}$.
- Mean cluster-size: $\mathbb{P}_{\mathbf{p}_{\mathrm{c}}+\epsilon}\left(\left|C_{0}\right| ;\left|C_{0}\right|<\infty\right) \approx|\epsilon|^{-\gamma}$ as $\epsilon \rightarrow 0$,
- Gap exponent: for $k \geq 1$, as $\epsilon \rightarrow 0$,

$$
\frac{\mathbb{P}_{\mathbf{p}_{\mathrm{c}}+\epsilon}\left(\left|C_{0}\right|^{k+1} ;\left|C_{0}\right|<\infty\right)}{\mathbb{P}_{\mathbf{p}_{\mathrm{c}}+\epsilon}\left(\left|C_{0}\right|^{k} ;\left|C_{0}\right|<\infty\right)} \approx|\epsilon|^{-\Delta} .
$$

Scaling relations

- Kesten '87. For models with the box-crossing property if ρ or η exist, then

$$
\eta \rho=2 \quad \text { and } \quad 2 \rho=\delta+1
$$

- Kesten '87. For models with the box-crossing property rotation and translation invariance, β, ν, γ and δ may be expressed in terms of ρ and ρ_{4}.

Main result II

Theorem

If one of the arm exponents exists in one of the models in \mathcal{M}, then it exists and is the same in all models in \mathcal{M}.

Main result II

Theorem

If one of the arm exponents exists in one of the models in \mathcal{M}, then it exists and is the same in all models in \mathcal{M}.

Theorem

If ρ or η exist in one of the models in \mathcal{M}, then the exponents at criticality (δ, η and ρ) exist and are the same in all models in \mathcal{M}.

Main result II

Theorem

If one of the arm exponents exists in one of the models in \mathcal{M}, then it exists and is the same in all models in \mathcal{M}.

Theorem

If ρ or η exist in one of the models in \mathcal{M}, then the exponents at criticality (δ, η and ρ) exist and are the same in all models in \mathcal{M}.

Theorem

If ρ and ρ_{4} exist in one of the models in \mathcal{M}, then the exponents away form criticality exist and are the same in the critical homogeneous models on the square, triangular and hexagonal lattices.

Star-triangle transformation

Take ω, respectively ω^{\prime}, according to the measure on the left, respectively right. The families of random variables

$$
(x \stackrel{G, \omega}{\longleftrightarrow} y: x, y=A, B, C), \quad\left(x \stackrel{G^{\prime}, \omega^{\prime}}{\longleftrightarrow} y: x, y=A, B, C\right),
$$

have the same joint law whenever

$$
\kappa_{\triangle}(\mathbf{p})=p_{0}+p_{1}+p_{2}-p_{0} p_{1} p_{2}=1
$$

Coupling

where $P=\left(1-p_{0}\right)\left(1-p_{1}\right)\left(1-p_{2}\right)$.

Lattice transformation

The measure is preserved.

Transformation of paths

Transporting box crossings

Proposition

For $\mathbf{p}=\left(p_{0}, p_{1}, p_{2}\right) \in(0,1)^{3}$ such that $\kappa_{\Delta}(\mathbf{p})=1$,
$\mathbb{P}_{\left(p_{0}, 1-p_{0}\right)}^{\square}$ satisfies the box-crossing property iff $\mathbb{P}_{\mathbf{p}}^{\triangle}$ does.
Use of the proposition: $\mathbb{P}_{\left(\frac{1}{2}, \frac{1}{2}\right)}^{\square}$ satisfies the box-crossing property,
hence so does \mathbb{D}^{Δ}, when $\kappa_{\Delta}\left(\frac{1}{2}, p_{0}, p_{0}^{\prime}\right)=1$
hence so does $\mathbb{P}_{\left(p_{0}, 1-p_{0}\right)}^{\square}$, for $p_{0} \in\left(0, \frac{1}{2}\right]$
hence so does $\mathbb{P}_{\left(p_{0}, p_{1}, p_{2}\right)}^{\triangle}$, for $\kappa_{\triangle}\left(p_{0}, p_{1}, p_{2}\right)=1$

Transporting box crossings

Proposition

For $\mathbf{p}=\left(p_{0}, p_{1}, p_{2}\right) \in(0,1)^{3}$ such that $\kappa_{\Delta}(\mathbf{p})=1$,
$\mathbb{P}_{\left(p_{0}, 1-p_{0}\right)}^{\square}$ satisfies the box-crossing property iff $\mathbb{P}_{\mathbf{p}}^{\triangle}$ does.
Use of the proposition: $\mathbb{P}_{\left(\frac{1}{2}, \frac{1}{2}\right)}^{\square}$ satisfies the box-crossing property,

Transporting box crossings

Proposition

For $\mathbf{p}=\left(p_{0}, p_{1}, p_{2}\right) \in(0,1)^{3}$ such that $\kappa_{\Delta}(\mathbf{p})=1$,
$\mathbb{P}_{\left(p_{0}, 1-p_{0}\right)}^{\square}$ satisfies the box-crossing property iff $\mathbb{P}_{\mathbf{p}}^{\triangle}$ does.
Use of the proposition: $\mathbb{P}_{\left(\frac{1}{2}, \frac{1}{2}\right)}^{\square}$ satisfies the box-crossing property, hence so does $\mathbb{P}_{\left(\frac{1}{2}, p_{0}, p_{0}^{\prime}\right)}^{\triangle}$, when $\kappa_{\triangle}\left(\frac{1}{2}, p_{0}, p_{0}^{\prime}\right)=1$,
hence so does $\mathbb{P}_{\left(p_{0}, 1-p_{0}\right)}^{\square}$, for $p_{0} \in\left(0, \frac{1}{2}\right]$
hence so does $\mathbb{P}_{\left(p_{0}, p_{1}, p_{2}\right)}^{\triangle}$, for $\kappa_{\triangle}\left(p_{0}, p_{1}, p_{2}\right)=1$

Transporting box crossings

Proposition

For $\mathbf{p}=\left(p_{0}, p_{1}, p_{2}\right) \in(0,1)^{3}$ such that $\kappa_{\Delta}(\mathbf{p})=1$,
$\mathbb{P}_{\left(p_{0}, 1-p_{0}\right)}^{\square}$ satisfies the box-crossing property iff $\mathbb{P}_{\mathbf{p}}^{\triangle}$ does.
Use of the proposition: $\mathbb{P}_{\left(\frac{1}{2}, \frac{1}{2}\right)}^{\square}$ satisfies the box-crossing property, hence so does $\mathbb{P}_{\left(\frac{1}{2}, p_{0}, p_{0}^{\prime}\right)}^{\triangle}$, when $\kappa_{\triangle}\left(\frac{1}{2}, p_{0}, p_{0}^{\prime}\right)=1$, hence so does $\mathbb{P}_{\left(p_{0}, 1-p_{0}\right)}^{\square}$, for $p_{0} \in\left(0, \frac{1}{2}\right]$,
hence so does $\mathbb{P}_{\left(p_{0}, p_{1}, p_{2}\right)}^{\triangle}$, for $\kappa_{\triangle}\left(p_{0}, p_{1}, p_{2}\right)=1$

Transporting box crossings

Proposition

For $\mathbf{p}=\left(p_{0}, p_{1}, p_{2}\right) \in(0,1)^{3}$ such that $\kappa_{\Delta}(\mathbf{p})=1$,
$\mathbb{P}_{\left(p_{0}, 1-p_{0}\right)}^{\square}$ satisfies the box-crossing property iff $\mathbb{P}_{\mathbf{p}}^{\triangle}$ does.
Use of the proposition: $\mathbb{P}_{\left(\frac{1}{2}, \frac{1}{2}\right)}^{\square}$ satisfies the box-crossing property, hence so does $\mathbb{P}_{\left(\frac{1}{2}, p_{0}, p_{0}^{\prime}\right)}^{\triangle}$, when $\kappa_{\triangle}\left(\frac{1}{2}, p_{0}, p_{0}^{\prime}\right)=1$,
hence so does $\mathbb{P}_{\left(p_{0}, 1-p_{0}\right)}^{\square}$, for $p_{0} \in\left(0, \frac{1}{2}\right]$,
hence so does $\mathbb{P}_{\left(p_{0}, p_{1}, p_{2}\right)}^{\triangle}$, for $\kappa_{\triangle}\left(p_{0}, p_{1}, p_{2}\right)=1$.

Transporting arm exponents

Proposition

For any $k \in\{1,2,4,6, \ldots\}$ and any self-dual triplet $\mathbf{p} \in[0,1)^{3}$ with $p_{0}>0$, there exist $c_{0}, c_{1}, n_{0}>0$ such that, for all $n \geq n_{0}$,

$$
c_{0} \mathbb{P}_{\mathbf{p}}^{\triangle}\left[A_{k}(n)\right] \leq \mathbb{P}_{\left(p_{0}, 1-p_{0}\right)}^{\square}\left[A_{k}(n)\right] \leq c_{1} \mathbb{P}_{\mathbf{p}}^{\triangle}\left[A_{k}(n)\right] .
$$

Using the same procedure we transport arm exponents between models.

Isoradial graphs

Each face is inscribed in a circle of radius 1.

$$
\frac{p_{e}}{1-p_{e}}=\frac{\sin \left(\frac{\pi-\theta(e)}{3}\right)}{\sin \left(\frac{\theta(e)}{3}\right)}
$$

Inhomogeneous models as isoradial graphs

Inhomogeneous models as isoradial graphs

Conjectures

Conjecture

The class \mathcal{M} may be extended to all isoradial graphs.

Conjectures

Conjecture

The class \mathcal{M} may be extended to all isoradial graphs.

Conjecture

The class \mathcal{M} may be extended to periodic isoradial graphs.

Thank you!

