Transition probabilities of Bethe ansatz solvable interacting particle systems

Eunghyun Lee
University of California, Davis

September 8, 2011

Outline

1 Introduction to coordinate Bethe ansatz for ASEP
2 Borodin-Ferrari's PushASEP and its generalized model
3 Transition probability of the PushASEP by Bethe ansatz

Bethe ansatz technique in interacting particle systems

- Bethe ansatz : technique to obtain eigenvalues and eigenvectors of the Hamiltonian of 1D quantum spin- $\frac{1}{2}$ chains
- A generator of ASEP is a similarity transformation of the quantum spin chain Hamiltonian ($X X Z$ model).
- ASEP with N particles on \mathbb{Z} - Bethe ansatz solvable

ASEP - a model in KPZ universality class

Early works regarding RMT - TASEP

- Current fluctuation of TASEP with step initial condition - GUE TW distribution ; Johansson, Nagao and Sasamoto, Schütz and Rakos
- Limiting processes $-\mathcal{A}_{2}$-process (step initial), \mathcal{A}_{1}-process (flat initial) ; Prähofer and Spohn; Borodin, Ferrari, Prähofer and Sasamoto
- TASEP with particle dependent hopping rates ; Schütz and Rakos (via Bethe ansatz), Baik, Ben Arous and Peche (Last passage percolation, RMT)

Bethe ansatz in TASEP

- Quite successful !

Bethe ansatz

- Quantity of interest : $P_{Y}(X ; t)$ where $X=\left(x_{1}, \cdots, x_{N}\right)$ with $x_{1}<\cdots<x_{N}$.
- Time evolution

$$
\begin{aligned}
\partial_{t} P_{Y}(X ; t)= & -\hat{H} P_{Y}(X ; t) \\
= & P_{Y}\left(x_{1}-1, x_{2}, \cdots, x_{N} ; t\right) \\
& +\left(1-\delta_{x_{2}-1, x_{1}}\right) P_{Y}\left(x_{1}, x_{2}-1, x_{3}, \cdots, x_{N} ; t\right) \\
& \vdots \\
& +\left(1-\delta_{x_{N}-1, x_{N-1}}\right) P_{Y}\left(x_{1}, x_{2}, \cdots, x_{N}-1 ; t\right) \\
& -\left(N-\delta_{x_{2}-1, x_{1}}-\cdots-\delta_{x_{N}-1, x_{N-1}}\right) P_{Y}\left(x_{1}, \cdots, x_{N} ; t\right)
\end{aligned}
$$

Idea

- Extend the physical region of definition of $P_{Y}(X ; t)$ $\left\{\left(x_{1}, \cdots, x_{N}\right): x_{i}<x_{i+1}\right\}$ to \mathbb{Z}^{N} by imposing a boundary condition

$$
P_{Y}\left(\cdots, x_{k}, x_{k}, \cdots ; t\right)=P_{Y}\left(\cdots, x_{k}, x_{k+1}, \cdots ; t\right)
$$

Problem to solve

$$
\begin{aligned}
\partial_{t} P_{Y}(X ; t)= & -\hat{H} P_{Y}(X ; t) \\
= & \sum_{i} P_{Y}\left(x_{1}, \cdots, x_{i-1}, x_{i}-1, x_{i+1}, \cdots, x_{N} ; t\right) \\
& -N P_{Y}\left(x_{1}, \cdots, x_{N} ; t\right)
\end{aligned}
$$

with

$$
P_{Y}\left(\cdots, x_{k}, x_{k}, \cdots ; t\right)=P_{Y}\left(\cdots, x_{k}, x_{k+1}, \cdots ; t\right)
$$

and

$$
P_{Y}(X ; 0)=\delta_{Y}(X) .
$$

Bethe ansatz solution

- A solution of DE is

$$
\prod_{j} \xi_{j}^{x_{j}} e^{\varepsilon\left(\xi_{j}\right) t}
$$

with

$$
\varepsilon(\xi)=\frac{1}{\xi}-1
$$

and $\xi(\neq 0) \in \mathbb{C}$.

- Important observation : For $\sigma \in \mathbb{S}_{N}$,

$$
\prod_{j} \xi_{\sigma(j)}^{x_{j}} e^{\varepsilon\left(\xi_{j}\right) t}
$$

is another solution and

$$
\sum_{j} \varepsilon\left(\xi_{j}\right)
$$

is invariant under permutation.

- Any integral of a linear combination is also a solution.

Essence of Bethe ansatz

- Take a linear combination of N ! solutions and determine coefficients so that the linear combination satisfies BC.
- Bethe ansatz solution

$$
\int \sum_{\sigma \in \mathbb{S}_{N}} A_{\sigma} \prod \xi_{\sigma}^{x_{j}} \prod \prod_{j} e^{\varepsilon\left(\xi_{j}\right) t} d^{N} \xi
$$

with $A_{\sigma}=\prod S_{\beta \alpha}$ where $S_{\beta \alpha}=\frac{1-\xi_{\beta}}{1-\xi_{\alpha}}$ and the product is over all pairs (β, α) in σ such that $\alpha<\beta$ but $\sigma^{-1}(\alpha)>\sigma^{-1}(\beta)$

Theorem

(Schütz) Let $F_{Y}(X ; t)$ be an $N \times N$ matrix with entries $F_{i j}=f_{i-j}\left(x_{i}-y_{j} ; t\right)$ where

$$
f_{p}(n ; t)=\frac{1}{2 \pi i} \oint_{|\xi|=1-0} e^{-\left(1-\xi^{-1}\right) t}(1-\xi)^{-p} \xi^{n-1} d \xi
$$

Then $P_{Y}(X ; t)=\operatorname{det} F_{Y}(X ; t)$.

Determinantal structure and special properties of $f_{p}(n ; t)$ are essential for further works of

- Current distribution for step/flat initial conditions
- One-point distribution -TW(GUE, GOE)
- Limiting processes - $\mathcal{A}_{2}, \mathcal{A}_{1}$

In ASEP,

$$
S_{\beta \alpha}=\frac{p+q \xi_{\beta} \xi_{\alpha}-\xi_{\beta}}{p+q \xi_{\beta} \xi_{\alpha}-\xi_{\alpha}}
$$

non-determinantal structure

ASEP - Tracy and Widom's formula by Bethe ansatz

Theorem

$$
P_{Y}(X ; t)=\sum_{\sigma \in \mathbb{S}_{N}} \int_{\mathcal{C}_{r}} \cdots \int_{\mathcal{C}_{r}} A_{\sigma} \prod_{i} \xi_{\sigma(i)}^{x_{i}-y_{\sigma(i)}-1} e^{\sum_{i} \varepsilon\left(\xi_{i}\right) t} d \xi_{1} \cdots d \xi_{N}
$$

where \mathcal{C}_{r} is a circle centered at zero with sufficiently small radius r so that all the poles of the integrand except at the origin lie outside \mathcal{C}_{r} and $A_{\sigma}=\prod S_{\beta \alpha}$ where $S_{\beta \alpha}=\frac{p+q \xi_{\beta} \xi_{\alpha}-\xi_{\beta}}{p+q \xi_{\beta} \xi_{\alpha}-\xi_{\alpha}}$ and the product is over all pairs (β, α) in σ such that $\alpha<\beta$ but $\sigma^{-1}(\alpha)>\sigma^{-1}(\beta)$ and $\varepsilon\left(\xi_{i}\right)=p \xi_{i}^{-1}+q \xi_{i}-1$.

Based on the transition probability,

- Probability distribution of a single particle's position - time-integrated current (TW)
- Fredholm determinant representation of the distribution for step initial condition (TW)
- Asymptotic analysis - KPZ universality class (TW)

$$
\frac{x_{m}(t)-c_{1} t}{c_{2} t^{1 / 3}} \rightarrow F_{2}
$$

in distribution as $m, t \rightarrow \infty$

- One-point probability distribution of Hopf-Cole solution to KPZ equation with narrow edge initial data (Amir-Corwin-Quastel, and Sasamoto-Spohn)

Borodin-Ferrari's model (2008) - PushASEP

Dynamics

- Each particle has two Poisson clocks; one for left jump with rate L and the other for right jump with rate R.
- When the i th right clock rings, the i th particle jumps according to TASEP dynamics.
- When the i th left clock rings, the i th particle jumps to the nearest vacant site on its left - Pushing dynamics
- Interpolates between TASEP and Drop-push model which are in KPZ universality class.

Borodin-Ferrari's model - PushASEP

- Totally asymmetric dynamics.
- S-matrices are separable; determinantal transition probability by Bethe ansatz.
- For step and flat initial conditions; GUE TW and GOE TW, further, $\mathcal{A}_{2}, \mathcal{A}_{1}$ processes, respectively.

Question: Partially asymmetric dynamics ? Clock rates depending on the environment?

Two-sided PushASEP

- $p+q=1$
- Assume that pushing rates depend on the number of particles to be pushed.

Boundary Condition for $N=2$

$$
\begin{aligned}
& p r_{1} P_{Y}\left(x_{1}, x_{2}-1 ; t\right)-p r_{2} P_{Y}\left(x_{1}-1, x_{2}-1 ; t\right)-p\left(r_{1}-r_{2}\right) P_{Y}\left(x_{1}, x_{2} ; t\right) \\
= & -q l_{1} P_{Y}\left(x_{1}+1, x_{2} ; t\right)+q l_{2} P_{Y}\left(x_{1}+1, x_{2}+1 ; t\right)+q\left(l_{1}-l_{2}\right) P_{Y}\left(x_{1}, x_{2} ; t\right)
\end{aligned}
$$

In the original B.C.

- Set both sides to be zero, $\lambda=l_{2} / l_{1}, \mu=r_{2} / r_{1}$
- Set $r_{1}=l_{1}=1, \lambda+\mu=1$

Then after letting $x_{1}=x$, we have much simpler BC

$$
P_{Y}(x, x ; t)=\mu P_{Y}(x-1, x ; t)+\lambda P_{Y}(x, x+1 ; t)
$$

Alimohammadi et al.(1999) suggested this BC directly as a combined version of TASEP and Drop-push model.

Constraints for Bethe ansatz solvability

Alimohammadi et al. (1999)

$$
\begin{array}{ll}
r_{n}=\frac{1}{1+\lambda / \mu+(\lambda / \mu)^{2}+\cdots+(\lambda / \mu)^{n-1}}, & (\lambda+\mu=1) \\
l_{n}=\frac{1}{1+\mu / \lambda+(\mu / \lambda)^{2}+\cdots+(\mu / \lambda)^{n-1}}, & \left(r_{1}=l_{1}=1\right)
\end{array}
$$

This model generalizes Borodin-Ferrari model ($\mu \rightarrow 0$). Question: Is this model in KPZ universality class ?

S-matrices for two-particle interaction

$$
S_{\alpha \beta}^{\dagger}:=-\frac{\xi_{\alpha}}{\xi_{\beta}} \cdot \frac{\mu+\lambda \xi_{\alpha} \xi_{\beta}-\xi_{\beta}}{\mu+\lambda \xi_{\alpha} \xi_{\beta}-\xi_{\alpha}}:=\frac{\xi_{\alpha}}{\xi_{\beta}} \cdot S_{\beta \alpha}^{(\mu)}
$$

Remarks

- Non-determinantal
- $q=0$ but $\mu, \lambda \neq 0$; totally asymmetric (to the right only) but not determinantal.

Main result

Theorem

$(L, 2011)$ The transition probability of the PushASEP is given in the form of

$$
P_{Y}(X ; t)=\sum_{\sigma \in \mathbb{S}_{N}} \int_{\mathcal{C}_{r}} \cdots \int_{\mathcal{C}_{r}} B_{\sigma} \prod_{i} \xi_{\sigma(i)}^{-x_{i}+y_{N-\sigma(i)+1}-1} e^{\sum_{i} \varepsilon\left(\xi_{i}\right) t} d \xi_{1} \cdots d \xi_{N}
$$

where \mathcal{C}_{r} is a circle centered at zero with sufficiently small radius r so that all the poles of the integrand except at the origin lie outside \mathcal{C}_{r} and

$$
B_{\sigma}=\prod_{(\alpha, \beta)} S_{\alpha \beta}^{\dagger} .
$$

The product is over all pairs (α, β) in a permutation $\sigma \in \mathbb{S}_{N}$ such that $\beta>\alpha$ with $\sigma^{-1}(\beta)>\sigma^{-1}(\alpha)$.

Further works

- Distribution of a single particle's position with special initial conditions; for example, step initial - in progress good signal : the same combinatorial identity
- Fredholm determinant representation
- Asymptotic analysis - TW distribution ? KPZ universality class ?

