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Metastates in random spin models

Lattice spin models with a quenched random Hamiltonian, examples
Edwards-Anderson spinglass

H = −
∑
〈i,j〉

Ji,jσiσj

Spins: σi ∈ {1,−1}
Random couplings: Ji,j ∼ N (0,1), i.i.d.
Random field Ising model:

H = −
∑
〈i,j〉

σiσj − ε
∑
i

ηiσi

Random fields: ηi = ±1 with equal probability, i.i.d.
The metastate is a concept to capture the asymptotic volume-dependence of
the Gibbs states

”µ(σ) =
e−βH(σ)

Z
”
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Disordered systems

Quenched (fixed) randomness η = (ηi)i∈Zd.
Probability distribution P(dη)

Infinite volume spin configuration σ = (σi)i∈Zd

Infinite volume Hamiltonian Hη(σ) (given in terms of an interaction Φη)

Fixing a boundary condition σ̄, define the finite-volume Gibbs states

µσ̄Λ[η](dσ)

in the finite volume Λ ⊂ Zd

restricting the terms of the Hamiltonian to Λ = Λn = [−n, n]d
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Disordered systems

Common for translation-invariant systems:
to have convergence of the finite-volume states

µσ̄Λn[η = 0](dσ)→ µσ̄(dσ)

as n gets large

Common for disordered systems:
not to have convergence of the finite-volume states:

µσ̄Λn[η](dσ)

might have many limit points when several Gibbs measures are available

Praha 1 September 2011 4(999)



Lattice and Mean-field examples

Newman book, Bovier book
Külske: mean-field random field Ising

Bovier, Gayrard: Hopfield with many patterns

van Enter, Bovier, Niederhauser: Hopfield model with Gaussian fields
(continuous symmetry)

van Enter, Netocny, Schaap: Ising ferromagnet on lattice with random boundary
conditions

Arguin, Damron, Newman, Stein (2009): ”Metastate-version” of uniqueness of
groundstate for lattice-spinglass in 2 dimensions

Iacobelli, Külske 2010: Metastates in mean-field models with i.i.d. disorder

Cotar, Külske 2011, in preparation
measurably µ[ξ] =

∫
νw[ξ](dν) with w[ξ](exG(ξ)) = 1
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Disordered mean-field models: Ingredients

Spin variables: σ(i) taking values in a finite set E
Disorder variable: η(i) taking values in a finite set E′

Sites: i ∈ {1,2, . . . , n}

P(E) = {set of probability measures on E}

= {(p(a))a∈E : p(a) ≥ 0,
∑
a∈E

p(a) = 1}

Ln = empirical distribution =
1

n

n∑
i=1

δσ(i) ∈ P(E)

F : P(E)→ R,
twice continuously differentiable.

Local a priori measures α[b] ∈ P(E)

for any possible type of the disorder b ∈ E′.
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Disordered mean-field models: Ingredients

Mean-field interaction F
A priori measures α = (α[b])b∈E′

Disorder distribution π ∈ P(E′)

Definition 1. The disorder-dependent finite-volume Gibbs measures are

µF,n[η(1), . . . , η(n)](σ(1) = ω(1), . . . , σ(n) = ω(n))

=
1

ZF,n[η(1), . . . , η(n)]
exp (−nF (Lωn))

n∏
i=1

α[ηi](ωi)

Frozen disorder: η(i) ∼ π i.i.d. over sites i
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Disordered mean-field models: The Aizenman-Wehr metastate

Definition 2. Assume that, for every bounded continuousG : P(E∞)×(E′)∞ →
R the limit

lim
n↑∞

∫
P(dη)G(µn[η], η) =

∫
J(dµ, dη)G(µ, η)

exists. Then the conditional distribution κ[η](dµ) := J(dµ|η) is called the AW-
metastate on the level of the states.
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Notations for empirical distributions

Volume of b-like sites, given η:

Λn(b) = {i ∈ {1,2, . . . , n}; η(i) = b}
Frequency of the b-like sites:

π̂n(b) =
|Λn(b)|
n

empirical spin-distribution on the b-like sites:

L̂n(b) =
1

|Λn(b)|
∑

i∈Λn(b)

δσ(i)

vector of empirical distributions:

L̂n = (L̂n(b))b∈E′

total empirical spin-distribution

Ln =
∑
b∈E′

π̂n(b)L̂n(b)
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Non-Degeneracy Assumptions 1 and 2

Definition 3. Consider the free energy minimization problem

ν̂ 7→ Φ[π](ν̂)

on P(E)E
′, with the free energy functional

Φ : P(E′)× P(E)|E
′| → R

Φ[π̂](ν̂) = F

∑
b∈E′

π̂(b)ν̂(b)

+
∑
b

π̂(b)S(ν̂(b)|α[b])

where S(p1|p2) =
∑
a∈E p1(a) log p1(a)

p2(a)
is the relative entropy.

Non-degeneracy condition 1:
ν̂ 7→ Φ[π](ν̂) has a finite set of minimizers M∗ = M∗(F, α, π) with positive
curvature.
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Non-Degeneracy Assumptions 1 and 2

Let ν̂j be a fixed element in M∗. Let us consider the linearization of the free
energy functional at the fixed minimizers as a function of π̃ around π, which
reads

Φ[π̃](ν̂j)−Φ[π](ν̂j) = −Bj[π̃ − π] + o(‖π̃ − π‖)

This defines an affine function on the tangent space of field type measures
TP(E′) (i.e. vectors which sum up to zero, isomorphic to R|E′|−1), for any j.
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Non-Degeneracy Assumptions 1 and 2

Non-degeneracy condition 2:
No different minimizers j, j′ have the same Bj = Bj′

Definition 4. Call Bj the stability vector of ν̂j and call

Rj := {x ∈ TP(E′), 〈x,Bj〉 > max
k 6=j
〈x,Bk〉}

stability region of ν̂j.
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Main Theorem: Visibility vs. Invisibility

THEOREM 5. (Iacobelli, Külske, JSP 2010) Assume that the model satisfies the
non-degeneracy assumptions 1 and 2. Define the weights

wj := Pπ(G ∈ Rj)

where G taking values in TP(E′) is a centered Gaussian variable with covari-
ance

Cπ(b, b′) = π(b)1b=b′ − π(b)π(b′)

Then the Aizenman-Wehr metastate on the level of the states equals

κ[η](dµ) =
k∑

j=1

wjδµj[η](dµ)

where µj[η] :=
∏∞
i=1 γ[η(i)]( · |πν̂j) with

γ[b](a|ν) =
e−dFν(a)α[b](a)∑
ā∈E e

−dFν(ā)α[b](ā)
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Potts random field examples

Let us take the Potts model with quadratic interaction

F (ν) = −
β

2
(ν(1)2 + · · ·+ ν(q)2)

Let us take E ≡ E′ and π to be the equidistribution and switch to the specific
case α[b](a) = eB1b=a

eB+q−1
(random field with homogenous intensity). The kernels

become

γ[b](a|ν) =
eβν(a)+B1a=b∑
ā∈E e

βν(ā)+B1ā=b

We will be looking at measures in νj,u ∈ P(E) of the form νj,u(j) = 1+u(q−1)
q

,
νj,u(i) = 1−u

q
for i 6= j. The stability vector for ν1,u is given by

B̂ν1,u =


q−1
q

log eβu+B+q−1
eβu+eB+q−2

−1
q

log eβu+B+q−1
eβu+eB+q−2

. . .

−1
q

log eβu+B+q−1
eβu+eB+q−2


the other ones are related by symmetry.
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Potts random field examples

mean-field equation for u:

u =
eβu

eβu + eB + (q − 2)
−

1

eβu+B + (q − 1)

u = 0 is always a solution
for B = 0: mean-field equation for Potts without disorder

the non-trivial solution u is to be chosen iff Φ[π](u) < Φ[π](u = 0)
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Potts random field examples

B = 0: first order transition at the critical inverse temperature β = 4 log 2

B takes small enough positive values: line in the space of temperature and cou-
pling strength B of an equal-depth minimum at u = 0 and a positive value of
u = u∗(β, q)

Along this line the set of Gibbs measures is strictly bigger then the set of states
which are seen under the metastate.

The Plot shows the graph of u 7→ Φ[π](Γ̂(νj,u)) for B = 0.3, q = 3, β =
4 log 2 + 0.03203 at which there is the first order transition.
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Potts random field examples

0.0 0.2 0.4 0.6 0.8 1.0
u0.000

0.002

0.004

0.006

0.008

0.010
F

κ[η](dµ) =
1

3

3∑
j=1

δµj[η]

with
µj[η] =

∞∏
i=1

γ[η(i)]( · |νj,u=u∗(β,q))

since B̂ν1,u=0 = 0 lies in the convex hull of the three others

Praha 1 September 2011 17(999)



Sketch of Proof

Concentration of the total empirical spin vector follows from finite-volume Sanov:

µF,n[η(1), . . . , η(n)](d(Ln, πM
∗) ≥ ε)

≤
∏
b∈E′

(nπ̂n(b) + 1)2|E| exp

−n inf
ν̂∈M̂n:

d(π̂nν̂,πM∗)≥ε

Φ[π̂n](ν̂) + n inf
ν̂′∈M̂n

Φ[π̂n](ν̂ ′)


π̂n : empirical field-type distribution

This explains the importance of the spin-rate-function Φ[η](ν̂)

for not too atypical π̂n.
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Sketch of Proof

How to get weights wj?

Fluctuations of type-empirical distribution on CLT-scale:

X[1,n][η] =
1
√
n

n∑
i=1

(δηi − π)→ G

Define n-dependent good-sets Hδn
n of the realization of the randomness

Hδn
i,n :=

{
η ∈ (E′)n : X[1,n][η] ∈ Ri,δn

}
Hδn
n :=

k⋃
i=1

Hδn
i,n

where Ri,δn := {x ∈ TP(E′) : 〈x,Bi〉 −maxk 6=i〈x,Bk〉 > δn}, and
(a) δn ↓ 0, but
(b)
√
n δn ↑ ∞

(a) Get full proba of Hδn
n in the limit of n ↑ ∞.

(b) Have concentration of L̂n around a given minimizer ν̂j on Hδn
j,n.
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Sketch of Proof

Suppose F is a local function, depending onm coordinates of spins and random
fields.
Then:

lim
n↑∞

∫
Hδnj,n

Pπ(dη)F (µn[η], η) = wj

∫
(E′)m

π⊗m(dη)F
( m∏
i=1

γ[η(i)]( · |πν̂j), η
)

Productification with only local influence of randomness conditional on stability
region Rj.
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Markov chain driven Models

Disorder variable: η(i) taking values in a finite set E′

Markov chain transition matrix M = (M(i, j)i,j∈E′), ergodic
Invariant distribution π ∈ P(E′)

Fact. For an ergodic finite state Markov chain, the standardized occupation
time measure of the form

√
n(π̂n − π) converges in distribution, as n tends to

infinity, to a centered Gaussian distribution G with a covariance matrix ΣM on
the |E′| − 1 dimensional vector space TP(E′).

Warning: Ergodicity of the Markov chain does not imply that ΣM has the full
rank |E′| − 1
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Markov chain driven Models

Consider the case q = |E′| = 3 of a general doubly stochastic matrix in the
form

M =

 a b 1− a− b
c d 1− c− d

1− a− c 1− b− d −1 + a+ b+ c+ d

 , a, b, c, d ∈ (0,1).

ΣM =


2
9 + 2(1+b(2−6c)+2c−2d+a(−5+6d))

27(−1+a+bc+d−ad)
−1

9 −
b(5−6c)+5c−2(1+d)+a(−2+6d)

27(−1+a+bc+d−ad)
−1

9 −
4−8a−b−c−6bc−2d+6ad

27(−1+a+bc+d−ad)

−1
9 −

b(5−6c)+5c−2(1+d)+a(−2+6d)
27(−1+a+b+c+d−ad)

2
9 + 2(1+b(2−6c)+2c−5d+a(−2+6d))

27(−1+a+b+c+d−ad)
−1

9 −
4−2a−b−c−6bc−8d+6ad

27(−1+a+bc+d−ad)

−1
9 −

4−8a−b−c−6bc−2d+6ad
27(−1+a+bc+d−ad)

−1
9 −

4−2a−b−c−6bc−8d+6ad
27(−1+a+bc+d−ad)

2
9 −

2(−4+b+c+6bc+a(5−6d)+5d)
27(−1+a+bc+d−ad)
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Markov chain driven Models

THEOREM 6. With Formentin, Reichenbachs (2011).
Assume full rank occupation time covariance ΣM .

Suppose the non-degeneracy conditions 1) and 2) on the spin model. Then the
metastate on the level of the spin measures exists and

κ[η](dµ) =
k∑

j=1

wjδµj[η](dµ) for Pπ-a.e. η.

The weights are wj = PΣM
(G ∈ Rj) whereG is a centered gaussian on TP(E′)

with covariance ΣM .
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Potts model driven by degenerate Markov chain

Degenerate (but ergodic) Markov chain which also has the equidistribution as
its invariant measure, nonreversible

M =

 0 1 0
p 0 1− p

1− p 0 p



R₁ R₂

R₃

Figure 1: The Gaussian limiting distribution of
√
n(π̂n−π) concentrates on the dashed line that for upper half coincides with the boundary

between the stability regions R1 and R2.
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Potts model driven by degenerate Markov chain

The metastate takes the following unusual form due to almost degeneracies:

THEOREM 7. The Metastate in the 3-state random field Potts model defined
above, driven by the degenerate MC above has the form

κ[η] =
1

2
δµ3[η]

+
1

3
δ1

2µ
1[η]+1

2µ
2[η] +

1

9
δp(β,B)µ1[η]+(1−p(β,B))µ2[η] +

1

18
δ(1−p(β,B))µ1[η]+p(β,B)µ2[η]

Here the function p(β,B) is computable in terms of the mean-field parameter u
and is strictly bigger than 1/2 in the phase transition regime.

NO SYMMETRY BETWEEN STATE 1 AND STATE 2!

Since Nπ̂N(1)−Nπ̂N(2) ∈ {0,1}
state 1 gets slightly bigger weight
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