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The particles live on a lattice in the quarter plane. There
are

[
j+1

2

]
particles on the jth level. The particles must

satisfy an interlacing property.

It looks 3D, so we can define a height function.
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Define a Markov Chain as follows:

It starts at t = 0 with the densely packed configuration.
Imagine that particles have weights that decrease upwards.
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Each particle tries to jump to the left and to the right
independently with rate 1/2, with the wall acting as a
reflecting barrier. It is blocked by heavier particles and it
can push lighter particles.
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Motivations:
In terms of the stepped surface in 3d, this can be viewed as
adding and removing sticks

This model falls into the Anisotropic Kardar-Parisi-Zhang
universality class from mathematical physics.
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Connections to representation theory of Lie groups. In
particular, this system corresponds to representations of the
orthogonal groups. Previous work has been done for the
unitary groups (Borodin-K), as well as for the symplectic
groups (Windridge). The discrete-time case also involves
representation theory (Defosseux).

The sine kernel, Airy kernel and Pearcey kernel appear after
appropriate rescaling.

An animation can be found at
http://www.math.harvard.edu/~jkuan/Animation.html

http://www.math.harvard.edu/~jkuan/Animation.html
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Given a domain D ⊂ Rd, let Hs(D) be the space of smooth,
real-valued functions that are supported on a compact
subset of D. Give Hs(D) the Dirichlet inner product, and
let H(D) be its Hilbert space completion.

If {ei} is an orthonormal basis for H(D) and {αi} are i.i.d.
N (0, 1), then h = α1e1 + α2e2 + . . . diverges a.s. as an
element of H(D). However, for f ∈ H(D), 〈h, f〉∇ is a
well-defined Gaussian with mean zero and variance 〈f, f〉∇.
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Using integration by parts, it is equivalent to define it as
follows.

Definition
A Gaussian free field on D is a family of mean zero
Gaussian random variables, indexed by f ∈ (−∆)H(D),
denoted by (h, f). Their covariance is

E[(h, f)(h, g)] =
∫
D×D

G(x, y)f(x)g(y)dxdy,

where G is the Green’s function for the Laplacian on D with
Dirichlet boundary conditions.
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Example. For t ∈ (0,∞) = D, let Bt denote (h, δt). The
Green’s function is G(x, y) = x ∧ y. Then

1 B0 = 0 a.s.

2 For t > s, Bt −Bs is normal with mean zero and
variance t− s.

3 Bt −Bs and Bs are independent.
So the Gaussian free field on (0,∞) is Brownian motion.
The Gaussian free field is considered to be a universal object
the same way that Brownian motion is.
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In higher dimensions, G(x, x) is undefined, so the GFF at a
point is undefined. However, for distinct x1, . . . , xk we can
formally write

E[〈h, δx1〉〈h, δx2〉] = G(x1, x2)

In general, if X1, . . . , Xk are mean zero random variables
such that all of their linear combinations are Gaussian, then

E[X1 . . . Xk] =


∑
σ

k/2∏
j=1

Cov(Xσ(j), Xσ(j+1)), k even

0, k odd,

where the sum is over fixed-point-free involutions in Sk.
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Therefore, we may write

E[〈h, δx1〉 · · · 〈h, δxk
〉] =


∑
σ

k/2∏
j=1

G(xσ(j), xσ(j+1)), k even

0, k odd,

where the sum is over fixed-point-free involutions in Sk.
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More precisely, D ⊂ R+ × R+ × R+ is the set of all (ν, η, τ)
such that

lim
L→∞

P(there is a particle at ([νL], [ηL]) at time τL) ∈ (0, 1)
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There is a map Ω from D → H− D.

Let h(x, n, t) denote the height function at (x, n) at time t,
and define HL : D → R to be the fluctuations of the height
function, i.e.
HL(η, ν, τ) = h([ηL], [νL], τL)− E[h([ηL], [νL], τL)].
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Theorem
For distinct κj = (ηj , νj , τ) ∈ D, let Ωj = Ω(κj). Then

E[HL(κ1) . . . HL(κk)] =


∑
σ

k/2∏
j=1

G(Ωσ(j),Ωσ(j+1)), k even

0, k odd,

where

G(z, w) =
1

2π
log

z + z−1 − w̄ − w̄−1

z + z−1 − w − w−1

is the Green’s function for the Laplacian on H− D with
Dirichlet boundary conditions.
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The proof uses the fact that the particle system is a
determinantal point process, and relies on the asymptotic
expansion of the correlation kernel. In other words, for
(x1, n1) . . . (xk, nk),

P(there are particles at (xj , nj) at time t) =

det[K(xi, ni, xj , nj , t)]k1,

where K is called the correlation kernel. In a discrete
setting, the probability measure is completely determined by
K.
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A more general statement is true.
Suppose

K(x1, n1, x2, n2, t) ≈(
1

2πi

)2 ∫
Γ1

∫
Γ2

exp(NS(η1, ν1, τ, u))
exp(NS(η2, ν2, τ, w))

f(u,w)dwdu,

where Γ1,Γ2 are steepest descent paths.
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Theorem
With technical assuumptions on S and f ,

E[HL(κ1) . . . HL(κk)]→


∑
σ

k/2∏
j=1

G(Ωσ(j),Ωσ(j+1)), k even

0, k odd,

where

G(z, w) =
1

2π

∫ z

z̄

∫ w

w̄

f(u, v)f(v, u)
S′ν(u)S′ν(v)

dudv,

with S′ν denoting (∂2/∂ν∂z)S.
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In this specific case,

S(ν, η, τ ;u) = τ
u+ u−1

2
+ η log

(
u+ u−1

2
− 1
)
− ν log u,

f(u, v) =
1
v

1− u−2

v + v−1 − u− u−1
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Conjectures:
The single-point fluctuations of the height function
should be logarithmic. (First predicted by D.E. Wolf
for AKPZ, using renormalization group). In other
words, there should be the convergence of moments:

const
HL(κ)√

logL
→ N (0, 1).

We can define a pairing 〈HL, f〉 so that the random
vector (〈HL, fj〉)kj=1 converges in distribution to
Gaussian vector with mean zero and covariance matrix
‖(∇fj ,∇fi)‖k1.
Extend to τ1 6= τ2.


	Particle System
	Gaussian Free Field
	Results

