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Introduction

There are many complex real-world networks, e.g.,
I Social networks (friendships, business relationships, sexual

contacts, . . . );
I Information networks (World Wide Web, citations, . . . );
I Technological networks (Internet, airline routes, . . . );
I Biological networks (protein interactions, neural networks,. . . ).

Sexual network Colorado
Springs, USA
(Potterat, et al., ’02)
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Small part of the Internet
(http://www.fractalus.com/

steve/stuff/ipmap/)
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contacts, . . . );
I Information networks (World Wide Web, citations, . . . );
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Yeast protein interaction
network
(Jeong, et al., ’01)
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Properties of complex networks

Power-law behavior
Number of vertices with degree k is proportional to k−τ .

Small worlds
Distances in the network are small
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Ising model

Ising model: paradigm model in statistical physics for cooperative
behavior.

When studied on complex networks it can model for example opinion
spreading in society.

We will model complex networks with power-law random graphs.

What are effects of structure of complex networks on behavior of Ising
model?
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Definition of the Ising model

On a graph Gn , the ferromagnetic Ising model is given by the following
Boltzmann distributions over σ ∈ {−1,+1}n ,

µ(σ ) =
1

Zn(β,B )
exp

β ∑
(i ,j )∈En

σiσj + B
∑
i∈[n]

σi

 ,
where

I β ≥ 0 is the inverse temperature;
I B is the external magnetic field;
I Zn(β,B ) is a normalization factor (the partition function), i.e.,

Zn(β,B ) =
∑

σ∈{−1,1}n

exp

β ∑
(i ,j )∈En

σiσj + B
∑
i∈[n]

σi

 .
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Power-law random graphs

In the configuration model a graph Gn = (Vn = [n], En) is constructed as
follows.

I Let D have a certain distribution (the degree distribution);
I Assign Di half-edges to each vertex i ∈ [n], where Di are i.i.d. like D

(Add one half-edge to last vertex when the total number of
half-edges is odd);

I Attach first half-edge to another half-edge uniformly at random;
I Continue until all half-edges are connected.

Special attention to power-law degree sequences, i.e.,

P[D ≥ k ] ≤ ck−(τ−1), τ > 2.
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Local structure configuration model for τ > 2

Start from random vertex i which has degree Di .

Look at neighbors of vertex i , probability such a neighbor has degree
k + 1 is approximately,

(k + 1)
∑

j∈[n] 1{Dj=k+1}

/n

∑
j∈[n] Dj

/n
−→

(k + 1)P[D = k + 1]
E[D ]

, for τ > 2.

Let K have distribution (the forward degree distribution),

P[K = k ] =
(k + 1)P[D = k + 1]

E[D ]
.

Locally tree-like structure: a branching process with offspring D in first
generation and K in further generations. Also, uniformly sparse.
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Pressure in thermodynamic limit (E[K ] <∞)

Theorem (Dembo, Montanari, ’10)
For a locally tree-like and uniformly sparse graph sequence {Gn}n≥1 with
E[K ] <∞, the pressure per particle,

ψn(β,B ) =
1
n

log Zn(β,B ),

converges, for n →∞, to

ϕh (β,B ) ≡
E[D ]

2
log cosh(β)−

E[D ]
2

E[ log(1+ tanh(β) tanh(h1) tanh(h2))]

+ E

[
log

(
eB

D∏
i=1

{
1+ tanh(β) tanh(hi )

}
+e−B

D∏
i=1

{
1− tanh(β) tanh(hi )

})]
.
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Pressure in thermodynamic limit (E[D ] <∞)

Theorem (DGvdH, ’10)
Let τ > 2. Then, in the configuration model, the pressure per particle,

ψn(β,B ) =
1
n

log Zn(β,B ),

converges almost surely, for n →∞, to

ϕh (β,B ) ≡
E[D ]

2
log cosh(β)−

E[D ]
2

E[ log(1+ tanh(β) tanh(h1) tanh(h2))]

+ E

[
log

(
eB

D∏
i=1

{
1+ tanh(β) tanh(hi )

}
+e−B

D∏
i=1

{
1− tanh(β) tanh(hi )

})]
.
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Tree recursion

Proposition
Let Kt be i.i.d. like K and B > 0. Then, the recursion

h (t+1) d
= B +

Kt∑
i=1

atanh(tanh(β) tanh(h (t)
i )),

has a unique fixed point h ∗β .

Interpretation: the effective field of a vertex in a tree expressed in that of
its neighbors.

Uniqueness shown by showing that effect of boundary conditions on
generation t vanishes for t →∞.
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Correlation inequalities

Lemma (Griffiths, ’67, Kelly, Sherman, ’68)
For a ferromagnet with positive external field, the magnetization at a
vertex will not decrease, when

I The number of edges increases;
I The external magnetic field increases;
I The temperature decreases.

Lemma (Griffiths, Hurst, Sherman, ’70)
For a ferromagnet with positive external field, the magnetization is
concave in the external fields, i.e.,

∂2

∂Bk∂B`
mj (B ) ≤ 0.
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Outline of the proof

lim
n→∞

ψn(β,B )

= lim
ε↓0

lim
n→∞

[
ψn(0,B )+

∫ ε

0

∂

∂β ′
ψn(β

′,B )dβ ′ +
∫ β

ε

∂

∂β ′
ψn(β

′,B )dβ ′
]

= ϕh (0,B )+ 0+ lim
ε↓0

∫ β

ε

∂

∂β ′
ϕ(β ′,B )dβ ′

= ϕh (β,B ).
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Internal energy

∂

∂β
ψn(β,B ) =

1
n

∑
(i ,j )∈En

〈
σiσj

〉
µ
=
|En |

n

∑
(i ,j )∈En

〈
σiσj

〉
µ

|En |

−→
E[D ]

2
E
[〈
σiσj

〉
µ

]
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Internal energy

∂

∂β
ψn(β,B ) =

1
n

∑
(i ,j )∈En

〈
σiσj

〉
µ
=
|En |

n

∑
(i ,j )∈En

〈
σiσj

〉
µ

|En |

−→
E[D ]

2
E
[〈
σiσj

〉
µ

]

E[D ]
2

E
[〈
σiσj

〉
µ

]
−→

E[D ]
2

E
[〈
σiσj

〉
e

]
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Derivative of ϕ

∂

∂β
ϕh∗β (β,B ) =

E[D ]
2

E
[〈
σiσj

〉
e

]
.

ϕh (β,B ) =
E[D ]

2
log cosh(β)−

E[D ]
2

E[ log(1+ tanh(β) tanh(h1) tanh(h2))]

+ E

[
log

(
eB

D∏
i=1

{
1+ tanh(β) tanh(hi )

}
+ e−B

D∏
i=1

{
1− tanh(β) tanh(hi )

})]
.

I Show that we can ignore dependence of h ∗β on β;
(Interpolation techniques. Split analysis into two parts, one for
small degrees and one for large degrees)

I Compute the derivative with assuming β fixed in h ∗β .
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Thermodynamic quantities

Corollary
Let τ > 2. Then, in the configuration model, a.s.:
The magnetization is given by

m(β,B ) ≡ lim
n→∞

1
n

n∑
i=1

〈
σi
〉
µ
=

∂

∂B
ϕh∗(β,B ) = E

[〈
σ0
〉
νD+1

]
.

The susceptibility is given by

χ(β,B ) ≡ lim
n→∞

∂Mn(β,B )
∂B

=
∂2

∂B 2
ϕh∗(β,B ).
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Critical temperature

Define the magnetization on Gn as

mn(β,B ) =
1
n

n∑
i=1

〈
σi
〉
µ
.

Then, the spontaneous magnetization,

m(β,0+) = lim
B↓0

m(β,B )
{
= 0, β < βc;

> 0, β > βc .

The critical inverse temperature βc is given by

E[K ](tanhβc) = 1.

Note that, for τ ∈ (2,3), we have E[K ] = ∞, so that βc = 0.
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Critical exponents

Predictions by physicists (e.g. Leone, Vázquez, Vespignani, Zecchina,
’02).

Critical behavior of magnetization m, and susceptibility χ.

m(β,0+), β ↓ βc m(βc ,B ),B ↓ 0 χ(β,0+), β ↓ βc

τ > 5 ∼ (β − βc)
1/2

∼ B 1/3
∼ (β − βc)

−1

τ ∈ (3,5) ∼ (β − βc)
1/(τ−3)

∼ B 1/(τ−2)

τ ∈ (2,3) ∼ (β − βc)
1/(3−τ)

∼ B 1
∼ (β − βc)

1
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Distances in power-law random graphs

Let Hn be the graph distance between two uniformly chosen connected
vertices in the configuration model. Then:

I For τ > 3 and E[K ] > 1 (vdH, Hooghiemstra, Van Mieghem, ’05),

Hn ∼ log n,

I For τ ∈ (2,3) (vdH, Hooghiemstra, Znamenski, ’07),

Hn ∼ log log n;
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