Ising models on power-law random graphs

Sander Dommers

Joint work with:
Cristian Giardinà Remco van der Hofstad

Introduction

There are many complex real-world networks, e.g.,

- Social networks (friendships, business relationships, sexual contacts, ...);
- Information networks (World Wide Web, citations, ...);
- Technological networks (Internet, airline routes, ...);
- Biological networks (protein interactions, neural networks,...).

Sexual network Colorado Springs, USA (Potterat, et al., '02)

Introduction

There are many complex real-world networks, e.g.,

- Social networks (friendships, business relationships, sexual contacts, ...);
- Information networks (World Wide Web, citations, ...);
- Technological networks (Internet, airline routes, ...);
- Biological networks (protein interactions, neural networks,...).

Small part of the Internet (http://www.fractalus.com/ steve/stuff/ipmap/)

Introduction

There are many complex real-world networks, e.g.,

- Social networks (friendships, business relationships, sexual contacts, ...);
- Information networks (World Wide Web, citations, ...);
- Technological networks (Internet, airline routes, ...);
- Biological networks (protein interactions, neural networks,...).

> Yeast protein interaction network (Jeong, et al., '01)

Properties of complex networks

Power-law behavior

Number of vertices with degree k is proportional to $k^{-\tau}$.

Barabâsi, Linked, '02

Small worlds

Distances in the network are small

Ising model

Ising model: paradigm model in statistical physics for cooperative behavior.

When studied on complex networks it can model for example opinion spreading in society.

We will model complex networks with power-law random graphs.
What are effects of structure of complex networks on behavior of Ising model?

Definition of the Ising model

On a graph G_{n}, the ferromagnetic Ising model is given by the following Boltzmann distributions over $\sigma \in\{-1,+1\}^{n}$,

$$
\mu(\sigma)=\frac{1}{Z_{n}(\beta, B)} \exp \left\{\beta \sum_{(i, j) \in E_{n}} \sigma_{i} \sigma_{j}+B \sum_{i \in[n]} \sigma_{i}\right\},
$$

where

- $\beta \geq 0$ is the inverse temperature;
- B is the external magnetic field;
- $Z_{n}(\beta, B)$ is a normalization factor (the partition function), i.e.,

$$
Z_{n}(\beta, B)=\sum_{\sigma \in\{-1,1\}^{n}} \exp \left\{\beta \sum_{(i, j) \in E_{n}} \sigma_{i} \sigma_{j}+B \sum_{i \in[n]} \sigma_{i}\right\} .
$$

Power-law random graphs

In the configuration model a graph $G_{n}=\left(V_{n}=[n], E_{n}\right)$ is constructed as follows.

- Let D have a certain distribution (the degree distribution);
- Assign D_{i} half-edges to each vertex $i \in[n]$, where D_{i} are i.i.d. like D (Add one half-edge to last vertex when the total number of half-edges is odd);
- Attach first half-edge to another half-edge uniformly at random;
- Continue until all half-edges are connected.

Special attention to power-law degree sequences, i.e.,

$$
\mathbb{P}[D \geq k] \leq c k^{-(\tau-1)}, \quad \tau>2
$$

Local structure configuration model for $\tau>2$

Start from random vertex i which has degree D_{i}.

Look at neighbors of vertex i, probability such a neighbor has degree $k+1$ is approximately,

$$
\frac{(k+1) \sum_{j \in[n]} \mathbb{1}_{\left\{D_{j}=k+1\right\}}}{\sum_{j \in[n]} D_{j}}
$$

Local structure configuration model for $\tau>2$

Start from random vertex i which has degree D_{i}.
Look at neighbors of vertex i, probability such a neighbor has degree $k+1$ is approximately,

$$
\frac{(k+1) \sum_{j \in[n]} \mathbb{1}_{\left\{D_{j}=k+1\right\}} / n}{\sum_{j \in[n]} D_{j} / n} \longrightarrow \frac{(k+1) \mathbb{P}[D=k+1]}{\mathbb{E}[D]}, \quad \text { for } \tau>2
$$

Local structure configuration model for $\tau>2$

Start from random vertex i which has degree D_{i}.
Look at neighbors of vertex i, probability such a neighbor has degree $k+1$ is approximately,

$$
\frac{(k+1) \sum_{j \in[n]} \mathbb{1}_{\left\{D_{j}=k+1\right\}} / n}{\sum_{j \in[n]} D_{j} / n} \longrightarrow \frac{(k+1) \mathbb{P}[D=k+1]}{\mathbb{E}[D]}, \quad \text { for } \tau>2 .
$$

Let K have distribution (the forward degree distribution),

$$
\mathbb{P}[K=k]=\frac{(k+1) \mathbb{P}[D=k+1]}{\mathbb{E}[D]}
$$

Locally tree-like structure: a branching process with offspring D in first generation and K in further generations. Also, uniformly sparse.

Pressure in thermodynamic limit $(\mathbb{E}[K]<\infty)$

Theorem (Dembo, Montanari, '10)
For a locally tree-like and uniformly sparse graph sequence $\left\{G_{n}\right\}_{n \geq 1}$ with $\mathbb{E}[K]<\infty$, the pressure per particle,

$$
\psi_{n}(\beta, B)=\frac{1}{n} \log Z_{n}(\beta, B),
$$

converges, for $n \rightarrow \infty$, to
$\varphi_{h}(\beta, B) \equiv \frac{\mathbb{E}[D]}{2} \log \cosh (\beta)-\frac{\mathbb{E}[D]}{2} \mathbb{E}\left[\log \left(1+\tanh (\beta) \tanh \left(h_{1}\right) \tanh \left(h_{2}\right)\right)\right]$

$$
+\mathbb{E}\left[\operatorname { l o g } \left(e^{B} \prod_{i=1}^{D}\left\{1+\tanh (\beta) \tanh \left(h_{i}\right)\right\}\right.\right.
$$

$$
\left.\left.+\mathrm{e}^{-B} \prod_{i=1}^{D}\left\{1-\tanh (\beta) \tanh \left(h_{i}\right)\right\}\right)\right] .
$$

Pressure in thermodynamic limit $(\mathbb{E}[D]<\infty)$

Theorem (DGvdH, '10)

Let $\tau>2$. Then, in the configuration model, the pressure per particle,

$$
\psi_{n}(\beta, B)=\frac{1}{n} \log Z_{n}(\beta, B)
$$

converges almost surely, for $n \rightarrow \infty$, to
$\varphi_{h}(\beta, B) \equiv \frac{\mathbb{E}[D]}{2} \log \cosh (\beta)-\frac{\mathbb{E}[D]}{2} \mathbb{E}\left[\log \left(1+\tanh (\beta) \tanh \left(h_{1}\right) \tanh \left(h_{2}\right)\right)\right]$

$$
+\mathbb{E}\left[\operatorname { l o g } \left(e^{B} \prod_{i=1}^{D}\left\{1+\tanh (\beta) \tanh \left(h_{i}\right)\right\}\right.\right.
$$

$$
\left.\left.+e^{-B} \prod_{i=1}^{D}\left\{1-\tanh (\beta) \tanh \left(h_{i}\right)\right\}\right)\right] .
$$

Tree recursion

Proposition

Let K_{t} be i.i.d. like K and $B>0$. Then, the recursion

$$
h^{(t+1)} \stackrel{d}{=} B+\sum_{i=1}^{K_{t}} \operatorname{atanh}\left(\tanh (\beta) \tanh \left(h_{i}^{(t)}\right)\right)
$$

has a unique fixed point h_{β}^{*}.
Interpretation: the effective field of a vertex in a tree expressed in that of its neighbors.

Uniqueness shown by showing that effect of boundary conditions on generation t vanishes for $t \rightarrow \infty$.

Correlation inequalities

Lemma (Griffiths, '67, Kelly, Sherman, '68)

For a ferromagnet with positive external field, the magnetization at a vertex will not decrease, when

- The number of edges increases;
- The external magnetic field increases;
- The temperature decreases.

Lemma (Griffiths, Hurst, Sherman, '70)

For a ferromagnet with positive external field, the magnetization is concave in the external fields, i.e.,

$$
\frac{\partial^{2}}{\partial B_{k} \partial B_{\ell}} m_{j}(\underline{B}) \leq 0 .
$$

Outline of the proof

$\lim _{n \rightarrow \infty} \psi_{n}(\beta, B)$

$$
\begin{aligned}
& =\lim _{\varepsilon \downarrow 0} \lim _{n \rightarrow \infty}\left[\psi_{n}(0, B)+\int_{0}^{\varepsilon} \frac{\partial}{\partial \beta^{\prime}} \psi_{n}\left(\beta^{\prime}, \boldsymbol{B}\right) \mathrm{d} \beta^{\prime}+\int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta^{\prime}} \psi_{n}\left(\beta^{\prime}, \boldsymbol{B}\right) \mathrm{d} \beta^{\prime}\right] \\
& =\varphi_{h}(0, \boldsymbol{B})+0+\lim _{\varepsilon \downarrow 0} \int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta^{\prime}} \varphi\left(\beta^{\prime}, \boldsymbol{B}\right) \mathrm{d} \beta^{\prime} \\
& =\varphi_{h}(\beta, \boldsymbol{B})
\end{aligned}
$$

Outline of the proof

$\lim _{n \rightarrow \infty} \psi_{n}(\beta, B)$

$$
\begin{aligned}
& =\lim _{\varepsilon \downarrow 0} \lim _{n \rightarrow \infty}\left[\psi_{n}(0, B)+\int_{0}^{\varepsilon} \frac{\partial}{\partial \beta^{\prime}} \psi_{n}\left(\beta^{\prime}, \boldsymbol{B}\right) \mathrm{d} \beta^{\prime}+\int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta^{\prime}} \psi_{n}\left(\beta^{\prime}, \boldsymbol{B}\right) \mathrm{d} \beta^{\prime}\right] \\
& =\varphi_{h}(0, B)+0+\lim _{\varepsilon \downarrow 0} \int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta^{\prime}} \varphi\left(\beta^{\prime}, \boldsymbol{B}\right) \mathrm{d} \beta^{\prime} \\
& =\varphi_{h}(\beta, \boldsymbol{B})
\end{aligned}
$$

Outline of the proof

$\lim _{n \rightarrow \infty} \psi_{n}(\beta, B)$

$$
\begin{aligned}
& =\lim _{\varepsilon \downarrow 0} \lim _{n \rightarrow \infty}\left[\psi_{n}(0, B)+\int_{0}^{\varepsilon} \frac{\partial}{\partial \beta^{\prime}} \psi_{n}\left(\beta^{\prime}, \boldsymbol{B}\right) \mathrm{d} \beta^{\prime}+\int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta^{\prime}} \psi_{n}\left(\beta^{\prime}, \boldsymbol{B}\right) \mathrm{d} \beta^{\prime}\right] \\
& =\varphi_{h}(0, \boldsymbol{B})+0+\lim _{\varepsilon \downarrow 0} \int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta^{\prime}} \varphi\left(\beta^{\prime}, \boldsymbol{B}\right) \mathrm{d} \beta^{\prime} \\
& =\varphi_{h}(\beta, \boldsymbol{B})
\end{aligned}
$$

Outline of the proof

$\lim _{n \rightarrow \infty} \psi_{n}(\beta, B)$

$$
\begin{aligned}
& =\lim _{\varepsilon \downarrow 0} \lim _{n \rightarrow \infty}\left[\psi_{n}(0, B)+\int_{0}^{\varepsilon} \frac{\partial}{\partial \beta^{\prime}} \psi_{n}\left(\beta^{\prime}, \boldsymbol{B}\right) \mathrm{d} \beta^{\prime}+\int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta^{\prime}} \psi_{n}\left(\beta^{\prime}, \boldsymbol{B}\right) \mathrm{d} \beta^{\prime}\right] \\
& =\varphi_{h}(0, B)+0+\lim _{\varepsilon \downarrow 0} \int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta^{\prime}} \varphi\left(\beta^{\prime}, \boldsymbol{B}\right) \mathrm{d} \beta^{\prime} \\
& =\varphi_{h}(\beta, \boldsymbol{B})
\end{aligned}
$$

Internal energy

$$
\begin{aligned}
\frac{\partial}{\partial \beta} \psi_{n}(\beta, B) & =\frac{1}{n} \sum_{(i, j) \in E_{n}}\left\langle\sigma_{i} \sigma_{j}\right\rangle_{\mu}=\frac{\left|E_{n}\right|}{n} \frac{\sum_{(i, j) \in E_{n}}\left\langle\sigma_{i} \sigma_{j}\right\rangle_{\mu}}{\left|E_{n}\right|} \\
& \longrightarrow \frac{\mathbb{E}[D]}{2} \mathbb{E}\left[\left\langle\sigma_{i} \sigma_{j}\right\rangle_{\mu}\right]
\end{aligned}
$$

Internal energy

$$
\begin{aligned}
\frac{\partial}{\partial \beta} \psi_{n}(\beta, B) & =\frac{1}{n} \sum_{(i, j) \in E_{n}}\left\langle\sigma_{i} \sigma_{j}\right\rangle_{\mu}=\frac{\left|E_{n}\right|}{n} \frac{\sum_{(i, j) \in E_{n}}\left\langle\sigma_{i} \sigma_{j}\right\rangle_{\mu}}{\left|E_{n}\right|} \\
& \longrightarrow \frac{\mathbb{E}[D]}{2} \mathbb{E}\left[\left\langle\sigma_{i} \sigma_{j}\right\rangle_{\mu}\right]
\end{aligned}
$$

$$
\frac{\mathbb{E}[D]}{2} \mathbb{E}\left[\left\langle\sigma_{i} \sigma_{j}\right\rangle_{\mu}\right] \rightarrow \frac{\mathbb{E}[D]}{2} \mathbb{E}\left[\left\langle\sigma_{i} \sigma_{j}\right\rangle_{e}\right]
$$

Derivative of φ

$$
\frac{\partial}{\partial \beta} \varphi_{h_{\beta}^{*}}(\beta, B)=\frac{\mathbb{E}[D]}{2} \mathbb{E}\left[\left\langle\sigma_{i} \sigma_{j}\right\rangle_{e}\right] .
$$

$\varphi_{h}(\beta, B)=\frac{\mathbb{E}[D]}{2} \log \cosh (\beta)-\frac{\mathbb{E}[D]}{2} \mathbb{E}\left[\log \left(1+\tanh (\beta) \tanh \left(h_{1}\right) \tanh \left(h_{2}\right)\right)\right]$
$+\mathbb{E}\left[\log \left(e^{B} \prod_{i=1}^{D}\left\{1+\tanh (\beta) \tanh \left(h_{i}\right)\right\}+e^{-B} \prod_{i=1}^{D}\left\{1-\tanh (\beta) \tanh \left(h_{i}\right)\right\}\right)\right]$

- Show that we can ignore dependence of h_{β}^{*} on β; (Interpolation techniques. Split analysis into two parts, one for small degrees and one for large degrees)
- Compute the derivative with assuming β fixed in h_{β}^{*}.

Thermodynamic quantities

Corollary

Let $\tau>2$. Then, in the configuration model, a.s.:
The magnetization is given by

$$
m(\beta, B) \equiv \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left\langle\left.\sigma_{i}\right|_{\mu}=\frac{\partial}{\partial B} \varphi_{h^{*}}(\beta, B)=\mathbb{E}\left[\left\langle\sigma_{0}\right\rangle_{v_{0+1}}\right] .\right.
$$

The susceptibility is given by

$$
\chi(\beta, B) \equiv \lim _{n \rightarrow \infty} \frac{\partial M_{n}(\beta, B)}{\partial B}=\frac{\partial^{2}}{\partial B^{2}} \varphi_{h^{*}}(\beta, B) .
$$

Critical temperature

Define the magnetization on G_{n} as

$$
m_{n}(\beta, B)=\frac{1}{n} \sum_{i=1}^{n}\left\langle\sigma_{i}\right\rangle_{\mu}
$$

Then, the spontaneous magnetization,

$$
m(\beta, 0+)=\lim _{B \downarrow 0} m(\beta, B) \begin{cases}=0, & \beta<\beta_{c} \\ >0, & \beta>\beta_{c}\end{cases}
$$

The critical inverse temperature β_{c} is given by

$$
\mathbb{E}[K]\left(\tanh \beta_{c}\right)=1
$$

Note that, for $\tau \in(2,3)$, we have $\mathbb{E}[K]=\infty$, so that $\beta_{c}=0$.

Critical exponents

Predictions by physicists (e.g. Leone, Vázquez, Vespignani, Zecchina, '02).

Critical behavior of magnetization m, and susceptibility χ.

	$m\left(\beta, 0^{+}\right), \beta \downarrow \beta_{c}$	$m\left(\beta_{c}, B\right), B \downarrow 0$	$\chi\left(\beta, 0^{+}\right), \beta \downarrow \beta_{c}$
$\tau>5$	$\sim\left(\beta-\beta_{c}\right)^{1 / 2}$	$\sim B^{1 / 3}$	$\sim\left(\beta-\beta_{c}\right)^{-1}$
$\tau \in(3,5)$	$\sim\left(\beta-\beta_{c}\right)^{1 /(\tau-3)}$	$\sim B^{1 /(\tau-2)}$	
$\tau \in(2,3)$	$\sim\left(\beta-\beta_{c}\right)^{1 /(3-\tau)}$	$\sim B^{1}$	$\sim\left(\beta-\beta_{c}\right)^{1}$

Distances in power-law random graphs

Let H_{n} be the graph distance between two uniformly chosen connected vertices in the configuration model. Then:

- For $\tau>3$ and $\mathbb{E}[K]>1$ (vdH, Hooghiemstra, Van Mieghem, '05),

$$
H_{n} \sim \log n,
$$

- For $\tau \in(2,3)$ (vdH, Hooghiemstra, Znamenski, '07),

$$
H_{n} \sim \log \log n ;
$$

