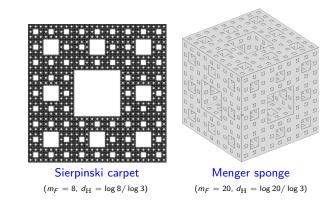
Spectral zeta function & quantum statistical mechanics on Sierpinski carpets

Joe P. Chen

Cornell University

6th Prague Summer School on Mathematical Statistical Physics / August 30, 2011

Generalized Sierpinski carpets



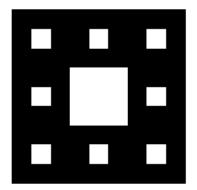
- Constructed via an IFS of affine contractions $\{f_i\}_{i=1}^{m_F}$.
- They are infinitely ramified fractals. (Translation: Analysis is hard.)
- Brownian motion and harmonic analysis on SCs have been studied extensively by Barlow & Bass (1989 onwards) and Kusuoka & Zhou (1992).
- Uniqueness of BM on SCs [Barlow, Bass, Kumagai & Teplyaev 2008].

Outline

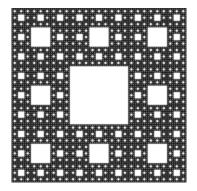
What we know about diffusion on Sierpinski carpets

- Hausdorff dimension, walk dimension, and spectral dimension
- Estimates of the heat kernel trace
- Spectral zeta function on Sierpinski carpets
 - Simple poles give the carpet's "complex dimensions"
 - Meromorphic continuation to $\mathbb C$
- O Applications: Ideal quantum gas in Sierpinski carpets
 - Bose-Einstein condensation & its connection to Brownian motion

Reflecting BM
$$W_t^1$$
, Dirichlet energy $E_1(u) = \int_{F_1} |\nabla u(x)|^2 \mu_1(dx)$.



Reflecting BM
$$W_t^2$$
, Dirichlet energy $E_2(u) = \int_{F_2} |\nabla u(x)|^2 \mu_2(dx)$.



Time-scaled BM
$$X_t^n = W_{a_n t}^n$$
, DF $\mathcal{E}_n(u) = a_n \int_{F_n} |\nabla u(x)|^2 \mu_n(dx)$.

Time-scaled BM
$$X_t^n = W_{a_n t}^n$$
, DF $\mathcal{E}_n(u) = a_n \int_{F_n} |\nabla u(x)|^2 \mu_n(dx)$.

• $\mu_n \rightharpoonup \mu = C(d_H \text{-dim Hausdorff measure})$ on carpet *F*.

• $a_n \asymp \left(\frac{m_F \rho_F}{l_F^2}\right)^n$, ρ_F = resistance scale factor. No closed form expression known.

- BB showed that there exists subsequence $\{n_j\}$ such that, resp., the laws and the resolvents of X^{n_j} are tight. Any such limit process is a BM on the carpet F.
- If X is a limit process and T_t its semigroup, define the Dirichlet form on $L^2(F)$ by

$$\mathcal{E}_{BB}(u) = \sup_{t>0} \frac{1}{t} \langle u - T_t u, u \rangle$$
 with natural domain.

Denote by Δ the corresponding Laplacian. Note \mathcal{E}_{BB} is self-similar:

$$\mathcal{E}_{BB}(u) = \sum_{i=1}^{m_F} \rho_F \cdot \mathcal{E}_{BB}(u \circ f_i).$$

Heat kernel estimates on GSCs

Theorem (Barlow, Bass, · · ·)

$$p_t(x,y) \asymp C_1 t^{-d_{\mathrm{H}}/d_{\mathrm{W}}} \exp\left(-C_2 \left(\frac{|x-y|^{d_{\mathrm{W}}}}{t}\right)^{\frac{1}{d_{\mathrm{W}}-1}}\right)$$

Here $d_{\rm H} = \log m_F / \log I_F$ (Hausdorff), $d_{\rm W} = \log(\rho_F m_F) / \log I_F$ (walk).

$$d_{
m S} = 2 rac{d_{
m H}}{d_{
m W}} = 2 rac{\log m_F}{\log(m_F
ho_F)}$$
 is the spectral dimension of the carpet.

For any carpet, $d_{
m W}>2$ and $1 < d_{
m S} < d_{
m H}$, indicative of sub-Gaussian diffusion.

Theorem (Hambly '08, Kajino '08)

There exists a $(\log \rho_F)$ -periodic function G, bounded away from 0 and ∞ , such that the heat kernel trace

$$\mathcal{K}(t):=\int_F p_t(x,x)\mu(dx)=t^{-d_{\mathrm{H}}/d_{\mathrm{W}}}\left[G(-\log t)+o(1)
ight] \quad as \ t\downarrow 0.$$

A better estimate of heat kernel trace

Consider GSCs with Dirichlet b.c. on exterior boundary, and Neumann b.c. on the interior boundaries.

Theorem (Kajino '09, in prep '11)

For any GSC $F \subset \mathbb{R}^d$, there exist continuous, $(\log \rho_F)$ -periodic functions $G_k : \mathbb{R} \to \mathbb{R}$ for $k = 0, 1, \cdots, d$ such that

$$\mathcal{K}(t) = \sum_{k=0}^{d} t^{-d_k/d_W} G_k(-\log t) + \mathcal{O}\left(\exp\left(-ct^{-\frac{1}{d_W-1}}\right)\right) \quad as \ t \downarrow 0$$

where $d_k := d_H (F \cap \{x_1 = \cdots = x_k = 0\}).$

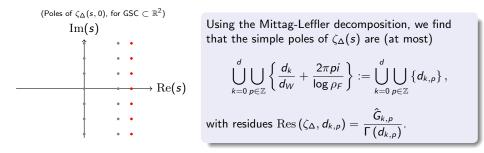
Remark. $G_0 > 0$ and $G_1 < 0$. Numerics suggest that G_0 is nonconstant.

Recall that the analogous result for manifolds M^d is

$$K(t)=\sum_{k=0}^d t^{-(d-k)/2}G_k+\mathcal{O}(\exp(-ct^{-1})) \quad ext{as} \quad t\downarrow 0.$$

Spectral zeta function $\zeta_{\Delta}(s,\gamma) := \operatorname{Tr} \frac{1}{(-\Delta+\gamma)^s} = \sum_{j=1}^{\infty} (\lambda_j + \gamma)^{-s}$ (Mellin integral rep)

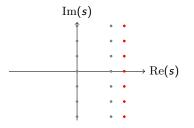
$$\zeta_{\Delta}(s,\gamma) = \frac{1}{\Gamma(s)} \int_0^\infty t^s e^{-\gamma t} \mathcal{K}(t) \frac{dt}{t} , \quad \operatorname{Re}(s) > \frac{d_{\mathrm{S}}}{2}.$$



The poles of the spectral zeta fcn encode the dims of the relevant spectral volumes:

• On manifolds
$$M^d$$
: $\left\{\frac{d}{2}, \frac{(d-1)}{2}, \cdots, \frac{1}{2}, 0\right\}$.
• On fractals: $\left\{\frac{d_k}{d_W} + \frac{2\pi pi}{\log \rho_F}\right\}_{k,\rho}$. (Complex dims, à la Lapidus)

Meromorphic continuation of ζ_{Δ}



Theorem (Steinhurst & Teplyaev '10) $\zeta_{\Delta}(\cdot, \gamma)$ has a meromorphic continuation to all of \mathbb{C} .

- The exponential tail in the HKT estimate is essential for the continuation.
- In particular, $\zeta_{\Delta}(s, 0)$ is analytic for $\operatorname{Re}(s) < 0$.
- Application: Casimir energy $\propto \zeta_{\Delta}(-1/2)$.

Application to quantum statistical mechanics on GSC

Consider a gas of N bosons confined to a domain F.

The N-body wavefunction is symmetric under particle exchange, so the Hilbert space is H_N = Sym (L²(F)^{⊗N}).

•
$$H_N = \sum_{j=1}^N K(x_j) + \sum_{i < j}^N V(x_i - x_j)$$
 is the Hamiltonian on \mathcal{H}_N .

In the grand canonical ensemble,

- $\mathcal{F} = \bigoplus_{N=0}^{\infty} \mathcal{H}_N$ is the Fock space; $d\Gamma(H) = \overline{\bigoplus_{N=0}^{\infty} \mathcal{H}_N}$ the second quantization.
- The Gibbs state at inverse temp $\beta > 0$ and chemical potential μ is given by $\omega_{\beta,\mu}(\cdot)$, where for any self-adjoint operator A one has

$$\omega_{\beta,\mu}(A) = \Xi^{-1} \mathrm{Tr}_{\mathcal{F}}(e^{-\beta d \Gamma(H-\mu 1)}A), \text{ with GC part. fcn. } \Xi = \mathrm{Tr}_{\mathcal{F}}(e^{-\beta d \Gamma(H-\mu 1)}).$$

- For ideal Bose gas ($V \equiv 0$), $\log \Xi = -\text{Tr}_{\mathcal{H}_1} \log(1 e^{-\beta(H-\mu)})$.
- For an ideal massive Bose gas $(K = -\underline{\Delta})$ in a carpet of side length L,

$$\log \Xi_L(\beta,\mu) = \frac{1}{2\pi i} \int_{\sigma-i\infty}^{\sigma+i\infty} \left(\frac{L^2}{\beta}\right)^t \Gamma(t) \zeta_R(t+1) \zeta_{\Delta}\left(t,-L^2\mu\right) dt.$$

Bose-Einstein condensation in GSC

Consider the unbounded carpet $F_{\infty} = \bigcup_{n=0}^{\infty} l_F^n F$. We exhaust F_{∞} by taking an increasing family of carpets $\{\Lambda_n\}_n = \{l_F^n F\}_n$.

Proposition

As $n \to \infty,$ the density of Bose gas in a GSC at (β,μ) is

$$\rho_{\Lambda_n}(\beta,\mu) = \frac{1}{(4\pi\beta)^{d_{\rm S}/2} \hat{G}_{0,0}} \sum_{m=1}^{\infty} e^{m\beta\mu} G_0\left(-\log\left(\frac{m\beta}{(l_{\rm F})^{2n}}\right)\right) m^{-d_{\rm S}/2} + o(1).$$

In particular, $\overline{\rho}(\beta) := \limsup_{n \to \infty} \rho_{\Lambda_n}(\beta, 0) < \infty$ iff $d_S > 2$.

If the total density $\rho_{tot} > \overline{\rho}(\beta)$, then the excess density must condense in the lowest eigenvector of the Hamiltonian $\rightarrow \text{BEC}$.

Observe also that

$$\rho_L(\beta,\mu) = rac{1}{CL^{d_{\mathrm{S}}}} \sum_{m=1}^{\infty} e^{m\beta\mu} \mathcal{K}\left(rac{m\beta}{L^2}
ight).$$

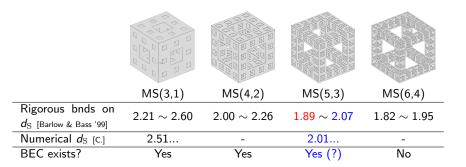
$$\sum_{m=1}^{\infty} K(mt) < \infty \iff \mathsf{BM}$$
 is transient.

Criterion for BEC in GSC

Theorem

For an ideal massive Bose gas in an unbounded GSC, the following are equivalent:

- Spectral dimension $d_{\rm S} > 2$.
- (The Brownian motion whose generator is) the Laplacian is transient.
- **IDEC** exists at positive temperature.



Acknowledgements

(Taken at: AMS Fall Sectional Mtg, October 2-3, 2010, Syracuse) (Upcoming: 'Fractals4' joint w/ AMS Mtg, Sept 10-13, 2011, Ithaca)

Many thanks to

- Robert Strichartz (Cornell)
- Ben Steinhurst (Cornell)
- Naotaka Kajino (Bielefeld)
- Alexander Teplyaev (UConn)

Also discussions with

- Gerald Dunne (UConn)
- Matt Begué (UConn \rightarrow UMd)

2011 research & travel support by:

- NSF REU grant (Analysis on fractals project, 2011 Cornell Math REU)
- Cornell graduate school travel grant
- Technion & Israel Science Foundation
- Charles University of Prague, ESF & NSF