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Abstract

We consider the multidimensional aggregation equation ut −∇ · (u∇K ∗ u) = 0 in which
the radially symmetric attractive interaction kernel has a mild singularity at the origin (Lip-
schitz or better). In the case of bounded initial data, finite time singularity has been proved
for kernels with a Lipschitz point at the origin [6, 5], whereas for C2 kernels there is no
finite-time blowup. We prove, under mild monotonicity assumptions on the kernel K, that
the Osgood condition for well-posedness of the ODE characteristics determines global in
time well-posedness of the PDE with compactly supported bounded nonnegative initial data.
When the Osgood condition is violated, we present a new proof of finite time blowup that
extends previous results, requiring radially symmetric data, to general bounded, compactly
supported nonnegative initial data without symmetry. We also present a new analysis of
radially symmetric solutions under less strict monotonicity conditions. Finally we conclude
with a discussion of similarity solutions for the case K(x) = |x| and some open problems.
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1 Introduction

The analysis of the long time behavior of a collection of self-interacting individuals via pairwise
potentials arises in the modelling of animal collective behavior: flocks, schools or swarms formed
by insects, fishes and birds. The simplest models based on ODEs systems [11, 17, 20, 31, 32] led
to continuum descriptions [14, 13, 10, 26, 30, 35, 36] for the evolution of densities of individuals.
The aggregation equation

ut −∇ · (u∇K ∗ u) = 0, ut=0 = u0 ≥ 0, (1.1)

shares some features with the classical Patlak-Keller-Segel model for chemotaxis [22, 34] without
diffusion, see [12, 8, 9, 18] for the state of the art in this problem. Here, the main similarity is
the possible formation of a finite time point concentration and the main difference the strong
singularity of the potential in the PKS system. Equation (1.1) with additional fractional diffusion
also has some prior and recent study in the literature, namely [7, 24, 25]. In the case of fractional
diffusion and Lipschitz kernels, there is a critical diffusion exponent for which the solution no
longer blows up in finite time.

In this paper, we focus on the case involving only attractive forces [5, 6, 23, 35] and no
diffusion. Individuals attract each other under the action of a radially symmetric Lipschitz
interaction potential K(x) = k(|x|) with k(r) increasing in r, smooth away from zero and bounded
below. Since potentials are defined up to constant, we assume without loss of generality that
k(0) = 0. Some examples appearing in applications are K1(x) = 1 − e−|x|, K2(x) = 1 − e−|x|2 ,
and Kα(x) ' |x|α locally near 0 with α ≥ 1.

This class of equations belongs to the same family of nonlinear friction equations that appear
in the modelling of granular media [4, 15, 16, 27, 37]. In those references, several results regarding
the long time asymptotics and rates of equilibration were obtained in cases in which the potential
K(x) is smooth and convex. In our typical cases, convexity fails. In fact, the equation (1.1) can
be formally considered as a gradient flow of the energy functional:

E(u) =
1
2

∫
RN

∫
RN

K(x− y)u(x)u(y) dx dy (1.2)

with respect to the Euclidean Wasserstein distance as introduced in [33] and generalized to a large
family of PDEs in [2, 16]. Its connection to optimal transport theory comes from the convexity
properties of the energy functional with respect to geodesic convexity in this distance, called
displacement convexity [29]. A nice introduction to this different point of view can be seen in
[38]. However, in this paper we do not take advantage of this approach which will be developed
elsewhere.

In previous works [5, 6, 23], the local-in-time well-posedness of solutions with pointy interac-
tion potential K1 have been shown for initial data in Sobolev spaces [6, 23] and for integrable and
bounded initial data [5] inspired by ideas from 2D-Euler equations in fluid mechanics [28, 39].
Finite time blow-up has also been addressed in these works showing that for certain radial ini-
tial data the solution blows-up in finite time in the sense that the solution ceases to be in the
corresponding class, i.e., blow-up in Sobolev norm or blow-up in L∞ norm. Let us mention that
in the literature of granular media models, potentials of the form K(x) = |x|1+γ with 0 < γ < 1
were considered in [27] in one dimension proving that the support of the solutions shrink to a
single point in finite time.

In our main result, we give natural conditions on the potential K such that all solutions
corresponding to bounded, compactly supported initial data either blow-up in finite time or
exist for all time. Under mild monotonicity conditions, we show that the Osgood condition for
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well-posedness of the ODE characteristics, is sufficient to guarantee a bounded global-in-time
solution of the PDE. Moreover this condition is sharp and thus necessary for global-in-time
existence. Actually, for kernels violating the Osgood condition, the solution blows up in finite
time regardless of the symmetry of the initial data. Moreover, the blow-up time is bounded
uniformly for all initial data with given mass M compactly supported inside a ball of fixed radius
R0 by a constant depending only on M and R0.

More specifically, for bounded, compactly supported, nonnegative initial data, if the potential
K(x) = k(|x|) is monotone decreasing in k′(r)/r and has∫ 1

0

1
k′(r)

dr <∞, (1.3)

then the solution blows up in finite time. Moreover, the bound on the time of blowup depends
only on the radius of the support of the initial data and the total mass of the solution. The
integral condition on the kernel is none other than the well-known Osgood condition for finite-
time vanishing of the ODE dR/dt = −k′(R), which implies non-uniqueness of solutions, see for
instance [3] and the recent preprint for linear continuity equations [1]. This case includes kernels
with a Lipschitz point at the origin, for which we already have blowup results with symmetric
data. Our proof includes initial data without symmetry.

Furthermore, when the Osgood condition gives a global in time solution of the ODE, i.e.∫ 1

0

1
k′(r)

dr =∞ (1.4)

we derive a global-in-time bound on the solution, generalizing previous results for C2 kernels.
The proof requires the monotonicity assumption on k′(r)/r along with some lower bound, e.g.
0 < k′′.

Throughout this paper, we say that K is an Osgood potential if (1.4) is satisfied and non-
Osgood when (1.3) holds. We note that if K is Osgood but not C2 at the origin, then k′′

is typically positive and decreasing from infinity near zero, and thus k′ is superlinear near the
origin, consistent with the monotonicity assumption on k′(r)/r and with the lower bound required
on k′′. While the global-in-time bound implies global existence of bounded solutions, nevertheless
the solution is proved to concentrate onto a single Dirac delta as t→∞.

Our results can be more finely tuned and improved in the case of radial solutions. In the case
of finite time blowup, we are able to show a bound from below in the blow-up time and to weaken
the additional hypotheses on the potential. More precisely, we can show that for k′(r) monotone
and (1.3), then finite-time blow-up of radial solutions happens. Using the radially symmetric
formulation, we also examine the problem of existence of similarity solutions blowing up in finite
time. In the case of the Lipschitz potential K(x) = |x|, we prove in odd space dimensions larger
than 1 (i.e. 3, 5, 7 . . . ) that no similarity solution exists with support containing an open set.
We consider both Lp similarity solutions, p > 1, and measure-valued similarity solutions with
compact support. This result is in contrast to the one dimensional case where there exists a
simple compactly supported L∞ similarity solution.

Note that in the case of power-law potentials Kα, the condition (1.3) is satisfied if and only
if α < 2. If α ≥ 2, then (1.4) holds and it is known that solutions exist globally. Our results
include all power-law potentials and extend the α ≥ 2 case to additional potentials that fail to
be C2 by a marginal amount (e.g. logarithmic correction) yet still satisfy (1.4).

This paper is organized as follows. In Section 2 we review the ODE problem of interacting
particles and present a simple estimate for the collapse of all particles to their center of mass. We
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then show how to extend the ODE result to the continuum problem, using continuity of particle
paths for the case of L1 ∩ L∞(RN ) data. A comparison principle is established that provides a
proof of blowup in the continuum problem for general initial data without symmetry and for a
general class of symmetric kernels with mild singularity. At the end of section 2 we prove that
the Osgood condition for blowup is sharp, by extending previously known global existence results
for C2 kernels to the general Osgood case, provided they satisfy mild monotonicity conditions. In
Section 3 we study the radially symmetric case showing that, for the blowup proof, monotonicity
assumptions can be weakened. Also in that section we present a discussion of self-similar blowing-
up solutions for the special case of the |x| potential.

2 Blowup estimates and the connection to Osgood potentials

In this section we derive the main results for general (non-symmetric) compactly supported
nonnegative bounded data. In section 2.1 we present a discussion of the ODE system formed by
L interacting point masses. We derive an estimate for the size of the support of the solution that
can be used to prove collapse to a single point mass in finite time for kernels that violate the
Osgood condition (1.4) yet have simple monotonicity conditions. Under the same monotonicity
conditions, if the kernel satisfies the Osgood condition, the the particles never collide in finite
time, yet they still collapse to a point in infinite time. Sections 2.2 and 2.3 prove the analogue of
the ODE results for the PDE problem with bounded, compactly supported initial data. Under
precisely the same conditions on the potential as in the ODE case, the Osgood condition yields
global existence of bounded solutions that nevertheless collapse to a point in infinite time. On
the other hand, if the potential violates the Osgood condition, then finite time blowup occurs
for any compactly supported and bounded initial condition. Thus the Osgood condition is sharp
for finite time vs. infinite time blowup of bounded, nonnegative, compactly supported solutions
to the aggregation equation. These results generalize previous results on (a) global existence of
solutions with C2 kernels and (b) finite time blowup of bounded solutions with radially symmetric
data and kernels with a Lipschitz point at the origin. Section 2.2 proves the finite time blowup
results and section 2.3 proves the global existence and infinite time blowup results.

2.1 The discrete particle problem

When the solution is represented by L particles {x1, ..., xL} of respective mass {m1, . . . ,mL} the
evolution equation reduces (at least formally) to a coupled set of ODEs for the particle paths:

dxi
dt

= −
∑
j 6=i

mj∇K(xi − xj) = −
∑
j 6=i

mj
xi − xj
|xi − xj |

k′(|xi − xj |) , i = 1, . . . , L, (2.5)

with xi(t) ∈ RN for all t ≥ 0. Note that these equations preserve the total mass M :=
∑

jmj

of the system and the center of mass cM :=
∑

j xjmj/(
∑

jmj). The latter is true because of
the symmetry of K. Assume that the L-particles with total mass M and zero center of mass are
initially inside the ball of radius R0. Denote by R(t) the distance to the center of mass of the
particle situated further apart from the center of mass cM = 0, i.e., R(t) = |xi(t)| with i being
its label. Thus, due to (2.5), we have

d

dt
R(t)2 =

d

dt
|xi|2 = −2

∑
j 6=i

mj
(xi − xj) · xi
|xi − xj |

k′(|xi − xj |) .
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Since the ith particle is the one furthest away from the center of mass, we have that (xi−xj)·xi ≥ 0
and that |xi − xj | ≤ 2R(t) for j 6= i. Assume that

k′(r)
r

is decreasing for r > 0 . (2.6)

Putting together the previous information, we deduce

d

dt
R(t)2 ≤ −k

′(2R(t))
R(t)

∑
j 6=i

mj(xi − xj) · xi .

Due to conservation of mass and center of mass, we get∑
j 6=i

(xi − xj) · ximj =
∑

(xi − xj) · ximj = M |xi|2 = MR(t)2,

and thus,
d

dt
R(t) ≤ −M

2
k′(2R(t)) . (2.7)

Therefore, if the potential is such that the ODE dR/dt = −M k′(2R)/2 with initial data R = R0

touches down to zero in finite time then, the particles aggregate in a single particle with the total
mass M located at the center of mass before the touch-down time of the ODE (2.7). This time is
uniform for particles inside a fixed ball of radius R0 initially with total mass M . This argument is
inspired by and extends previous work in the control theory literature on cooperative motion with
first order control laws involving pairwise interaction potentials (see [17] for the case of attractive-
repulsive potentials and [19] for quadratic potentials). We make the argument rigorous in the
following theorem:

Theorem 2.1 (Collapse of the ODEs) Consider the ODE system (2.5) satisfying k′(r)/r mo-
notone decreasing, with k′′(r) defined and nonnegative on (0,∞). If K satisfies the Osgood con-
dition (1.4) then there exists a unique global-in-time forward solution with no collisions, in which
the particles converge to their center of mass in infinite time. If K satisfies the non-Osgood con-
dition (1.3) then there exists a unique global-in-time forward solution with collisions, in which the
particles all merge at their center of mass in finite time. In the latter case, for a given potential,
the merger time is a function of the radius of support of the initial data and the total mass only.

Proof. If K is an Osgood potential, then the modulus of continuity of the vector field on the
right hand side of the full ODE system satisfies the classical Osgood condition for local existence
and uniqueness of solutions. In the Lemma A.15 postponed to the Appendix, we estimate the
modulus of continuity of the vector field v = ∇k(|x|) and show it is bounded by 2k′(2|x|) which
means that local existence and uniqueness of solutions of the ODE system is satisfied if the
Osgood condition (1.4) holds. This is a sufficient condition for the ODE problem to have a
unique solution on compact sets in RN , see for instance [3, 1]. By the calculation above, the
monotonicity condition implies that the particles remain inside a bounded set going forward in
time, thereby implying that maximal C1-solutions of the ODE can be extended globally in time,
or in simple words, implying global existence and uniqueness of a smooth solution. Particle
merger is not possible in finite time because otherwise we violate the uniqueness result for the
ODE system. I.e. by interchanging the initial data for the particles that eventually merge, we
obtain two solutions with different initial conditions that arrive at the same state in finite time,
thereby violating backward-in-time uniqueness. Convergence to the center of mass in infinite
time results from the estimate (2.7).
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If K is not an Osgood potential, then we are not guaranteed a unique solution of the ODE
system. However, as long as particles are separated from each other, the ODE vector field
is Lipschitz and implies unique solutions of the particle paths provided they remain separated
and inside bounded sets of RN . So the only possibility to violate uniqueness of particle paths
is collision of particles in finite time. We choose the unique solution going forward in time,
corresponding to merger of any colliding particles into a single particle, at the time of collision.
Note that this preserves both center of mass and total mass at the time of collision. The system
going forward in time, after merger, continues to preserve the center of mass of the original ODE
system. Moreover, since there are a finite number of initial particles, there can only be a finite
number of merger times. Thus on any of the finite subintervals of time in which the particles
stay separated, the ODE has a unique solution going forward in time. Moreover, by the estimate
(2.7), all particles collapse to a single particle in finite time, with mass equal to the sum of the
masses of the original L particles. �

Remark 2.2 (Non-uniqueness) We note that in the non-Osgood case, uniqueness of the ODE
does not hold going backward in time because merger of particles destroys information. This is,
in some sense, analogous to shocks in conservation laws, where information goes into the shock
and is lost afterwards.

Remark 2.3 (The sign of k′′) The proof does not require nonnegative curvature, but actually
a lower bound on k′′ if it goes negative. Specifically we need to control |k′′(r)| by |k′|/r in Lemma
A.15 in the Appendix that estimates the modulus of continuity of v = ∇k(|x|). Following the
details of the lemma, we see that the example k(r) = 1− e−r, although having negative curvature,
still satisfies the estimates in Lemma A.15 of the Appendix, and thus satisfies the theorem.

In the next subsection we show how this collapsing support argument can be used to prove
finite time blowup of the continuum problem in the case of non-Osgood potentials. We consider
bounded initial data, therefore the characteristic paths are smoother than the point particle case
considered in this subsection. However we can still implement the estimate on the size of the
support of the solution, proving finite time blowup of the continuum problem.

2.2 The continuum problem with bounded data and non-Osgood potentials

In this section we consider the well-posedness of the continuum problem with bounded data. We
build primarily on the work of [5, 6, 23] and thus review the well-posedness results from those
works. These papers establish the existence and uniqueness theory for (1.1) in dimensions two
and higher, in the case of an acceptable potential satisfying the following criteria:

Definition 2.4 The potential K on RN , N ≥ 2 is acceptable if ∇K ∈ L2(RN ) and ∆K ∈
Lp(RN ) for some p ∈ [p∗, 2], where 1

p∗ = 1
2 + 1

N . In the case of compactly supported initial data,
we can take ∇K ∈ L2

loc(RN ) and ∆K ∈ Lploc(R
N ).

We note that the typical kernels considered in this paper satisfy the acceptability condition.
In particular, K Lipschitz satisfies ∇K bounded a. e. and thus in L2

loc(RN ). Moreover, the most
singular case at the origin is ∆K ∼ 1

|x| which satisfies the Lp condition above in dimensions two
and higher. The case of one space dimension has special issues and we discuss that at the end of
this section.
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The continuum model assumes a nonnegative density u(t, x) at position x ∈ RN and time
t > 0 satisfying

∂u

∂t
(t, x) + div [u(t, x)v(t, x)] = 0 t > 0 , x ∈ RN ,

with velocity field v(t, x) := −∇K ∗ u(t, x) t > 0 , x ∈ RN ,

u(0, x) = u0(x) ≥ 0 x ∈ RN .

(2.8)

where v is the velocity field under which individuals in the swarm are moving obtained through
the “averaging” of the pairwise potential by the distribution of mass. The continuity equation
comes from the assumption that the mass density of individuals in a set is preserved by the flow
map or characteristics associated to the ODE system (2.5) determined by

dX(t, α)
dt

= v(t,X(t, α)) t ≥ 0 ,

X(0, α) = α α ∈ RN .

More precisely, if X(t) : RN → RN is the flow map for all t ≥ 0 associated to the velocity field
v(t, x), X(t)(α) := X(t, α) for all α ∈ RN , then∫

B
u(t, x) dx =

∫
X(t)−1(B)

u0(x) dx

for any measurable set B ⊂ RN . In the optimal transport terminology, this is equivalent to say
that X(t) transports the measure u0 onto u(t) and we denote it by u(t) = X(t)#u0 defined by∫

RN
ζ(X(t, x))u(t, x) dx =

∫
RN

ζ(y)u0(y) dy ∀ζ ∈ C0
b (RN ) . (2.9)

Throughout the rest of this section, the initial data is assumed to be bounded, compactly
supported, and nonnegative,

u0 ∈ L∞(RN ), compactly supported and u0 ≥ 0 . (2.10)

We remark that (2.9) is a weak formulation for equation (2.8) whenever the flow map or charac-
teristics are well defined and give homeomorphisms X(t) from RN onto itself, for instance when
the velocity field v(t, x) is globally Lipschitz.

It is clear that solutions of (2.8) formally preserves the total mass of the system∫
RN

u(t, x) dx =
∫

RN
u0(y) dy := M (2.11)

and the center of mass ∫
RN

xu(t, x) dx =
∫

RN
xu0(y) dy := M cM (2.12)

where for the last one, we use that ∇K is anti-symmetric, ∇K(−x) = −∇K(x). We now review
the well-posedness theory for smooth solutions.

Theorem 2.5 (Continuation theorem for Hs data [5]) Given initial data u0 ∈ Hs(RN ),
N ≥ 2, for positive integer s ≥ 2, there exists a unique solution u(x, t) of (2.8) and a maximal
time interval of existence [0, T ∗) such that either T ∗ = ∞ or limt→T ∗ sup0≤τ≤t ‖u(·, τ)‖Lq = ∞.
The result holds for all q ≥ 2 for N > 2 and q > 2 for N = 2.
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When the kernel K is C2, one can derive an a priori bound for u in L∞ (see [35, 23]) thereby
guaranteeing global existence of an Hs solution. Moreover, when the kernel has a Lipschitz
point at the origin, for example the Morse potential K1(x) = 1− e−|x|, one can have finite time
blowup. The proof in [6] uses the energy (1.2) and provides an a priori lower bound for E while
simultaneously proving an a priori upper bound for the rate of decrease for the energy E when
the data is radially symmetric and smooth. More recently these results have been extended in
[5] to the case of weak solutions with data in L1 ∩L∞(RN ) and we state the result here. For this
class of weak data, we must consider a weaker form of (2.8).

Definition 2.6 A function u is a weak solution of (2.8) on [0,T] for a nonnegative initial data
u0 ∈ L1 ∩ L∞(RN ), if it satisfies

1. u ∈ L∞([0, T ];L1(RN )) and ess sup 0≤s≤T ‖u(·, s)‖L∞(RN ) <∞.

2. (Weak differentiability in time) Solutions must satisfy ut ∈ L∞([0, T ];V ∗) and∫ T

0
〈ut, φ〉 dt+

∫ T

0

∫
RN

(u− u0)φt dx dt = 0 (2.13)

for every test function φ ∈ W 1,1([0, T ];V ) such that φ(T ) = 0. Here, V = {f ∈ L∞(RN ) :
∇f ∈ L2(RN )} endowed with the norm ‖f‖V = ‖f‖L∞(RN ) + ‖∇f‖L2(RN ).

3. (Weak solution of evolution equation) Solutions satisfy a weak form of (2.8):∫ T

0
〈ut, φ〉 dt−

∫ T

0

∫
RN
〈(∇K ∗ u)u,∇φ〉 dx dt = 0 (2.14)

for all φ ∈ L1([0, T ];V ).

With mild decay conditions at infinity and the same conditions on the kernel K as above, we
have local in time well-posedness of the problem and continuation of solutions. For simplicity we
state the result for data with compact support.

Theorem 2.7 (Maximal time interval of existence for L1 ∩ L∞ data [5]) Let u be a weak
solution of (2.8) in RN , N ≥ 2, with K acceptable, and with compactly supported nonnegative
initial data in L∞. Then there exists a maximal time T ∗ and a unique weak solution u to the
problem (2.8). Moreover if T ∗ <∞ then

lim
t→T ∗

‖u(·, t)‖Lq(RN ) =∞ for q ∈ [2,∞] if N > 2 and q ∈ (2,∞] if N = 2.

Existence of solutions for L∞ data is proved by constructing first the characteristics for the
weak problem. This approach requires unique solutions to the characteristic equation, which
requires a certain degree of regularity of the velocity field v. Provided u is bounded, it is shown
in [5] that v is Lipschitz continuous and moreover ∇ · v is log-Lipschitz continuous (Lipschitz
continuous) in dimension two (three and higher).

Since the mass of the solution is conserved on its interval of existence, another way to prove
finite time blowup is to derive an estimate for the size of the support of the solution. If an upper
bound for the size of the support shrinks to zero in finite time, this also guarantees that the
time interval of existence of the L∞ solution is less than infinity. In this section, we show how to
extend the analysis from the ODE case to the continuum problem.
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Lemma 2.8 (Center of mass conservation) For compactly supported weak solutions corre-
sponding to nonnegative bounded compactly supported initial data, the first moment is conserved.

Proof. It suffices to substitute φ(x) = xiΨ(x) in Definition 2.6 where Ψ is a cutoff function
outside the support of u. The rest follows by symmetrizing the convolution integral and noting
that ∇K is an odd function. �

Proposition 2.9 (Frozen-in-time velocity estimate) Assume k′(r)/r is a monotone decreas-
ing function of r. Consider u(y) is a nonnegative function with total mass M, first moment zero
and compact support. Consider any BR(0) containing the support of u. Then, for any x ∈ ∂BR(0)
we have

v(x) · x ≤ −k
′(2R)R

2
M ≤ 0.

Proof. The argument is along the lines of the discrete particle estimates in the previous section.
We have the velocity field given by

v(x) = −
∫

RN
∇K(x− y)u(y)dy

and thus,

v(x) · x = −
∫

RN
x · ∇K(x− y)u(y)dy

= −
∫

RN

x · (x− y)
|x− y|

k′(|x− y|)u(y)dy

≤ −k
′(2R)
2R

∫
RN

x · (x− y)u(y)dy

= −k
′(2R)
2R

(MR2) = −k
′(2R)

2
MR.

Here we use the fact that x · (x− y) ≥ 0 and |x− y| ≤ 2R for any y in the support of u ≥ 0 and
x ∈ ∂BR(0), along with the monotonicity constraints on k′ and the moments of u. �

The above proposition is now used to prove the following theorem. This is a generalization of
[6, Theorem 6] and [5, Theorem 6.2] to the the case of less singular kernels satisfying (1.4) and
the monotonicity conditions in Proposition 2.9. Also, significantly, the radial symmetry of the
initial data, required in the proofs from [6, 5] is no longer necessary.

Theorem 2.10 (Finite time blowup for compactly supported solution in L∞) Let u be
a weak solution of (2.8) with nonnegative compactly supported initial data in L∞(RN ). Let K
satisfy the conditions (1.4) and k′(r)/r monotone decreasing, k′(r) > 0. Then there exists a
maximal time T ∗ <∞ and a unique weak solution u to the problem (2.8) on the interval [0, T ∗).
Moreover

lim
t→T ∗

‖u(·, t)‖Lq(RN ) =∞ for q ∈ [2,∞] if N > 2 and q ∈ (2,∞] if N = 2.

Proof. Given the existing continuation theorem, it suffices to prove that the solution ceases to
exist in finite time. To do that, we prove a comparison principle for the support of the solution:
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Proposition 2.11 (Comparison principle) Let u(x, t) be the weak solution in Theorem 2.10.
Let BR0(cM ) contain the support of the solution at time zero. Let R̃(t) be the unique solution of
the ordinary differential equation dR/dt = −Mk′(2R)/2. On any time interval of existence of
the L1 ∩ L∞(RN ) solution u(x, t), the support of u must lie inside BR̃(t)(cM ).

Proof. Without loss of generality, we move the coordinate system to have center of mass at
cM = 0 (the translation invariance of the problem allows for this). We note that at time zero, the
characteristics X(t, x) for any x on the boundary of the ball BR0(0) satisfy dR/dt ≤ −Mk′(2R)/2
where R(t) = |X(t, x)|. Thus the characteristics are shrinking towards the origin faster than the
the boundary of the ball. This estimate only holds on the boundary of the ball, not in the
interior. However, on any time interval of existence of the bounded solution, we have unique
characteristic paths that are Lipschitz continuous in space and time. Moreover they can not
cross, by the classical Picard theory for ODEs. This guarantees that none of the characteristics
associated with the support of u will exit the ball. Since the ball continues to shrink at a rate less
than the characteristic speed on the boundary, the characteristics associated with the support of
u remain inside the shrinking ball of radius R̃(t) on any time interval of existence of the weak
solution. Another way to look at this comparison would be to recast the problem in a moving
frame with coordinates shrinking at the uniform rate associated with the ODE for R̃(t). Then the
ball stays fixed and becomes an absorbing ball for the ODE associated with the characteristics.
This concludes the proof of the proposition and of Theorem 2.10. �

We briefly discuss the aggregation equation in one space dimension. This case is somewhat
special. First of all, k′′ plays an important role in the blowup dynamics because the amplification
factor for u along characteristics is k′′ ∗ u. In the case of a kernel with a Lipschitz point at the
origin, one has finite time blowup because k′′ is a delta to leading order, and thus the blowup is
driven by a quadratic function of u. This argument was presented in [21] and made rigorous in
[10]. For power-law potentials smoother than the Lipschitz case, one can read the paper by Li
and Toscani [27]. In both [10, 27] the transformation w =

∫ x
−∞ u is used resulting in a nonlocal

scalar conservation law for w:
wt − k′′ ∗ wwx = 0. (2.15)

We see now that when k′′ is a delta, the problem reduces to Burgers equation and the blowup
is simply shock formation in w. For more regular kernels than Lipschitz, one needs an existence
theory. The work of [23] proves local existence in one dimension for sufficiently smooth initial
data and kernels satisfying k′′ = Cδ + P where P is L1. To the best of our knowledge, the full
existence and continuation theory for general K and bounded initial data, in 1D, has not been
derived in the most general setting - however the a priori bounds presented in this section still
hold and apply to this problem. For completeness, we remind the reader that in dimensions
two and higher, if the kernel K has a Lipschitz point at the origin, then ∆K∗ as a convolution
operator provides additional smoothness (typically a gain of N − 1 derivatives in dimension N),
that is lacking in one dimension.

2.3 Global existence of solutions for Osgood potentials

In this section we prove global existence of solutions for the case of Osgood potentials satisfying
monotonicity conditions. To do this, we obtain refined estimates on the L∞-norm of ∇ · v. Note
first that the Osgood condition is more general than K ∈ C2. For example, K(x) = |x|2| ln |x||
satisfies this condition. Moreover, one does not, in general, have boundedness of∇·v whenever the
density is given by a general nonnegative measure µ, so that one has to rely on the nonlinearity in
the evolution equation to provide an a priori bound for ‖u‖L∞ . For example, if v is log-Lipschitz
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then the modulus of continuity ρ only guarantees particle paths that are Hölder continuous,
which is insufficient to guarantee that they would map L∞ densities to L∞. Instead, we have to
examine the evolution equation and use the fact that a smoother density yields a more regular
velocity field.

Remark 2.12 (Density argument) In this section we derive some differential inequalities for
‖u‖L∞. Rather than writing the integral form, which would be more appropriate for weak solu-
tions, for simplicity of notation we compute the differential form for strong solutions. However,
the results give a priori bounds that are uniform for smooth approximations of the weak solutions.
By the construction of the weak solutions in [5], namely by smoothing the initial data but not the
kernel, the same bounds are inherited by the weak solutions.

We begin by reviewing the C2 case, which has already been studied in the literature. Along
characteristics, we have ut + v ·∇u = −u∇· v, and this holds in the integral form [5], for the case
of L∞-weak solutions. Thus, by taking the L∞-norm along all characteristics, we have a bound
on the time evolution of ‖u‖L∞

d

dt
‖u‖L∞ ≤ ‖∆K ∗ u‖L∞‖u‖L∞ . (2.16)

In the case where K is C2, we immediately get that

‖∆K ∗ u‖L∞ ≤ ‖∆K‖L∞‖u‖L1

which is a priori bounded and thus by Grönwall’s lemma, gives a global bound for ‖u‖L∞ .
Combining this with Theorem 2.7 provides the following result (the a priori bound has been
proved in [35]):

Theorem 2.13 (Global-in-time solutions for C2 potentials) Let K be an admissible C2

kernel. Then the weak solution of Theorem 2.7 exists for all time and we have a global in time
bound

‖u(·, t)‖L∞ ≤ eCt‖u(·, 0)‖L∞
where C depends on ‖∆K‖L∞ and the mass of u.

We also obtain the following corollary of the previous section:

Corollary 2.14 (Infinite time blow-up for C2 potentials) Let K be an admissible C2 ker-
nel satisfying the conditions of Proposition 2.9. If the global-in-time weak solution of Theorem 2.13
has compact support, then it converges to a Dirac mass at the center of mass cM as t→∞.

Proof. The proof follows by applying Proposition 2.11 to the global solution, and noting that
the solution R̃ of the ODE goes to zero as t→∞. �

We now show that the same result holds for other potentials satisfying the Osgood condition∫ 1

0

1
k′(r)

dr =∞

that are not C2. Consider, for example, the aggregation equation with v log-Lipschitz. This
is slightly more singular than C2, yet it satisfies the Osgood condition. To construct a global
potential that also satisfies the conditions of Proposition 2.9 we consider

k′′(r) = −(ln r)φ(r) + 1− φ(r) (2.17)

k′(r) =
∫ r

0
k′′(r) (2.18)

11



where φ is a C∞0 cutoff function supported inside a ball of radius one at the origin. This potential
satisfies the conditions of Proposition 2.9, namely k′(r)/r is monotone decreasing and has a
logarithmic singularity at the origin, similar to k′′. Moreover, this potential is slightly more
singular than C2, yet it satisfies the Osgood condition.

Theorem 2.15 (Log-quadratic potential) Consider the aggregation equation with K as de-
fined in (2.17)-(2.18). Then the weak solution of Theorem 2.7 exists for all time with an a priori
bound

‖u(·, t)‖L∞ ≤ CeCe
Ct
,

where the constant C depends on the dimension of space N the mass M and the initial L∞-norm.

Proof. To prove this result, we need a refined estimate on ∆K∗u, since ∆K is no longer bounded.
The idea is to derive a potential theory estimate that is log-linear in ‖u‖L∞ where we split the
convolution up into two pieces, one near the singularity in ∆K and one far from that:

|∆K ∗ u(x)| ≤
∫
|x−y|<δ

|∆K(x− y)|u(y)dy +
∫
|x−y|≥δ

|∆K(x− y)|u(y)dy = T1 + T2.

We estimate
T1 ≤ ‖∆K‖L1(Bδ(0))‖u‖L∞

and
T2 ≤ ∆K(δ)‖u‖L1 .

Using the fact that |∆K(x)| ≤ k′′(r) + (N − 1)k
′(r)
r ≤ C(N)(1 + | ln r|) we estimate

T1 ≤ C(N)δN (1 + | ln(δ)|)‖u‖L∞

and
T2 ≤ C(N)(1 + | ln(δ)|)‖u‖L1 .

Choosing δ = (M/‖u‖L∞)1/N , which has dimensions of length, we have

T1 ≤ C(N,M)(1 + | ln ‖u‖L∞ |) (2.19)

and
T2 ≤ C(N,M)(1 + | ln ‖u‖L∞ |). (2.20)

Combining (2.19) and (2.20) with (2.16) we have

d

dt
‖u‖L∞ ≤ C(N,M)‖u‖L∞(1 + | ln ‖u‖L∞ |)

where C(N,M) depends only on the dimension of space N and the total mass of the solution
M . A standard Grönwall argument results in an a priori bound for ‖u(·, t)‖L∞ ≤ CeCe

ct
. Here

the constants depend only on M and the initial L∞-norm. Thus, we have an a priori bound
for the L∞ norm of u on any time interval of existence. The continuation theorem guarantees a
global-in-time weak L∞ solution. �

Moreover, as in the case of C2 kernel, we have convergence to a Dirac delta mass at the center
of mass as t→∞, as in Corollary 2.14.
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Corollary 2.16 (Infinite time blow-up for Log-quadratic potentials) For the kernel K
as defined in (2.17)-(2.18), any nonnegative L∞-weak solution with compact support converges in
infinite time to a Dirac delta with mass M located at the center of mass cM of the solution.

Proof. The proof follows the arguments above, noting that this particular kernel yields global in
time solutions, but since k satisfies the conditions of Proposition 2.9, the support of the solution
stays inside a ball of radius R satisfying the ODE ˙̃R = −k′(2R̃)M/2. Thus we obtain an upper-
bound on the radius of the support of u, which vanishes as t → ∞. Thus u must converge to a
Dirac delta in infinite time. �

We now show that this special case of the log-quadratic potential can be extended to any
Osgood potential satisfying the conditions of Proposition 2.9 that is smooth away from the
origin.

Theorem 2.17 (Global-in time L∞ and infinite time blow-up for Osgood potentials)
Assume k′′(r) > 0 and that k′(r)/r monotone decreasing in r. Then on the interval of existence
(0, T ∗)

d

dt
‖u‖−1/N

L∞ ≥ −C(N,M) k′
(
M1/N‖u‖−1/N

L∞

)
(2.21)

holds. As a consequence, if K satisfies the Osgood condition (1.4) then for any compactly sup-
ported nonnegative L∞ solution of the aggregation equation stays bounded for all time and con-
verges as t→∞ to a Dirac mass of size M located at its center of mass cM .

Proof. The proof follows the argument of the log-quadratic case in Theorem 2.15. The fact that
k′(r)/r is monotone decreasing means that k′′(r)/r− k′(r)/r2 ≤ 0 away from the origin and thus
0 < k′′(r) ≤ k′(r)/r away from the origin. More specifically, we have

T1 ≤ ‖∆K‖L1(Bδ(0))‖u‖L∞ ≤ C
∫ δ

0
|k′(r)|rN−2dr ‖u‖L∞ .

Note that k′′(r) > 0 implies k′(r) is increasing. Therefore sup[0,δ](k′(r)) = k′(δ). Thus, in
dimension N ≥ 2

T1 ≤ Ck′(δ)
∫ δ

0
rN−2dr‖u‖L∞ ≤ C

k′(δ)
δ

δN‖u‖L∞ .

In one space dimension, 1/r is not integrable, however the original integral can be written directly
in terms of k′′ as

∫ δ
0 |k

′′|dr ≤ k′(δ). Also

T2 ≤ C
k′(δ)
δ
‖u‖L1 .

As in the proof of Theorem 2.15, we choose δ = (M/‖u‖L∞)1/N so that

T1 + T2 ≤ C(N,M) k′
[
(M/‖u‖L∞)1/N

]
(‖u‖L∞/M)1/N .

We have the estimate

d

dt
‖u‖L∞ ≤ C(N,M) k′

[
(M/‖u‖L∞)1/N

]
(‖u‖L∞/M)1/N‖u‖L∞ .

Dividing by ‖u‖1+1/N
L∞ gives the estimate in (2.21). The long time behavior of the solution follows

from the same arguments used to prove Corollaries 2.14 and 2.16. �
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Remark 2.18 (General Osgood Potentials) The global existence result in Theorem 2.17 also
holds for more general potentials satisfying the Osgood condition. For example, we can take
k′′ bounded from below by a negative constant, thereby allowing kernels that change curvature
outside of some neighborhood of the origin. Very general kernels can be considered that are C2

outside of some neighborhood and satisfy the more strict assumptions inside a neighborhood. The
monotonicity of k′(r)/r is used in the global existence argument in order to bound k′′ by k′(r)/r
in the estimates. Since this is a pointwise estimate for the growth rate of u, we need to control the
second derivative of k since it explicitly appears in the formula for the rate of growth of u along
characteristics. Of course, to prove convergence to the delta in infinite time, the monotonicity
condition is required everywhere on the support of u since it plays a key role in the estimate of
the size of the support.

3 Radially symmetric solutions

In this section we consider the special case of radially symmetric solutions. The first part of the
section refines the blowup arguments of Section 2.2 to include weaker monotonicity conditions on
the kernel. This can be accomplished by writing the problem in polar coordinates. In the second
part of this section we consider the special case of similarity solutions for the most well-known
model of K(x) = |x|. In this case we are able to derive some exact solutions. We show that
the problem in higher dimensions is very different from the one dimensional problem. Similarity
solutions are often used to understand the structure of the finite time blowup. In this section we
prove that in odd space dimension higher than one, there are no radially symmetric similarity
solutions with compact support on an open set of positive Lebesgue measure. Likewise there are
no Lp symmetric similarity solutions with support containing an open set (1 < p < ∞). The
example solutions that we are able to construct all involve collapsing delta-rings in dimension
higher than one. This raises an interesting question of what the blow-up profile for finite time
singularities in L∞ solutions looks like near the blowup time, in higher dimensions.

3.1 Finite time blowup in the radial case

In section 2, in order to obtain “Osgood-like” estimates, it was necessary that the potential
K(x) = k(|x|) satisfies the monotonicity condition:

k′(r)
r

is decreasing.

In this section we obtain ”Osgood-like” estimates under the milder monotonicity condition:

k′(r) is monotone in a neighborhood of zero

The price to pay in order to consider this more general class of potential is that we now have
to work with a smaller class of solutions, i.e.: radially symmetric solutions. Interestingly, the
techniques used in this section, despite the fact that they lead to similar ”Osgood-like” estimates,
are of a different nature to the one used in section 2. Let us summarize the assumptions on the
potential K(x) in this section:

(i) K is radially symmetric K(x) = k(|x|).

(ii) k : [0,+∞)→ [0,+∞) is smooth away from 0 and k(0) = 0.

(iii) k′(r) ≥ 0 and the inequality is strict when r > 0.
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(iv) There exists a neighborhood [0, δ) of 0 on which k′ is monotone.

(v) K is acceptable in the sense of definition 2.4.

Our main result in this section is:

Theorem 3.1 (Blow-up: radial case) Consider equation (2.8) where the potential K satisfies
(i)-(v) together with ∫ 1

0

1
k′(r)

dr < +∞.

Suppose the initial data is radially symmetric, compactly supported and bounded. Then there
exists a finite time T ∗ such that the unique weak solution u(x, t) of (2.8) satisfies

lim
t→T ∗

sup
0≤τ<t

‖u(·, τ)‖Lq = +∞

for all q ≥ 2 (q > 2 for N = 2).

The proof of Theorem 3.1 relies on two key ingredients. The first one is the continuation
theorem 2.7. The second one is a refined estimate of the speed at which the support of radially
symmetric solutions shrink (Theorem 3.5). This estimate shows that the radius of the support
becomes zero in finite time, and thus, using the continuation theorem, the Lq norm must blow-up.

The rest of the section is devoted to the proof of this theorem. For r, ρ ∈ (0,+∞), define
ψ(r, ρ) as follows:

ψ(r, ρ) :=
1

ωNρN−1

∫
∂B(0,ρ)

∇K(re1 − y) · e1dσ(y)

=
1

ωNρN−1

∫
∂B(0,ρ)

k′(|re1 − y|)
re1 − y
|re1 − y|

· e1dσ(y), (3.1)

where e1 is the first vector of the canonical basis of RN .

r e1e1

grad K (r e  − y)1
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Figure 1: Geometric interpretation of the function ψ.

Lemma 3.2 (Convolution in polar coordinates) Suppose u is radially symmetric: u(x) =
ũ(|x|). Define û as follow:

û(r) = ωNr
N−1ũ(r) (3.2)

Then

(u ∗ ∇K)(x) =
(∫ +∞

0
ψ(|x|, ρ)û(ρ)dρ

)
x

|x|
. (3.3)
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Remark 3.3 (Polar Coordinates) One can easily check, that, in polar coordinate, the aggre-
gation equation becomes: 

d

dt
û+

d

dr
(ûv̂) = 0

v̂(r, t) = −
∫ +∞

0
ψ(r, ρ)û(ρ, t)dρ

(3.4)

Note that û(r, t) has been defined such that∫ r2

r1

û(r)dr =
∫
r1≤|x|≤r2

u(x) dx.

Proof of Lemma 3.2.

(u ∗ ∇K)(x) =
∫

RN
u(y)∇K(x− y)dy

=
∫ +∞

0
ũ(ρ)

(∫
∂B(0,ρ)

∇K(x− y)dσ(y)

)
dρ

=
∫ +∞

0
û(ρ)

(
1

ωNρN−1

∫
∂B(0,ρ)

∇K(x− y)dσ(y)

)
dρ. (3.5)

Since K is radially symmetric, it is not difficult to see that the vector

a(x) =
1

ωNρN−1

∫
∂B(0,ρ)

∇K(x− y)dσ(y)

is parallel to x. Moreover, since by definition a(x) is rotationally invariant, then there exists a
function b(r) such that

a(x) = b(|x|) x
|x|
. (3.6)

Plugging x = r e1 in (3.6) and taking the scalar product with e1, one easily finds that

b(r) = a(re1) · e1 = ψ(r, ρ). (3.7)

Collecting (3.5) and (3.7), we obtain (3.3). �

Our next goal is to derive estimates for ψ(r, ρ). Let us define the following constants:

αN =
1
ωN

∫
∂B(0,1)

e1 − x
|e1 − x|

· e1dσ(x) =
1
ωN

∫
∂B(0,1)

cos(θ(x))dσ(x)

βN =
1
ωN

∫
∂B1/2(0,1)

e1 − x
|e1 − x|

· e1dσ(x) =
1
ωN

∫
∂B1/2(0,1)

cos(θ(x))dσ(x)

where ∂B1/2(0, ρ) is the half sphere of radius ρ, i.e., ∂B1/2(0, ρ) = {x ∈ ∂B(0, ρ) : x1 ≤ 0} and
θ(x) is defined in Figure 2. It is easy to check that 0 < βN < αN < 1.

Lemma 3.4 (Estimate for ψ(r, ρ)) Suppose the potential K satisfies (i)-(iv)

(a) If k′(r) is decreasing in the interval [0, δ), then

ψ(r, ρ) ≥ αN k′(2r) for all ρ < r <
δ

2
(3.8)
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Figure 2: Geometric interpretation of αN and βN .

(b) If k′(r) is increasing in the interval [0, δ), then

k′(2r) ≥ ψ(r, ρ) ≥ βN k′(r) for all ρ < r <
δ

2
(3.9)

(c) For any R1 > 0, given δ
2 ≤ r ≤ R1, then

ψ(r, ρ) ≥ βN inf
r∈[ δ

2
,2R1]

k′(r) (3.10)

Proof. Let us write the function ψ as

ψ(r, ρ) =
1

ωNρN−1

∫
∂B(0,ρ)

k′(|re1 − y|) F (r, y) dσ(y) (3.11)

where the function F is defined by

F (r, y) =
re1 − y
|re1 − y|

· e1

whenever |re1 − y| 6= 0. If y is parallel to e1, then the function F is defined by

F (r, y) =
r − y1

|r − y1|
=


1 if r > y1

0 if r = y1

−1 if r < y1

.

Before proving the estimates on ψ, let us verify some simple properties of F :

(Fa) −1 ≤ F (r, y) ≤ 1 ∀(r, y) ∈ R× RN

(Fb) F (r, y) ≥ 0 if r ≥ y1

(Fc) F (ρ, y) ≤ F (r, y) if ρ ≤ r

If y is parallel to e1 then (Fa), (Fb) and (Fc) are obvious. Assume y is not parallel to e1. Then
F (r, y) can be written

F (r, y) =
r − y1√

(r − y1)2 + c2
where c =

(
d∑
i=2

y2
i

)1/2

> 0. (3.12)
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From this (Fa) and (Fb) are obvious. Then write

1
|F (r, y)|2

= 1 +
c2

(r − y1)2

From this it is clear that, as a function of r, Fy(r) := F (r, y) decreases on (−∞, y1) and increases
on (y1,+∞). On the other hand, Fy(r) is negative on (−∞, y1) and positive on (y1,+∞).
Combining the two we obtain that Fy(r) is increasing on R. This proves (Fc).

Let us prove statement (a). Using (Fb) we see that, since ρ < r, then F (r, y) ≥ 0 for all
y ∈ ∂B(0, ρ). Moreover |re1 − y| ≤ 2r. Combining them together with the fact that k′ is
decreasing on [0, δ] we obtain that, if r < δ

2 then

ψ(r, ρ) ≥ k′(2r) 1
ωNρN−1

∫
∂B(0,ρ)

F (r, y)dσ(y).

Using (Fc) we then get that

1
ωNρN−1

∫
∂B(0,ρ)

F (r, y)dσ(y) ≥ 1
ωNρN−1

∫
∂B(0,ρ)

F (ρ, y)dσ(y) = αN

where the last identity has been obtained by doing the change of variable z = ρy.
Let us prove statements (b) and (c). For the same reason as in the proof of (a), F (r, y) ≥ 0

for all y ∈ ∂B(0, ρ). Moreover k′ ≥ 0 so the integrand in (3.11) is positive and we have

ψ(r, ρ) ≥ 1
ωNρN−1

∫
∂B1/2(0,ρ)

k′(|re1 − y|)F (r, y)dσ(y). (3.13)

Note that |re1−y| ≥ |r−y1|. Therefore, since y1 ≤ 0 for all y ∈ ∂B1/2(0, ρ) we have |re1−y| ≥ r.
Moreover |re1 − y| ≤ 2r for all y ∈ ∂B1/2(0, ρ). So combining the two inequalities we obtain

r ≤ |re1 − ρy| ≤ 2r for all y ∈ ∂B1/2(0, ρ) and for all ρ < r.

Combining this with (3.13) we obtain

ψ(r, ρ) ≥ 1
ωNρN−1

∫
∂B1/2(0,ρ)

F (r, y)dσ(y) min
s∈[r,2r]

k′(s)

≥ βN min
s∈[r,2r]

k′(s) (3.14)

where once again we have used the fact that F (r, y) ≥ F (ρ, y) and then the change of variable
z = ρy. Inequality (3.10) and the right side of inequality (3.9) are direct consequence of (3.14).
We are then left to move prove that ψ(r, ρ) ≤ k′(2r) for all ρ < r < δ

2 . Since k′ is increasing on
[0, δ), we have

k′(|re1 − y|) ≤ k′(2r) for all y ∈ ∂B(0, ρ) and for all ρ < r

so
ψ(r, ρ) ≤ k′(2r)

1
ωNρN−1

∫
∂B(0,ρ)

F (r, y)dσ(y).

To conclude one just needs to use the bound F (r, y) ≤ 1 from (Fa). �
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Theorem 3.5 (Estimate of the size of the support) Consider equation (2.8) where the po-
tential K satisfies (i)-(v) and where the initial data is radially symmetric, compactly supported
and bounded. Let u(x, t) be the unique weak solution defined on [0, T ∗), where T ∗ is the maximal
time of existence. Let R(t) be the radius of the support of u(·, t) with R0 its initial value. Then

(a) If k′ is increasing in [0, δ), there exists a finite time T1 ∈ [0, T ∗) depending on δ, k and R0

such that
−Mk′(2R(t)) ≤ R′(t) ≤ −MβNk

′(R(t)) ∀t ∈ [T1, T
∗) (3.15)

(b) If k′ is decreasing in [0, δ), there exists a finite time T1 ∈ [0, T ∗) depending on δ, k and R0

such that
R′(t) ≤ −MαNk

′(2R(t)) ∀t ∈ [T1, T
∗) (3.16)

Proof. From Lemma 3.2 it is clear that

R′(t) = −
∫ +∞

0
ψ(R(t), ρ)û(ρ, t)dρ

= −
∫ R(t)

0
ψ(R(t), ρ)û(ρ, t)dρ. (3.17)

Note that ρ ≤ R(t), this allows us to use Lemma 3.4. We also observe that R′(t) ≤ 0 resulting
from ψ(r, ρ) ≥ 0 for all ρ ≤ r due to (Fb) together with k′ ≥ 0.

Assume first that R0 ∈ [0, δ2). Since R(t) is decreasing, then R(t) will stay in [0, δ2) and we
easily get (3.15) and (3.16) from (3.17) together with part (a) and (b) of Lemma 3.4.

Assume next that R0 >
δ
2 . Then, since R is decreasing, R(t) belongs to

[
δ
2 , R0

]
for some time

interval [0, T1) where T1 might be finite or infinite. Combining (3.17) with part (c) of Lemma
3.4, we get

R′(t) ≤ −MβN inf
r∈[ δ2 ,2R0]

k′(r) ∀t ∈ [0, T1).

Since k′(r) > 0 for r > 0, this tells us that R(t) decreases at least linearly when t ∈ [0, T1),
therefore R(t) will be smaller than δ

2 in finite time (i.e.: T1 < ∞). In this way, we are reduced
to the previous case since R(T1) ∈ [0, δ2). �

We are now ready to prove the blow up theorem.

Proof of Theorem 3.1. Suppose first that k′(r) increases on [0, δ) and let T1 and R(t) be as in
Theorem 3.5. Consider the ODE {

y′(t) = −MβNk
′(y(t))

y(T1) = R(T1)

Since the Osgood condition is violated, i.e.,∫ 1

0
1/k′(r)dr <∞,

we know that there exists T ∗∗ <∞ at which y reaches 0. Using part (a) of the previous theorem
we see that the maximal time of existence T ∗ must be less than T ∗∗. If it were not the case, then
at t = T ∗∗, the support of u(·, t) would be reduced to a point, therefore u(·, t) would not be in
L1 ∩ L∞, which contradicts the fact that u is a weak solution of (2.8) on [0, T ∗). Thus, we have
T ∗ ≤ T ∗∗ < ∞. We can then use the continuation theorem 2.7 to get blow up of the Lq-norm.
The proof for the case where k′(r) decreases in [0, δ) is exactly similar. �
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3.2 Self-similar solutions for K = |x|

In this final section, we explore the possibility of describing more in detail the finite-time blow-up
proved in previous sections. With this purpose, we focus on finding certain blow-up self-similar
solutions of (1.1) with homogeneous potentials. Suppose K(x) is a potential with a Lipschitz
point at the origin:

K(x) ∼ C|x| as x→ 0 (3.1)

and suppose u is a solution of (1.1) which blows up at t = T ∗. We choose this special kernel for
the following reasons: (1) kernels with Lipschitz points are one of the most common examples
in the aggregation literature, (2) the special homogeneity of this kernel simplifies some of the
analysis, and (3) when the blowup occurs at a point, it is only the local structure of the kernel at
the origin that is important and moreover, to do similarity analysis we take it to be homogeneous.
Close to the blow up time, one would expect u to have small support (or at least to be highly
concentrated). Therefore the velocity can be well approximated by

v = −Cu ∗ ∇|x|.

From this remark, one would expect that the blow-up profile of (1.1) with a potential K(x)
satisfying (3.1) can be well approximated by the blow up profile of (1.1) with K(x) = C|x|.

3.2.1 One dimension

Let U(x) be the uniform distribution on [−1, 1] and define the rectangle-like similarity solution

uS(x, t) :=
1

R(t)
U

(
x

R(t)

)
,

where R(t) = T ∗− t. Next result states that uS(x, t) is a weak solution of (1.1) with K(x) = |x|.

Proposition 3.6 Let T ∗ > 0 and R(t) = T ∗ − t. Then, for all φ ∈ C∞0 (R× [0, T ∗)), we have∫ T ∗

0

∫
R

(uS φt + uSvS φx) dx dt+
∫

R
uS(x, 0)φ(x, 0) dx = 0, (3.2)

where vS := −uS ∗ ∇|x|.

Remark 3.7 Let first notice that φ ∈ C∞0 (R × [0, T ∗)) means that there exists a φ̃ ∈ C∞0 (R ×
(−T ∗, T ∗)) such that φ̃ = φ on R × [0, T ∗). Moreover, note that u ∈ L1(R × (0, T ∗)) with
‖uS‖L1 = T ∗ and vS ∈ L∞(R × (0, T ∗)) with ‖vS‖L∞ = 1. Therefore, (3.2) is well defined.
Finally, let us point out that this solution blows up at time T ∗ = R0 and we have

uS(x, t) ⇀ δ0 as t→ T ∗.

Proof. Given the domain D = {(x, t) ∈ R× (0, T ∗) : −R(t) < x < R(t)}, we have

uS(x, t) =

{
1

2R(t) if (x, t) ∈ D

0 otherwise

Since K ′(x) = sgn(x), we can explicitly compute vS = −uS ∗K ′:

vS(x, t) =

{
− x
R(t) if (x, t) ∈ D

−sgn(x) otherwise
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From this it is clear that uS and vS are C∞ on D. Moreover, since R′(t) = −1, we deduce

d

dt

[
1

2R(t)

]
+

d

dx

[
− x

2R(t)2

]
= 0

and therefore uS and vS satisfy ut + (uv)x = 0 on D. Since supp{u} = D, (3.2) is equivalent to∫∫
D
uS φt + uSvS φx dx dt+

∫
R
uS(x, 0)φ(x, 0) dx = 0 . (3.3)

We then integrate by parts the first term of (3.3). Since uS and vS satisfy ut + (uv)x = 0 inside
D, we are just left with the boundary terms:∫

∂D
(uS φνt + uSvS φνx) dσ +

∫
R
uS(x, 0)φ(x, 0) dx = 0 . (3.4)

Here, νt(x, t) and νx(x, t) are the t and the x-coordinate of the outwards unit normal vector
to ∂D at the point (x, t). We then break the boundary into 3 parts ∂D = γ0 ∪ γ+ ∪ γ−
where γ0, γ+ and γ− are the three segments defined by γ0 = {(x, t) ∈ ∂D : t = 0} and γ± =
{(x, t) ∈ ∂D : t > 0 and ± x > 0}. Clearly νt = −1 on γ0 and νx = 0 on γ0, so we are reduced
to show ∫

γ+∪γ−
uS φ (νt + vSνx) dσ = 0. (3.5)

It is straightforward to check that νt + vSνx = 0 on γ+ ∪ γ−, which proves (3.5) �

3.2.2 Delta ring examples in multiple dimensions

We will show that in any dimension we have certain self-similar solutions of (1.1). This family
of solutions give different similarity solutions even in one dimension to those found in previous
subsection. Recall that in radial coordinates, the aggregation equation becomes

d

dt
û+

d

dr
(ûv̂) = 0

v̂(r, t) = −
∫ +∞

0
ψ(r, ρ)û(ρ, t)dρ

with the function ψ given by (3.1). Suppose that R0(t), . . . , Rn(t) satisfy the ODE

R′i(t) = −
n∑
j=0

mjψ(Ri(t), Rj(t)) (3.6)

then one can easily check that

u(r, t) =
n∑
i=0

mi δ(r −Ri(t)) (3.7)

is formally a weak solution of (1.1). Going back to the normal coordinates, we can see that the
solution described by (3.7) is a linear combination of measures which are uniformly distributed
on ∂B(0, Ri).

Remark 3.8 (Shrinking self-similar delta) In particular, in the case of a single delta on a
sphere, we have a self-similar shrinking delta Dirac solution where the radius R0(t) follows (3.6),
i.e., R′0(t) = −Mψ(R0(t), R0(t)) = −Mψ(R0(t), R0(t)) = −Mφ(R0(t)

R0(t)) = −Mφ(1),with φ defined
below, and therefore, it shrinks linearly in time.
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ψ(r, p) = φ

(
r

ρ

)
with φ(r) =

1
ωN

∫
∂B(0,1)

re1 − y
|re1 − y|

· e1dσ(y). (3.8)

Now, let us work with general linear combination of deltas, we say that such a solution is a
similarity solution if there exist positive constants βij such that

Ri(t)
Rj(t)

= βij i, j = 0, 1, . . . , n

or, equivalently, if there exist positive constants ai, i = 1, . . . , n such that

Ri(t) = aiR0(t) i = 1, . . . , n. (3.9)

Note that if K(x) = |x|, then k′(r) = 1 and ψ(r, ρ) can be written as in (3.8). In this way, (3.6)
becomes

R′i(t) = −
n∑
j=0

mjφ

(
Ri(t)
Rj(t)

)
i = 0, . . . , n.

Thus, if Ri(t) result from a self-similar solution, then they must satisfy

R′0(t) = −m0φ(1)−
n∑
j=1

mjφ

(
1
aj

)
(3.10)

R′i(t) = −m0φ(ai)−
n∑
j=1

mjφ

(
ai
aj

)
i = 1, . . . , n (3.11)

but from (3.9) it is clear that
R′i(t) = aiR

′
0(t). (3.12)

Combining (3.10), (3.11) and (3.12) we see that

ai =
m0φ(ai)) +

∑n
j=1mjφ

(
ai
aj

)
m0φ(1) +

∑n
j=1mjφ

(
1
aj

) .

Having noticed this, let us define:

V := {(a1, . . . , an) ∈ Rn : 1 < a1 < · · · < an}

and also the function G : V → Rn given by

Gi(a1, . . . , an) =
m0φ(ai) +

∑n
j=1mjρ

(
ai
aj

)
m0φ(1) +

∑n
j=1mjφ

(
1
aj

) .
Note that, since φ is strictly increasing, then G(V) ⊂ V. We can summarize the previous
discussion as

Theorem 3.9 Suppose (a1, . . . , an) ∈ V is a fixed point of G and define

c = m0φ(1) +
n∑
j=1

mjφ

(
1
aj

)
,

R0(t) = 1− ct ∀t ∈ [0,
1
c

),

Ri(t) = aiR0(t) ∀t ∈ [0,
1
c

), i = 1, . . . , n
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Then R0(t), R1(t), . . . , Rn(t) satisfy

R′i(t) = −
n∑
j=0

mjφ

(
Ri(t)
Rj(t)

)
i = 0, . . . , n (3.13)

with R0(t) < R1(t) < · · · < Rn(t) on the time interval [0, 1
c ).

Thus, if G has a fixed point in V, then the solution

u(t) =
n∑
i=0

miδ(r −Ri(t)),

where the Ri(t) are given by (3.13), is formally a self-similar weak solution of the aggregation
equation with K(x) = |x|. This solution blows-up at time T ∗ = 1

c and we have

u(t) ⇀ δ0 as t→ T ∗.

3.2.3 Existence of two delta-ring solution in R2

We prove the existence of a two-delta ring similarity solution in the special case of two space
dimensions. In this case, the function G becomes

G(x) =
m0φ(x) +m1φ(1)
m0φ(1) +m1φ(1/x)

.

We want to prove that G has a fixed point in V = (1,∞). Note first that, since limx→∞ φ(x) = 1
and φ(0) = 0, then

lim
x→∞

G(x) =
m0 +m1φ(1)
m0φ(1)

<∞.

Therefore, for large enough x, G(x) < x. Furthermore

G′(1) =
φ′(1)
φ(1)

. (3.14)

So, if we can show that φ′(1) > φ(1), then G′(1) > 1 and therefore G(x) > x on some interval
(1, 1 + δ), which is enough to conclude that G has a fixed point on (1,∞) and therefore there
exists a self-similar solution comprised of two delta-rings.

We conclude this subsection with a proof of φ′(1) > φ(1). Recall that

φ(r) =
1
ωN

∫
∂B(0,1)

F (r, y)dσ(y)

where as before
F (r, y) =

re1 − y
|re1 − y|

· e1.

Write y = (y1, y
′) where y1 ∈ R and y′ ∈ RN−1. One can check that

∂

∂r
F (r, y) =

|y′|2

|re1 − y|3
=

|y′|2

{(r − y1)2 + |y′|2}3/2
.
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Note that, if y ∈ ∂B(0, 1) and if y → e1, then

∂

∂r
F (1, y) =

|y′|2

{(1− y1)2 + |y′|2}3/2
∼ 1
|y′|

and therefore, when N = 2,

φ′(1) =
1
ωN

∫
∂B(0,1)

∂

∂r
F (1, y)dσ(y) =∞

and obviously φ′(1) > φ(1).

3.2.4 On the support of similarity solutions in odd dimensions

In this section we prove that similarity solutions can not exist with support on open sets in any
odd dimension larger than one.

A function u(t, x) is said to be a similarity solution to (1.1) if it has the form

u(t, x) = u(t)(x) =
1

R(t)N
u0

(
x

R(t)

)
(3.15)

with R(0) = 1. This is equivalent to say that u(t) = Tt#u0 with Tt : RN −→ RN the dilation map
Tt(x) = R(t)x. This formulation of self-similarity has perfect sense for measure-valued solutions,
and thus:

Definition 3.10 A time dependent measure valued solution on RN is a mass-conserving simi-
larity solution if it is a weak solution of (1.1) having the following form u(t) = Tt#µ with µ a
nonnegative Radon measure with total finite mass.

Plugging the general form into (1.1) for the special case K(x) = |x| gives, via separation of
variables, that R(t) must vary linearly in time. Moreover, by the similarity ansatz, the velocity
field generated by the convolution v = ∇K ∗ µ, is well-defined and satisfies

v = −λx (3.16)

for some constant λ, on the support of µ. Another way to see this is just to realize that the
solutions of the continuity equation (1.1) must satisfy u(t) = X(t)#u0 as discussed in section 2.
Therefore, u(t) = Tt#µ is a weak solution of (1.1) with initial data µ if and only if X(t) = Tt on
supp(µ), and thus, for all x ∈ supp(µ) we get X(t, x) = Tt(x) = R(t)x. As a consequence, for all
x ∈ supp(µ) we deduce

R′(t)x = v(t, R(t)x) = −(∇|x| ∗ u(t))(R(t)x) = −(∇|x| ∗ u0)(x)

by the homogeneity of |x|. From this, R′(t) = −λ with λ ∈ R+ and thus, (3.16).
Using these facts, we arrive at the following nonexistence theorems for radially symmetric

similarity solutions in odd dimensions N higher than one.

Theorem 3.11 (Non-existence of similarity solutions) Let N be an odd space dimension
larger than one and K(x) = |x|. Then there does not exist a nonnegative similarity solution in
Lp(RN ) for p > 1 whose support contains an open set.
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Proof. We start with the 3D case. Note that if µ has a density ρ in Lp then ∇ · v is a constant
times the Newtonian potential convolved with ρ. Therefore, the distributional Laplacian of ∇ · v
is a constant multiple of the Lp function ρ. However, by taking distributional derivatives of
equation (3.16), i.e., by multiplying by suitable test functions and integrating by parts for the
right-hand side, we have that the distributional Laplacian of ∇ · v is zero on any open set on the
support of ρ giving that ρ is zero a.e. in any open set inside its support.

To extend this result from 3D to odd higher dimensions, we note that there is always some
power of the Laplacian that can be applied to ∇ · v to obtain a constant times the identity
functional, since the Newtonian potential is a constant multiple of 1/|x|2−N in N dimensions.
The rest of the argument follows in higher dimensions as well. �

Theorem 3.12 (Non-existence of similarity solutions) Let N be an odd space dimension
larger than one and K(x) = |x|. Then there do not exist any nonnegative nontrivial measure-
valued similarity solutions, compactly supported on RN , whose support contains an open set.

Proof. The proof is similar to that of Theorem 3.11 except that we now consider µ to be a
compactly supported measure. This means that ∇K ∗ µ and 1/|x| ∗ µ can be understood in
the sense of distributions (a distribution convolved with a distribution of compact support is a
distribution). The distributional Laplacian of ∇ · v equals a constant times µ in the sense of
distributions and due to (3.16) as above, the distributional Laplacian is zero on any open set
contained in the support of µ. Thus µ has no support on open sets. �

Remark 3.13 (Even dimensions) Note that the argument fails in even dimensions because
there is no local differential operator that inverts the convolution operator 1/|x|. Rather the
appropriate operator is a non-local pseudo-differential operator.

Remark 3.14 (Blow-up profiles) All known examples of similarity solutions in dimensions
two and higher are collapsing delta-rings. It would be interesting to know if these are the only
similarity solutions or if, for some reason the odd dimensions are special. Moreover, it raises the
question of what is the blowup profile in higher dimensions for blowup from bounded data. It can
not be exactly a delta-ring because that solution is more singular than the bounded-blowing up
solution. The existence and continuation theory only guarantees a blowup in Lp for p ≥ 2 so we
do not know if the initial singularity for bounded data involves a mass concentration or instead
something a bit less singular for the initial blowup time.

4 Conclusions and discussion

We summarize the main results of this work as follows. Given radial, Lipschitz continuous,
attractive potentials with an additional monotonicity condition on k′ and given bounded nonneg-
ative compactly supported initial data, the Osgood condition (1.4) is a necessary and sufficient
condition to have global-in-time bounded solutions in multiple space dimensions. Moreover, the
monotonicity of the kernel guarantees that the global in time solutions converge to a Dirac delta
singularity, as t → ∞, at the center of mass (which is conserved). Particle paths are well-posed
globally in time and the solutions constructed are unique. In case the Osgood condition does
not hold (1.3), then all initially bounded solutions blow-up in finite time. Moreover, the blow-up
time is uniformly bounded by the blow-up time of an ODE of the form dR/dt = −M k′(2R)/2.
Therefore, the Osgood condition is sharp for deciding the finite or infinite time blow-up among
certain class of potentials. However, we do not know the typical blow-up profile of bounded so-
lutions, since solutions for certain initial data will form singularities before the time in which all
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the mass might concentrate in a single Dirac delta. It is an open problem to clarify the different
blow-up scenarios that may happen. For non Osgood potentials, particle paths are unique up to
the initial blow-up time.

In a single space dimension, the results hold provided there is an existence theory for the
PDE with bounded data. This problem has been studied in some particular contexts, however
to our knowledge the general existence problem has not been proved for bounded data and all
kernels that are Lipschitz continuous or smoother. Three recent papers that consider the one
dimensional inviscid problem are [10, 23, 27] and discuss a number of results for various kernels.
By making a transformation

∫ x
−∞ u = w, one finds that the 1D problem is equivalent to a scalar

conservation law with a nonlocal flux function. The Lipschitz point kernel gives Burgers equation
to leading order.

Part of this paper focuses on blowup from radially symmetric data. We are able to prove
the same blowup results as in the case of general initial data, however we can weaken slightly
the monotonicity constraints on the kernel. A special class of radially symmetric solutions are
similarity solutions that converge to a Dirac mass in finite time. Motivated by the particular
problem of blowup for potentials with a Lipschitz point, we consider the question of existence
of similarity solutions for the special kernel |x| in different space dimensions. We note that in
one dimension there is a special solution described by a self-similar rectangle that converges to
a delta. This is the analogue of the classical shock solution example for Burgers equation. In
multiple dimensions, we describe families of solutions of nested delta-rings, in which the support
is concentrated on the surface of spheres with shrinking radii. In two dimensions we prove the
existence of a 2-ring solution. In any dimension there is a single-ring solution. This brings up the
question of whether there are any similarity solutions in higher space dimensions in which the
profile of the solution is bounded. In odd space dimensions higher than one, we prove that no such
similarity solutions exist in which the support of the solution contains an open set. This strongly
suggests, at least in odd dimensions, that the only radially symmetric similarity solutions for this
potential are the delta-ring solutions. It also raises the question of what is the blowup profile in
dimension two and higher. The result for odd dimensions tells us that the blowup profile from
bounded initial data must be unusual.

Another interesting problem, is the case of measure valued initial data. We consider a sub-
problem, namely data concentrated in a finite number of deltas, which results formally in an ODE
for the motion of particles. For Osgood potentials, we derive, via Lemma A.15 in the Appendix,
that the full ODE particle system satisfies the well-known Osgood uniqueness condition. This
combined with the a priori bound on the support of the particles guarantees global existence
and uniqueness of a solution. We note that a related result was recently proved in [1] for the
linear transport equation with signed measure valued initial data and a characteristic vector field
satisfying the classical ODE Osgood condition. In the case of non-Osgood potentials, we prove
uniqueness of a special solution forward-in-time in which particles are defined to merge when they
collide. Uniqueness is clearly not satisfied going backward in time. Our results for ODEs suggest
that there may be a way to give sense to global existence and uniqueness for measure-valued
solutions, in the case of non-Osgood potentials, based on a kind of uniqueness of forward-in-time
characteristics. The optimal transport point of view is definitely an approach that can deal with
measure-valued solutions for smooth potentials, see [2]. We will pursue this different approach
for non smooth non Osgood potentials elsewhere.
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Appendix

Here we prove the following Lemma:

Lemma A.15 (Osgood modulus of continuity) Let k(r) be a function defined on (0,∞) sat-
isfying k′′ ≥ 0 on (0,∞), and k′(r)/r nonincreasing in r. Then the vector field in RN defined by
v(x) = ∇k(|x|) has a modulus of continuity that satisfies

|v(x1)− v(x2)| ≤ 2k′(2|x1 − x2|),

for all x1, x2 ∈ RN .

Proof. First note that the monotonicity conditions imply that [k′(r)/r]′ = k′′/r − k′/r2 ≤ 0 and
hence 0 ≤ k′′(r) ≤ k′(r)/r. Let x1 and x2 be two points in RN and without loss of generality
take 0 ≤ |x1| ≤ |x2|. Now we consider two cases.

Case 1: |x1 − x2| > |x2|/2.
In this case we can estimate

|∇K(x1)−∇K(x2)| ≤ k′(|x1|) + k′(|x2|) ≤ 2k′(|x2|) ≤ 2k′(2|x1 − x2|).

Case 2: |x1 − x2| ≤ |x2|/2.
In this case, we can reduce to 0 < |x2|

2 ≤ |x1| ≤ |x2| and then

|∇K(x1)−∇K(x2)| ≤ k′(|x1|)
∣∣∣∣ x1

|x1|
− x2

|x2|

∣∣∣∣+ [k′(|x2|)− k′(|x1|)] = T1 + T2

T1 ≤
√

2k′(|x2|)
|x2|

|x1 − x2| ≤
√

2k′(2|x1 − x2|)
2|x1 − x2|

|x1 − x2| ≤
k′(2|x1 − x2|)√

2
.

T2 ≤ sup
|x1|≤r≤|x2|

k′′(r)|r2 − r1| ≤
k′(r2)
r2

(r2 − r1) ≤ k′(2(r2 − r1))
2(r2 − r1)

|r2 − r1|

=
k′(2(r2 − r1))

2
≤ k′(2|x1 − x2|)

2
.

Above we use the notation |xi| = ri and the inequality∣∣∣∣ x1

|x1|
− x2

|x2|

∣∣∣∣ ≤ ( 1
|x1||x2|

)1/2

|x1 − x2|

for all non zero x1, x2 ∈ RN . �

As mentioned earlier in the paper, the sign constraint on k′′ is used in the proof of the Lemma,
combined with the monotonicity assumption, to bound it by the first derivative divided by r.
The constraint can be weakened as long as one can still obtain such a bound.
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[7] P. Biler and A. Woyczyński Global and Expoding Solutions for Nonlocal Quadratic
Evolution Problems, SIAM J. Appl. Math., 59 (1998), pp. 845-869.

[8] A. Blanchet, J. A. Carrillo, and N. Masmoudi, Infinite Time Aggregation for the
Critical Patlak-Keller-Segel model in R2, to appear in Comm. Pure Appl. Math.

[9] A. Blanchet, J. Dolbeault, and B. Perthame, Two-dimensional Keller-Segel model:
optimal critical mass and qualitative properties of the solutions, Electron. J. Differential
Equations, (2006), No. 44, 32 pp. (electronic).

[10] M. Bodnar and J.J.L. Velázquez, An integro-differential equation arising as a limit of
individual cell-based models, J. Differential Equations 222, (2006), pp. 341–380.

[11] S. Boi, V. Capasso and D. Morale, Modeling the aggregative behavior of ants of the
species Polyergus rufescens, Spatial heterogeneity in ecological models (Alcalá de Henares,
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